1
|
Liu L, Zhao N, Yang K, Liao H, Liu X, Wu Y, Wang Y, Peng X, Wu Y. Proteomic Analysis of Staphylococcus aureus Treated with ShangKeHuangShui. Biol Pharm Bull 2024; 47:292-302. [PMID: 38281773 DOI: 10.1248/bpb.b23-00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Staphylococcus aureus (SAU) stands as the prevailing pathogen in post-traumatic infections, with the emergence of antibiotic resistance presenting formidable treatment hurdles. The pressing need is to explore novel antibiotics to address this challenge. ShangKeHuangShui (SKHS), a patented traditional Chinese herbal formula, has gained widespread use in averting post-traumatic infections, but its biological effects remain incomplete understanding. This study's primary objective was to delve into the antibacterial properties, potential antibacterial compounds within SKHS, and their associated molecular targets. In vitro SKHS antibacterial assays demonstrated that the minimum inhibitory concentration (MIC) was 8.625 mg/mL and the minimum bactericide concentration (MBC) was 17.25 mg/mL. Proteomic analysis based on tandem mass tag (TMT) showed significant changes in the expression level of 246 proteins in SKHS treated group compared to control group, with 79 proteins upregulated and 167 proteins downregulated (>1.5-fold, p < 0.05). Subsequently, thirteen target proteins related to various biological processes and multiple metabolic pathways were selected to conduct parallel reaction monitoring (PRM) and molecular docking screen. In protein tyrosine phosphatase PtpA (ptpA) docking screening, phellodendrine and obacunone can bind to ptpA with the binding energy of - 8.4 and - 8.3 kcal/mol, respectively. This suggests their potential impact on antibacterial activity by modulating the two-component system of SAU. The discovery lays a groundwork for future research endeavors for exploring new antibacterial candidates and elucidating specific active chemical components within SKHS that match target proteins. Further investigations are imperative to unveil the biological effects of these monomers and their potential synergistic actions.
Collapse
Affiliation(s)
- Lichu Liu
- Institute of Orthopedics and Traumatology, Foshan Hospital of Traditional Chinese Medicine
| | - Na Zhao
- Institute of Orthopedics and Traumatology, Foshan Hospital of Traditional Chinese Medicine
| | - Kuangyang Yang
- Institute of Orthopedics and Traumatology, Foshan Hospital of Traditional Chinese Medicine
| | - Honghong Liao
- Institute of Orthopedics and Traumatology, Foshan Hospital of Traditional Chinese Medicine
| | - Xiaofang Liu
- Institute of Orthopedics and Traumatology, Foshan Hospital of Traditional Chinese Medicine
| | - Ying Wu
- Laboratory Medicine Center, Foshan Hospital of Traditional Chinese Medicine
| | - Yan Wang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences
| | - Xiao Peng
- Institute of Orthopedics and Traumatology, Foshan Hospital of Traditional Chinese Medicine
| | - Yuanyan Wu
- Institute of Orthopedics and Traumatology, Foshan Hospital of Traditional Chinese Medicine
| |
Collapse
|
2
|
Bacterial Protein Tyrosine Phosphatases as Possible Targets for Antimicrobial Therapies in Response to Antibiotic Resistance. Antioxidants (Basel) 2022; 11:antiox11122397. [PMID: 36552605 PMCID: PMC9774629 DOI: 10.3390/antiox11122397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
The review is focused on the bacterial protein tyrosine phosphatases (PTPs) utilized by bacteria as virulence factors necessary for pathogenicity. The inhibition of bacterial PTPs could contribute to the arrest of the bacterial infection process. This mechanism could be utilized in the design of antimicrobial therapy as adjuvants to antibiotics. The review summaries knowledge on pathogenic bacterial protein tyrosine phosphatases (PTPs) involved in infection process, such as: PTPA and PTPB from Staphylococcus aureus and Mycobacterium tuberculosis; SptP from Salmonella typhimurium; YopH from Yersinia sp. and TbpA from Pseudomonas aeruginosa. The review focuses also on the potential inhibitory compounds of bacterial virulence factors and inhibitory mechanisms such as the reversible oxidation of tyrosine phosphatases.
Collapse
|
3
|
The Phosphoarginine Phosphatase PtpB from Staphylococcus aureus Is Involved in Bacterial Stress Adaptation during Infection. Cells 2021; 10:cells10030645. [PMID: 33799337 PMCID: PMC8001253 DOI: 10.3390/cells10030645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 01/18/2023] Open
Abstract
Staphylococcus aureus continues to be a public health threat, especially in hospital settings. Studies aimed at deciphering the molecular and cellular mechanisms that underlie pathogenesis, host adaptation, and virulence are required to develop effective treatment strategies. Numerous host-pathogen interactions were found to be dependent on phosphatases-mediated regulation. This study focused on the analysis of the role of the low-molecular weight phosphatase PtpB, in particular, during infection. Deletion of ptpB in S. aureus strain SA564 significantly reduced the capacity of the mutant to withstand intracellular killing by THP-1 macrophages. When injected into normoglycemic C57BL/6 mice, the SA564 ΔptpB mutant displayed markedly reduced bacterial loads in liver and kidney tissues in a murine S. aureus abscess model when compared to the wild type. We also observed that PtpB phosphatase-activity was sensitive to oxidative stress. Our quantitative transcript analyses revealed that PtpB affects the transcription of various genes involved in oxidative stress adaptation and infectivity. Thus, this study disclosed first insights into the physiological role of PtpB during host interaction allowing us to link phosphatase-dependent regulation to oxidative bacterial stress adaptation during infection.
Collapse
|
4
|
Pereira SB, Santos M, Leite JP, Flores C, Eisfeld C, Büttel Z, Mota R, Rossi F, De Philippis R, Gales L, Morais‐Cabral JH, Tamagnini P. The role of the tyrosine kinase Wzc (Sll0923) and the phosphatase Wzb (Slr0328) in the production of extracellular polymeric substances (EPS) by Synechocystis PCC 6803. Microbiologyopen 2019; 8:e00753. [PMID: 30675753 PMCID: PMC6562117 DOI: 10.1002/mbo3.753] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 11/10/2022] Open
Abstract
Many cyanobacteria produce extracellular polymeric substances (EPS) mainly composed of heteropolysaccharides with unique characteristics that make them suitable for biotechnological applications. However, manipulation/optimization of EPS biosynthesis/characteristics is hindered by a poor understanding of the production pathways and the differences between bacterial species. In this work, genes putatively related to different pathways of cyanobacterial EPS polymerization, assembly, and export were targeted for deletion or truncation in the unicellular Synechocystis sp. PCC 6803. No evident phenotypic changes were observed for some mutants in genes occurring in multiple copies in Synechocystis genome, namely ∆wzy (∆sll0737), ∆wzx (∆sll5049), ∆kpsM (∆slr2107), and ∆kpsM∆wzy (∆slr2107∆sll0737), strongly suggesting functional redundancy. In contrast, Δwzc (Δsll0923) and Δwzb (Δslr0328) influenced both the amount and composition of the EPS, establishing that Wzc participates in the production of capsular (CPS) and released (RPS) polysaccharides, and Wzb affects RPS production. The structure of Wzb was solved (2.28 Å), revealing structural differences relative to other phosphatases involved in EPS production and suggesting a different substrate recognition mechanism. In addition, Wzc showed the ATPase and autokinase activities typical of bacterial tyrosine kinases. Most importantly, Wzb was able to dephosphorylate Wzc in vitro, suggesting that tyrosine phosphorylation/dephosphorylation plays a role in cyanobacterial EPS production.
Collapse
Affiliation(s)
- Sara B. Pereira
- i3S ‐ Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- IBMC ‐ Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
| | - Marina Santos
- i3S ‐ Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- IBMC ‐ Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
- ICBAS – Instituto de Ciências Biomédicas Abel SalazarPortoPortugal
| | - José P. Leite
- i3S ‐ Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- IBMC ‐ Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
- ICBAS – Instituto de Ciências Biomédicas Abel SalazarPortoPortugal
| | - Carlos Flores
- i3S ‐ Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- IBMC ‐ Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
- ICBAS – Instituto de Ciências Biomédicas Abel SalazarPortoPortugal
| | - Carina Eisfeld
- i3S ‐ Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- IBMC ‐ Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
- Present address:
Department of Water ManagementDelft University of TechnologyDelftThe Netherlands
| | - Zsófia Büttel
- IBMC ‐ Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
- Present address:
Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Rita Mota
- i3S ‐ Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- IBMC ‐ Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
| | - Federico Rossi
- Department of Agrifood Production and Environmental SciencesUniversity of FlorenceFlorenceItaly
| | - Roberto De Philippis
- Department of Agrifood Production and Environmental SciencesUniversity of FlorenceFlorenceItaly
| | - Luís Gales
- i3S ‐ Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- IBMC ‐ Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
- ICBAS – Instituto de Ciências Biomédicas Abel SalazarPortoPortugal
| | - João H. Morais‐Cabral
- i3S ‐ Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- IBMC ‐ Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
| | - Paula Tamagnini
- i3S ‐ Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- IBMC ‐ Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
- Faculdade de Ciências, Departamento de BiologiaUniversidade do PortoPortoPortugal
| |
Collapse
|
5
|
Chatterjee S, Nath S, Ghosh B, Sen U. Vibrio cholerae LMWPTP-2 display unique surface charge and grooves around the active site: Indicative of distinctive substrate specificity and scope to design specific inhibitor. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1867:114-124. [PMID: 30447286 DOI: 10.1016/j.bbapap.2018.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/08/2018] [Accepted: 11/13/2018] [Indexed: 11/25/2022]
Abstract
Low molecular weight protein tyrosine phosphatases (LMWPTPs) are ubiquitously found as small cytoplasmic enzymes which act on phospho-tyrosine containing proteins that are engaged in various cellular functions. Vibrio cholerae O395 contains two LMWPTPs having widely different sequence. Phylogenetic analysis based on a non redundant set of 124 LMWPTP sequences, designate that LMWPTP-2 from Vibrio choleraeO395 (VcLMWPTP-2) is a single taxon. We have determined the crystal structure of VcLMWPTP-2 at 2.6 Å with MOPS bound in the active site. Tertiary structure analysis indicates that VcLMWPTP-2 forms dimer. Studies in solution state also confirm exclusive presence of a dimeric form. Kinetic studies demonstrate that VcLMWPTP-2 dimer is catalytically active while inactivation through oligomerisation was reported as one of the regulatory mechanism in case of mammalian LMWPTP viz., Bos taurus LMWPTP, BPTP. Kinetic studies using p-nitrophenyl phosphate (p-NPP) as a substrate demonstrate active participation of both the P-loop cysteine in catalysis. Vicinal Cys17, in addition plays a role of protecting the catalytic Cys12 under oxidative stress. Structural analysis and MD simulations allowed us to propose the role of several conserved residues around the active site. Distribution of surface charges and grooves around the active site delineates unique features of VcLMWPTP-2 which could be utilized to design specific inhibitor.
Collapse
Affiliation(s)
- Shramana Chatterjee
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhan Nagar, Kolkata 700064, India
| | - Seema Nath
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhan Nagar, Kolkata 700064, India
| | - Biplab Ghosh
- High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Udayaditya Sen
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhan Nagar, Kolkata 700064, India.
| |
Collapse
|
6
|
Gannoun-Zaki L, Pätzold L, Huc-Brandt S, Baronian G, Elhawy MI, Gaupp R, Martin M, Blanc-Potard AB, Letourneur F, Bischoff M, Molle V. PtpA, a secreted tyrosine phosphatase from Staphylococcus aureus, contributes to virulence and interacts with coronin-1A during infection. J Biol Chem 2018; 293:15569-15580. [PMID: 30131335 DOI: 10.1074/jbc.ra118.003555] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/16/2018] [Indexed: 11/06/2022] Open
Abstract
Secretion of bacterial signaling proteins and adaptation to the host, especially during infection, are processes that are often linked in pathogenic bacteria. The human pathogen Staphylococcus aureus is equipped with a large arsenal of immune-modulating factors, allowing it to either subvert the host immune response or to create permissive niches for its survival. Recently, we showed that one of the low-molecular-weight protein tyrosine phosphatases produced by S. aureus, PtpA, is secreted during growth. Here, we report that deletion of ptpA in S. aureus affects intramacrophage survival and infectivity. We also observed that PtpA is secreted during macrophage infection. Immunoprecipitation assays identified several host proteins as putative intracellular binding partners for PtpA, including coronin-1A, a cytoskeleton-associated protein that is implicated in a variety of cellular processes. Of note, we demonstrated that coronin-1A is phosphorylated on tyrosine residues upon S. aureus infection and that its phosphorylation profile is linked to PtpA expression. Our results confirm that PtpA has a critical role during infection as a bacterial effector protein that counteracts host defenses.
Collapse
Affiliation(s)
- Laila Gannoun-Zaki
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier 34000, France and
| | - Linda Pätzold
- the Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany
| | - Sylvaine Huc-Brandt
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier 34000, France and
| | - Grégory Baronian
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier 34000, France and
| | - Mohamed Ibrahem Elhawy
- the Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany
| | - Rosmarie Gaupp
- the Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany
| | - Marianne Martin
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier 34000, France and
| | - Anne-Béatrice Blanc-Potard
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier 34000, France and
| | - François Letourneur
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier 34000, France and
| | - Markus Bischoff
- the Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany
| | - Virginie Molle
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier 34000, France and
| |
Collapse
|
7
|
Junker S, Maaβ S, Otto A, Michalik S, Morgenroth F, Gerth U, Hecker M, Becher D. Spectral Library Based Analysis of Arginine Phosphorylations in Staphylococcus aureus. Mol Cell Proteomics 2018; 17:335-348. [PMID: 29183913 PMCID: PMC5795395 DOI: 10.1074/mcp.ra117.000378] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Indexed: 12/19/2022] Open
Abstract
Reversible protein phosphorylation is one of the major mechanisms in the regulation of protein expression and protein activity, controlling physiological functions of the important human pathogen Staphylococcus aureus Phosphorylations at serine, threonine and tyrosine are known to influence for example protein activity in central metabolic pathways and the more energy-rich phosphorylations at histidine, aspartate or cysteine can be found as part of two component system sensor domains or mediating bacterial virulence. In addition to these well-known phosphorylations, the phosphorylation at arginine residues plays an essential role. Hence, the deletion mutant S. aureus COL ΔptpB (protein tyrosine phosphatase B) was studied because the protein PtpB is assumed to be an arginine phosphatase. A gel-free approach was applied to analyze the changes in the phosphoproteome of the deletion mutant ΔptpB and the wild type in growing cells, thereby focusing on the occurrence of phosphorylation on arginine residues. In order to enhance the reliability of identified phosphorylation sites at arginine residues, a subset of arginine phosphorylated peptides was chemically synthesized. Combined spectral libraries based on phosphoenriched samples, synthetic arginine phosphorylated peptides and classical proteome samples provide a sophisticated tool for the analysis of arginine phosphorylations. This way, 212 proteins phosphorylated on serine, threonine, tyrosine or arginine residues were identified within the mutant ΔptpB and 102 in wild type samples. Among them, 207 arginine phosphosites were identified exclusively within the mutant ΔptpB, widely distributed along the whole bacterial metabolism. This identification of putative targets of PtpB allows further investigation of the physiological relevance of arginine phosphorylations and provides the basis for reliable quantification of arginine phosphorylations in bacteria.
Collapse
Affiliation(s)
- Sabryna Junker
- From the ‡Institute for Microbiology, University of Greifswald, Germany
| | - Sandra Maaβ
- From the ‡Institute for Microbiology, University of Greifswald, Germany
| | - Andreas Otto
- From the ‡Institute for Microbiology, University of Greifswald, Germany
| | - Stephan Michalik
- From the ‡Institute for Microbiology, University of Greifswald, Germany
| | | | - Ulf Gerth
- From the ‡Institute for Microbiology, University of Greifswald, Germany
| | - Michael Hecker
- From the ‡Institute for Microbiology, University of Greifswald, Germany
| | - Dörte Becher
- From the ‡Institute for Microbiology, University of Greifswald, Germany
| |
Collapse
|
8
|
Junker S, Maaβ S, Otto A, Michalik S, Morgenroth F, Gerth U, Hecker M, Becher D. Spectral Library Based Analysis of Arginine Phosphorylations in Staphylococcus aureus. MOLECULAR & CELLULAR PROTEOMICS : MCP 2017. [PMID: 29183913 DOI: 10.1074/mcp.ra117.000378.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Reversible protein phosphorylation is one of the major mechanisms in the regulation of protein expression and protein activity, controlling physiological functions of the important human pathogen Staphylococcus aureus Phosphorylations at serine, threonine and tyrosine are known to influence for example protein activity in central metabolic pathways and the more energy-rich phosphorylations at histidine, aspartate or cysteine can be found as part of two component system sensor domains or mediating bacterial virulence. In addition to these well-known phosphorylations, the phosphorylation at arginine residues plays an essential role. Hence, the deletion mutant S. aureus COL ΔptpB (protein tyrosine phosphatase B) was studied because the protein PtpB is assumed to be an arginine phosphatase. A gel-free approach was applied to analyze the changes in the phosphoproteome of the deletion mutant ΔptpB and the wild type in growing cells, thereby focusing on the occurrence of phosphorylation on arginine residues. In order to enhance the reliability of identified phosphorylation sites at arginine residues, a subset of arginine phosphorylated peptides was chemically synthesized. Combined spectral libraries based on phosphoenriched samples, synthetic arginine phosphorylated peptides and classical proteome samples provide a sophisticated tool for the analysis of arginine phosphorylations. This way, 212 proteins phosphorylated on serine, threonine, tyrosine or arginine residues were identified within the mutant ΔptpB and 102 in wild type samples. Among them, 207 arginine phosphosites were identified exclusively within the mutant ΔptpB, widely distributed along the whole bacterial metabolism. This identification of putative targets of PtpB allows further investigation of the physiological relevance of arginine phosphorylations and provides the basis for reliable quantification of arginine phosphorylations in bacteria.
Collapse
Affiliation(s)
- Sabryna Junker
- From the ‡Institute for Microbiology, University of Greifswald, Germany
| | - Sandra Maaβ
- From the ‡Institute for Microbiology, University of Greifswald, Germany
| | - Andreas Otto
- From the ‡Institute for Microbiology, University of Greifswald, Germany
| | - Stephan Michalik
- From the ‡Institute for Microbiology, University of Greifswald, Germany
| | | | - Ulf Gerth
- From the ‡Institute for Microbiology, University of Greifswald, Germany
| | - Michael Hecker
- From the ‡Institute for Microbiology, University of Greifswald, Germany
| | - Dörte Becher
- From the ‡Institute for Microbiology, University of Greifswald, Germany
| |
Collapse
|
9
|
Bertoldo JB, Rodrigues T, Dunsmore L, Aprile FA, Marques MC, Rosado LA, Boutureira O, Steinbrecher TB, Sherman W, Corzana F, Terenzi H, Bernardes GJL. A Water-Bridged Cysteine-Cysteine Redox Regulation Mechanism in Bacterial Protein Tyrosine Phosphatases. Chem 2017; 3:665-677. [PMID: 29094109 PMCID: PMC5656095 DOI: 10.1016/j.chempr.2017.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 06/01/2017] [Accepted: 07/07/2017] [Indexed: 11/25/2022]
Abstract
The emergence of multidrug-resistant Mycobacterium tuberculosis (Mtb) strains highlights the need to develop more efficacious and potent drugs. However, this goal is dependent on a comprehensive understanding of Mtb virulence protein effectors at the molecular level. Here, we used a post-expression cysteine (Cys)-to-dehydrolanine (Dha) chemical editing strategy to identify a water-mediated motif that modulates accessibility of the protein tyrosine phosphatase A (PtpA) catalytic pocket. Importantly, this water-mediated Cys-Cys non-covalent motif is also present in the phosphatase SptpA from Staphylococcus aureus, which suggests a potentially preserved structural feature among bacterial tyrosine phosphatases. The identification of this structural water provides insight into the known resistance of Mtb PtpA to the oxidative conditions that prevail within an infected host macrophage. This strategy could be applied to extend the understanding of the dynamics and function(s) of proteins in their native state and ultimately aid in the design of small-molecule modulators.
Collapse
Affiliation(s)
- Jean B Bertoldo
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.,Centro de Biologia Molecular Estrutural, Departamento de Bioquímica, Universidade Federal de Santa Catarina, 88040-970 Florianópolis-SC, Brazil
| | - Tiago Rodrigues
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| | - Lavinia Dunsmore
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Francesco A Aprile
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Marta C Marques
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| | - Leonardo A Rosado
- Centro de Biologia Molecular Estrutural, Departamento de Bioquímica, Universidade Federal de Santa Catarina, 88040-970 Florianópolis-SC, Brazil
| | - Omar Boutureira
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | | - Woody Sherman
- Schrödinger, 120 West 45th Street, New York, NY 10036, USA
| | - Francisco Corzana
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño, Spain
| | - Hernán Terenzi
- Centro de Biologia Molecular Estrutural, Departamento de Bioquímica, Universidade Federal de Santa Catarina, 88040-970 Florianópolis-SC, Brazil
| | - Gonçalo J L Bernardes
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| |
Collapse
|
10
|
Biswas S, McCullough BS, Ma ES, LaJoie D, Russell CW, Garrett Brown D, Round JL, Ullman KS, Mulvey MA, Barrios AM. Dual colorimetric and fluorogenic probes for visualizing tyrosine phosphatase activity. Chem Commun (Camb) 2017; 53:2233-2236. [DOI: 10.1039/c6cc09204g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two resorufin-based substrates were developed, providing sensitive fluorogenic readouts for PTP activityin vitroand in living cells.
Collapse
Affiliation(s)
- Suvendu Biswas
- Department of Medicinal Chemistry
- University of Utah College of Pharmacy
- Salt Lake City
- USA
| | - Brandon S. McCullough
- Department of Medicinal Chemistry
- University of Utah College of Pharmacy
- Salt Lake City
- USA
| | - Elena S. Ma
- Department of Medicinal Chemistry
- University of Utah College of Pharmacy
- Salt Lake City
- USA
| | - Dollie LaJoie
- Department of Oncological Sciences
- University of Utah School of Medicine
- Salt Lake City
- USA
| | - Colin W. Russell
- Department of Pathology
- University of Utah School of Medicine
- Salt Lake City
- USA
| | - D. Garrett Brown
- Department of Pathology
- University of Utah School of Medicine
- Salt Lake City
- USA
| | - June L. Round
- Department of Pathology
- University of Utah School of Medicine
- Salt Lake City
- USA
| | - Katharine S. Ullman
- Department of Oncological Sciences
- University of Utah School of Medicine
- Salt Lake City
- USA
| | - Matthew A. Mulvey
- Department of Pathology
- University of Utah School of Medicine
- Salt Lake City
- USA
| | - Amy M. Barrios
- Department of Medicinal Chemistry
- University of Utah College of Pharmacy
- Salt Lake City
- USA
| |
Collapse
|
11
|
Salomone-Stagni M, Musiani F, Benini S. Characterization and 1.57 Å resolution structure of the key fire blight phosphatase AmsI from Erwinia amylovora. Acta Crystallogr F Struct Biol Commun 2016; 72:903-910. [PMID: 27917839 PMCID: PMC5137468 DOI: 10.1107/s2053230x16018781] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/23/2016] [Indexed: 11/10/2022] Open
Abstract
AmsI is a low-molecular-weight protein tyrosine phosphatase that regulates the production of amylovoran in the Gram-negative bacterium Erwinia amylovora, a specific pathogen of rosaceous plants such as apple, pear and quince. Amylovoran is an exopolysaccharide that is necessary for successful infection. In order to shed light on AmsI, its structure was solved at 1.57 Å resolution at the same pH as its highest measured activity (pH 5.5). In the active site, a water molecule, bridging between the catalytic Arg15 and the reaction-product analogue sulfate, might be representative of the water molecule attacking the phospho-cysteine intermediate in the second step of the reaction mechanism.
Collapse
Affiliation(s)
- Marco Salomone-Stagni
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | - Francesco Musiani
- Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy
| | - Stefano Benini
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| |
Collapse
|
12
|
Ku B, Keum CW, Lee HS, Yun HY, Shin HC, Kim BY, Kim SJ. Crystal structure of SP-PTP, a low molecular weight protein tyrosine phosphatase from Streptococcus pyogenes. Biochem Biophys Res Commun 2016; 478:1217-22. [PMID: 27545603 DOI: 10.1016/j.bbrc.2016.08.097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 08/17/2016] [Indexed: 11/25/2022]
Abstract
Streptococcus pyogenes, or Group A Streptococcus (GAS), is a pathogenic bacterium that causes a variety of infectious diseases. The GAS genome encodes one protein tyrosine phosphatase, SP-PTP, which plays an essential role in the replication and virulence maintenance of GAS. Herein, we present the crystal structure of SP-PTP at 1.9 Å resolution. Although SP-PTP has been reported to have dual phosphatase specificity for both phosphorylated tyrosine and serine/threonine, three-dimensional structural analysis showed that SP-PTP shares high similarity with typical low molecular weight protein tyrosine phosphatases (LMWPTPs), which are specific for phosphotyrosine, but not with dual-specificity phosphatases, in overall folding and active site composition. In the dephosphorylation activity test, SP-PTP consistently acted on phosphotyrosine substrates, but not or only minimally on phosphoserine/phosphothreonine substrates. Collectively, our structural and biochemical analyses verified SP-PTP as a canonical tyrosine-specific LMWPTP.
Collapse
Affiliation(s)
- Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea; Department of Bio-Analytical Science, University of Science and Technology, Daejeon, Republic of Korea.
| | - Chae Won Keum
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea; Department of Bio-Analytical Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Hye Seon Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea; Department of Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Hye-Yeoung Yun
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea; Department of Bio-Analytical Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Ho-Chul Shin
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Bo Yeon Kim
- Incurable Diseases Therapeutics Research Center, World Class Institute, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, Republic of Korea
| | - Seung Jun Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea; Department of Bio-Analytical Science, University of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
13
|
Phosphorylation-mediated regulation of the Staphylococcus aureus secreted tyrosine phosphatase PtpA. Biochem Biophys Res Commun 2015; 469:619-25. [PMID: 26679607 DOI: 10.1016/j.bbrc.2015.11.123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 11/27/2015] [Indexed: 11/22/2022]
Abstract
Due to the emergence of methicillin-resistant strains, Staphylococcus aureus has become as major public-health threat. Studies aimed at deciphering the molecular mechanism of virulence are thus required to identify new targets and develop efficient therapeutic agents. Protein phosphorylations are known to play key regulatory functions and their roles in pathogenesis are under intense scrutiny. Here we analyzed the protein tyrosine phosphatase PtpA of S. aureus, a member of the family of low molecular weight protein tyrosine phosphatases that are often secreted by pathogenic bacteria. We report for the first time that PtpA is phosphorylated in vitro by the S. aureus tyrosine kinase CapA1B2. A mass spectrometry approach allowed determining that Tyr122 and Tyr123 were the only two residues phosphorylated by this kinase. This result was confirmed by analysis of a double PtpA_Y122A/Y123A mutant that showed no phosphorylation by CapA1B2. Interestingly, PtpA phosphatase activity was abrogated in this mutant, suggesting a key regulatory function for these two tyrosine residues. This was further reinforced by the observation that CapA1B2-mediated phosphorylation significantly increased PtpA phosphatase activity. Moreover, we provide evidence that PtpA is secreted during growth of S. aureus. Together our results suggest that PtpA is an exported S. aureus signaling molecule controlled by tyrosine phosphorylation which may interfere with host cell signaling.
Collapse
|
14
|
Tyrosine Phosphorylation and Dephosphorylation in Burkholderia cenocepacia Affect Biofilm Formation, Growth under Nutritional Deprivation, and Pathogenicity. Appl Environ Microbiol 2015; 82:843-56. [PMID: 26590274 DOI: 10.1128/aem.03513-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/14/2015] [Indexed: 11/20/2022] Open
Abstract
Burkholderia cenocepacia, a member of the B. cepacia complex (Bcc), is an opportunistic pathogen causing serious chronic infections in patients with cystic fibrosis. Tyrosine phosphorylation has emerged as an important posttranslational modification modulating the physiology and pathogenicity of Bcc bacteria. Here, we investigated the predicted bacterial tyrosine kinases BCAM1331 and BceF and the low-molecular-weight protein tyrosine phosphatases BCAM0208, BceD, and BCAL2200 of B. cenocepacia K56-2. We show that BCAM1331, BceF, BCAM0208, and BceD contribute to biofilm formation, while BCAL2200 is required for growth under nutrient-limited conditions. Multiple deletions of either tyrosine kinase or low-molecular-weight protein tyrosine phosphatase genes resulted in the attenuation of B. cenocepacia intramacrophage survival and reduced pathogenicity in the Galleria mellonella larval infection model. Experimental evidence indicates that BCAM1331 displays reduced tyrosine autophosphorylation activity compared to that of BceF. With the artificial substrate p-nitrophenyl phosphate, the phosphatase activities of the three low-molecular-weight protein tyrosine phosphatases demonstrated similar kinetic parameters. However, only BCAM0208 and BceD could dephosphorylate BceF. Further, BCAL2200 became tyrosine phosphorylated in vivo and catalyzed its autodephosphorylation. Together, our data suggest that despite having similar biochemical activities, low-molecular-weight protein tyrosine phosphatases and tyrosine kinases have both overlapping and specific roles in the physiology of B. cenocepacia.
Collapse
|
15
|
Kant S, Agarwal S, Pancholi P, Pancholi V. TheStreptococcus pyogenesorphan protein tyrosine phosphatase, SP-PTP, possesses dual specificity and essential virulence regulatory functions. Mol Microbiol 2015; 97:515-40. [DOI: 10.1111/mmi.13047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Sashi Kant
- Department of Pathology; The Ohio State University College of Medicine; Wexner Medical Center; Columbus OH USA
| | - Shivani Agarwal
- Department of Pathology; The Ohio State University College of Medicine; Wexner Medical Center; Columbus OH USA
| | - Preeti Pancholi
- Department of Pathology; The Ohio State University College of Medicine; Wexner Medical Center; Columbus OH USA
| | - Vijay Pancholi
- Department of Pathology; The Ohio State University College of Medicine; Wexner Medical Center; Columbus OH USA
| |
Collapse
|
16
|
Nath S, Banerjee R, Sen U. Atomic resolution crystal structure of VcLMWPTP-1 from Vibrio cholerae O395: insights into a novel mode of dimerization in the low molecular weight protein tyrosine phosphatase family. Biochem Biophys Res Commun 2014; 450:390-5. [PMID: 24909685 DOI: 10.1016/j.bbrc.2014.05.129] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 05/27/2014] [Indexed: 10/25/2022]
Abstract
Low molecular weight protein tyrosine phosphatase (LMWPTP) is a group of phosphotyrosine phosphatase ubiquitously found in a wide range of organisms ranging from bacteria to mammals. Dimerization in the LMWPTP family has been reported earlier which follows a common mechanism involving active site residues leading to an enzymatically inactive species. Here we report a novel form of dimerization in a LMWPTP from Vibrio cholera 0395 (VcLMWPTP-1). Studies in solution reveal the existence of the dimer in solution while kinetic study depicts the active form of the enzyme. This indicates that the mode of dimerization in VcLMWPTP-1 is different from others where active site residues are not involved in the process. A high resolution (1.45Å) crystal structure of VcLMWPTP-1 confirms a different mode of dimerization where the active site is catalytically accessible as evident by a tightly bound substrate mimicking ligand, MOPS at the active site pocket. Although being a member of a prokaryotic protein family, VcLMWPTP-1 structure resembles very closely to LMWPTP from a eukaryote, Entamoeba histolytica. It also delineates the diverse surface properties around the active site of the enzyme.
Collapse
Affiliation(s)
- Seema Nath
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064, India
| | - Ramanuj Banerjee
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064, India
| | - Udayaditya Sen
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064, India.
| |
Collapse
|
17
|
Standish AJ, Morona R. The role of bacterial protein tyrosine phosphatases in the regulation of the biosynthesis of secreted polysaccharides. Antioxid Redox Signal 2014; 20:2274-89. [PMID: 24295407 PMCID: PMC3995119 DOI: 10.1089/ars.2013.5726] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE Tyrosine phosphorylation and associated protein tyrosine phosphatases are gaining prominence as critical mechanisms in the regulation of fundamental processes in a wide variety of bacteria. In particular, these phosphatases have been associated with the control of the biosynthesis of capsular polysaccharides and extracellular polysaccharides, critically important virulence factors for bacteria. RECENT ADVANCES Deletion and overexpression of the phosphatases result in altered polysaccharide biosynthesis in a range of bacteria. The recent structures of associated auto-phosphorylating tyrosine kinases have suggested that the phosphatases may be critical for the cycling of the kinases between monomers and higher order oligomers. CRITICAL ISSUES Additional substrates of the phosphatases apart from cognate kinases are currently being identified. These are likely to be critical to our understanding of the mechanism by which polysaccharide biosynthesis is regulated. FUTURE DIRECTIONS Ultimately, these protein tyrosine phosphatases are an attractive target for the development of novel antimicrobials. This is particularly the case for the polymerase and histidinol phosphatase family, which is predominantly found in bacteria. Furthermore, the determination of bacterial tyrosine phosphoproteomes will likely help to uncover the fundamental roles, mechanism, and critical importance of these phosphatases in a wide range of bacteria.
Collapse
Affiliation(s)
- Alistair J Standish
- School of Molecular and Biomedical Science, University of Adelaide , Adelaide, Australia
| | | |
Collapse
|
18
|
Fuhrmann J, Mierzwa B, Trentini D, Spiess S, Lehner A, Charpentier E, Clausen T. Structural Basis for Recognizing Phosphoarginine and Evolving Residue-Specific Protein Phosphatases in Gram-Positive Bacteria. Cell Rep 2013; 3:1832-9. [DOI: 10.1016/j.celrep.2013.05.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/07/2013] [Accepted: 05/10/2013] [Indexed: 12/31/2022] Open
|
19
|
Temel DB, Dutta K, Alphonse S, Nourikyan J, Grangeasse C, Ghose R. Regulatory interactions between a bacterial tyrosine kinase and its cognate phosphatase. J Biol Chem 2013; 288:15212-28. [PMID: 23543749 DOI: 10.1074/jbc.m113.457804] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cyclic process of autophosphorylation of the C-terminal tyrosine cluster (YC) of a bacterial tyrosine kinase and its subsequent dephosphorylation following interactions with a counteracting tyrosine phosphatase regulates diverse physiological processes, including the biosynthesis and export of polysaccharides responsible for the formation of biofilms or virulence-determining capsules. We provide here the first detailed insight into this hitherto uncharacterized regulatory interaction at residue-specific resolution using Escherichia coli Wzc, a canonical bacterial tyrosine kinase, and its opposing tyrosine phosphatase, Wzb. The phosphatase Wzb utilizes a surface distal to the catalytic elements of the kinase, Wzc, to dock onto its catalytic domain (WzcCD). WzcCD binds in a largely YC-independent fashion near the Wzb catalytic site, inducing allosteric changes therein. YC dephosphorylation is proximity-mediated and reliant on the elevated concentration of phosphorylated YC near the Wzb active site resulting from WzcCD docking. Wzb principally recognizes the phosphate of its phosphotyrosine substrate and further stabilizes the tyrosine moiety through ring stacking interactions with a conserved active site tyrosine.
Collapse
Affiliation(s)
- Deniz B Temel
- Department of Chemistry, City College of New York, New York, New York 10031, USA
| | | | | | | | | | | |
Collapse
|
20
|
Böhmer F, Szedlacsek S, Tabernero L, Ostman A, den Hertog J. Protein tyrosine phosphatase structure-function relationships in regulation and pathogenesis. FEBS J 2013; 280:413-31. [PMID: 22682070 DOI: 10.1111/j.1742-4658.2012.08655.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Protein phosphorylation on tyrosine residues is tightly controlled by protein tyrosine phosphatases (PTPs) at multiple levels: spatio-temporal expression, subcellular localization and post-translational modification. Structural and functional analysis of the PTP domains has provided insight into catalysis and regulatory mechanisms that control the enzymatic activity. Understanding the molecular basis of PTP regulation is of fundamental importance to dissect the pleiotropic effect of these enzymes in both health and disease. Here, we review recent insights into the regulation of receptor-like PTPs by extracellular ligands and into regulation by reversible oxidation that impairs catalysis directly. The physiological roles of PTPs are essential in homeostasis in eukaryotic cells and pertubation of their functional attributes causes different disease states. As an example, we discuss recent findings indicating how inappropriate oxidation of PTPs in cancer cells may contribute to cell transformation. On the other hand, PTPs from many pathogens are key virulence factors and manipulate signalling pathways in the host cells to promote invasion and survival of the microorganisms. This research area has received relatively little attention but has advanced remarkably. We review the structural features of pathogenic PTPs, their similarities and differences with eukaryotic PTPs, and the possible exploitation of this knowledge for therapeutic intervention.
Collapse
Affiliation(s)
- Frank Böhmer
- Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | | | | | | | | |
Collapse
|