1
|
Narayan M. Revisiting the Formation of a Native Disulfide Bond: Consequences for Protein Regeneration and Beyond. Molecules 2020; 25:molecules25225337. [PMID: 33207635 PMCID: PMC7697891 DOI: 10.3390/molecules25225337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/16/2022] Open
Abstract
Oxidative protein folding involves the formation of disulfide bonds and the regeneration of native structure (N) from the fully reduced and unfolded protein (R). Oxidative protein folding studies have provided a wealth of information on underlying physico-chemical reactions by which disulfide-bond-containing proteins acquire their catalytically active form. Initially, we review key events underlying oxidative protein folding using bovine pancreatic ribonuclease A (RNase A), bovine pancreatic trypsin inhibitor (BPTI) and hen-egg white lysozyme (HEWL) as model disulfide bond-containing folders and discuss consequential outcomes with regard to their folding trajectories. We re-examine the findings from the same studies to underscore the importance of forming native disulfide bonds and generating a “native-like” structure early on in the oxidative folding pathway. The impact of both these features on the regeneration landscape are highlighted by comparing ideal, albeit hypothetical, regeneration scenarios with those wherein a native-like structure is formed relatively “late” in the R→N trajectory. A special case where the desired characteristics of oxidative folding trajectories can, nevertheless, stall folding is also discussed. The importance of these data from oxidative protein folding studies is projected onto outcomes, including their impact on the regeneration rate, yield, misfolding, misfolded-flux trafficking from the endoplasmic reticulum (ER) to the cytoplasm, and the onset of neurodegenerative disorders.
Collapse
Affiliation(s)
- Mahesh Narayan
- The Department of Chemistry and Biochemistry, The University of Texas as El Paso, El Paso, TX 79968, USA
| |
Collapse
|
2
|
Gierut AM, Dabrowski-Tumanski P, Niemyska W, Millett KC, Sulkowska JI. PyLink: a PyMOL plugin to identify links. Bioinformatics 2020; 35:3166-3168. [PMID: 30649182 DOI: 10.1093/bioinformatics/bty1038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/28/2018] [Accepted: 12/22/2018] [Indexed: 11/13/2022] Open
Abstract
SUMMARY Links are generalization of knots, that consist of several components. They appear in proteins, peptides and other biopolymers with disulfide bonds or ions interactions giving rise to the exceptional stability. Moreover because of this stability such biopolymers are the target of commercial and medical use (including anti-bacterial and insecticidal activity). Therefore, topological characterization of such biopolymers, not only provides explanation of their thermodynamical or mechanical properties, but paves the way to design templates in pharmaceutical applications. However, distinction between links and trivial topology is not an easy task. Here, we present PyLink-a PyMOL plugin suited to identify three types of links and perform comprehensive topological analysis of proteins rich in disulfide or ion bonds. PyLink can scan for the links automatically, or the user may specify their own components, including closed loops with several bridges and ion interactions. This creates the possibility of designing new biopolymers with desired properties. AVAILABILITY AND IMPLEMENTATION The PyLink plugin, manual and tutorial videos are available at http://pylink.cent.uw.edu.pl.
Collapse
Affiliation(s)
- Aleksandra M Gierut
- Centre of New Technologies, University of Warsaw, Warsaw, Poland.,Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Cracow, Poland
| | - Pawel Dabrowski-Tumanski
- Centre of New Technologies, University of Warsaw, Warsaw, Poland.,Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Wanda Niemyska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Kenneth C Millett
- Department of Mathematics, University of California, Santa Barbara, CA, USA
| | - Joanna I Sulkowska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland.,Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| |
Collapse
|
3
|
Hart CE, Ribeiro JM, Kazimirova M, Thangamani S. Tick-Borne Encephalitis Virus Infection Alters the Sialome of Ixodes ricinus Ticks During the Earliest Stages of Feeding. Front Cell Infect Microbiol 2020; 10:41. [PMID: 32133301 PMCID: PMC7041427 DOI: 10.3389/fcimb.2020.00041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/21/2020] [Indexed: 01/14/2023] Open
Abstract
Ticks are hematophagous arthropods that transmit a number of pathogens while feeding. Among these is tick-borne encephalitis virus (TBEV), a flavivirus transmitted by Ixodes ricinus ticks in the temperate zone of Europe. The infection results in febrile illness progressing to encephalitis and meningitis with a possibility of fatality or long-term neurological sequelae. The composition of tick saliva plays an essential role in the initial virus transmission during tick feeding. Ticks secrete a diverse range of salivary proteins to modulate the host response, such as lipocalins to control the itch and inflammatory response, and both proteases and protease inhibitors to prevent blood coagulation. Here, the effect of viral infection of adult females of Ixodes ricinus was studied with the goal of determining how the virus alters the tick sialome to modulate host tissue response at the site of infection. Uninfected ticks or those infected with TBEV were fed on mice and removed and dissected one- and 3-h post-attachment. RNA from the salivary glands of these ticks, as well as from unfed ticks, was extracted and subjected to next-generation sequencing to determine the expression of key secreted proteins at each timepoint. Genes showing statistically significant up- or down-regulation between infected and control ticks were selected and compared to published literature to ascertain their function. From this, the effect of tick viral infection on the modulation of the tick-host interface was determined. Infected ticks were found to differentially express a number of uncategorized genes, proteases, Kunitz-type serine protease inhibitors, cytotoxins, and lipocalins at different timepoints. These virus-induced changes to the tick sialome may play a significant role in facilitating virus transmission during the early stages of tick feeding.
Collapse
Affiliation(s)
- Charles E. Hart
- SUNY Center for Environmental Health and Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
- Institute for Global Health and Translational Science, SUNY Upstate Medical University, Syracuse, NY, United States
- The Institute for Translational Science, University of Texas Medical Branch, Galveston, TX, United States
| | - Jose M. Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Maria Kazimirova
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Saravanan Thangamani
- SUNY Center for Environmental Health and Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
- Institute for Global Health and Translational Science, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
4
|
Štibrániová I, Bartíková P, Holíková V, Kazimírová M. Deciphering Biological Processes at the Tick-Host Interface Opens New Strategies for Treatment of Human Diseases. Front Physiol 2019; 10:830. [PMID: 31333488 PMCID: PMC6617849 DOI: 10.3389/fphys.2019.00830] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022] Open
Abstract
Ticks are obligatory blood-feeding ectoparasites, causing blood loss and skin damage in their hosts. In addition, ticks also transmit a number of various pathogenic microorganisms that cause serious diseases in humans and animals. Ticks evolved a wide array of salivary bioactive compounds that, upon injection into the host skin, inhibit or modulate host reactions such as hemostasis, inflammation and wound healing. Modulation of the tick attachment site in the host skin involves mainly molecules which affect physiological processes orchestrated by cytokines, chemokines and growth factors. Suppressing host defense reactions is crucial for tick survival and reproduction. Furthermore, pharmacologically active compounds in tick saliva have a promising therapeutic potential for treatment of some human diseases connected with disorders in hemostasis and immune system. These disorders are often associated to alterations in signaling pathways and dysregulation or overexpression of specific cytokines which, in turn, affect mechanisms of angiogenesis, cell motility and cytoskeletal regulation. Moreover, tick salivary molecules were found to exert cytotoxic and cytolytic effects on various tumor cells and have anti-angiogenic properties. Elucidation of the mode of action of tick bioactive molecules on the regulation of cell processes in their mammalian hosts could provide new tools for understanding the complex changes leading to immune disorders and cancer. Tick bioactive molecules may also be exploited as new pharmacological inhibitors of the signaling pathways of cytokines and thus help alleviate patient discomfort and increase patient survival. We review the current knowledge about tick salivary peptides and proteins that have been identified and functionally characterized in in vitro and/or in vivo models and their therapeutic perspective.
Collapse
Affiliation(s)
- Iveta Štibrániová
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Pavlína Bartíková
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Viera Holíková
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mária Kazimírová
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
5
|
Parizi LF, Ali A, Tirloni L, Oldiges DP, Sabadin GA, Coutinho ML, Seixas A, Logullo C, Termignoni C, DA Silva Vaz I. Peptidase inhibitors in tick physiology. MEDICAL AND VETERINARY ENTOMOLOGY 2018; 32:129-144. [PMID: 29111611 DOI: 10.1111/mve.12276] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 06/23/2017] [Accepted: 10/07/2017] [Indexed: 06/07/2023]
Abstract
Peptidase inhibitors regulate a wide range of physiological processes involved in the interaction between hematophagous parasites and their hosts, including tissue remodeling, the immune response and blood coagulation. In tick physiology, peptidase inhibitors have a crucial role in adaptation to improve parasitism mechanisms, facilitating blood feeding by interfering with defense-related host peptidases. Recently, a larger number of studies on this topic led to the description of several new tick inhibitors displaying interesting novel features, for example a role in pathogen transmission to the host. A comprehensive review discussing these emerging concepts can therefore shed light on peptidase inhibitor functions, their relevance to tick physiology and their potential applications. Here, we summarize and examine the general characteristics, functional diversity and action of tick peptidase inhibitors with known physiological roles in the tick-host-pathogen interaction.
Collapse
Affiliation(s)
- L F Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A Ali
- Department of Zoology, Abdul Wali Khan University, Mardan, Pakistan
- Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - L Tirloni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - D P Oldiges
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - G A Sabadin
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - M L Coutinho
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A Seixas
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, RS, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - C Logullo
- Laboratório de Química e Função de Proteínas e Peptídeos-CBB and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - C Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Porto Alegre, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - I DA Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
6
|
Dabrowski-Tumanski P, Sulkowska JI. To Tie or Not to Tie? That Is the Question. Polymers (Basel) 2017; 9:E454. [PMID: 30965758 PMCID: PMC6418553 DOI: 10.3390/polym9090454] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 12/18/2022] Open
Abstract
In this review, we provide an overview of entangled proteins. Around 6% of protein structures deposited in the PBD are entangled, forming knots, slipknots, lassos and links. We present theoretical methods and tools that enabled discovering and classifying such structures. We discuss the advantages and disadvantages of the non-trivial topology in proteins, based on available data about folding, stability, biological properties and evolutionary conservation. We also formulate intriguing and challenging questions on the border of biophysics, bioinformatics, biology and mathematics, which arise from the discovery of an entanglement in proteins. Finally, we discuss possible applications of entangled proteins in medicine and nanotechnology, such as the chance to design super stable proteins, whose stability could be controlled by chemical potential.
Collapse
Affiliation(s)
- Pawel Dabrowski-Tumanski
- Centre of New Technologies, University of Warsaw, Warsaw 02-097, Poland.
- Faculty of Chemistry, University of Warsaw, Warsaw 02-093, Poland.
| | - Joanna I Sulkowska
- Centre of New Technologies, University of Warsaw, Warsaw 02-097, Poland.
- Faculty of Chemistry, University of Warsaw, Warsaw 02-093, Poland.
| |
Collapse
|
7
|
Goundaroulis D, Gügümcü N, Lambropoulou S, Dorier J, Stasiak A, Kauffman L. Topological Models for Open-Knotted Protein Chains Using the Concepts of Knotoids and Bonded Knotoids. Polymers (Basel) 2017; 9:polym9090444. [PMID: 30965745 PMCID: PMC6418563 DOI: 10.3390/polym9090444] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 11/16/2022] Open
Abstract
In this paper we introduce a method that offers a detailed overview of the entanglement of an open protein chain. Further, we present a purely topological model for classifying open protein chains by also taking into account any bridge involving the backbone. To this end, we implemented the concepts of planar knotoids and bonded knotoids. We show that the planar knotoids technique provides more refined information regarding the knottedness of a protein when compared to established methods in the literature. Moreover, we demonstrate that our topological model for bonded proteins is robust enough to distinguish all types of lassos in proteins.
Collapse
Affiliation(s)
- Dimos Goundaroulis
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.
| | - Neslihan Gügümcü
- Department of Mathematics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| | - Sofia Lambropoulou
- Department of Mathematics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| | - Julien Dorier
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.
- Vital-IT, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.
| | - Andrzej Stasiak
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.
| | - Louis Kauffman
- Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL 60607-7045, USA.
| |
Collapse
|
8
|
Accessibility explains preferred thiol-disulfide isomerization in a protein domain. Sci Rep 2017; 7:9858. [PMID: 28851879 PMCID: PMC5575259 DOI: 10.1038/s41598-017-07501-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/29/2017] [Indexed: 11/17/2022] Open
Abstract
Disulfide bonds are key stabilizing and yet potentially labile cross-links in proteins. While spontaneous disulfide rearrangement through thiol-disulfide exchange is increasingly recognized to play an important physiological role, its molecular determinants are still largely unknown. Here, we used a novel hybrid Monte Carlo and Molecular Dynamics scheme to elucidate the molecular principles of thiol-disulfide exchange in proteins, for a mutated immunoglobulin domain as a model system. Unexpectedly, using simple proximity as the criterion for thiol-disulfide exchange, our method correctly predicts the experimentally observed regiospecificity and selectivity of the cysteine-rich protein. While redox reactivity has been examined primarily on the level of transition states and activation barriers, our results argue for accessibility of the disulfide by the attacking thiol given the highly dynamic and sterically demanding protein as a major bottleneck of thiol-disulfide exchange. This scenario may be similarly at play in other proteins with or without an evolutionarily designed active site.
Collapse
|
9
|
Abstract
Twenty years after their discovery, knots in proteins are now quite well understood. They are believed to be functionally advantageous and provide extra stability to protein chains. In this work, we go one step further and search for links-entangled structures, more complex than knots, which consist of several components. We derive conditions that proteins need to meet to be able to form links. We search through the entire Protein Data Bank and identify several sequentially nonhomologous chains that form a Hopf link and a Solomon link. We relate topological properties of these proteins to their function and stability and show that the link topology is characteristic of eukaryotes only. We also explain how the presence of links affects the folding pathways of proteins. Finally, we define necessary conditions to form Borromean rings in proteins and show that no structure in the Protein Data Bank forms a link of this type.
Collapse
Affiliation(s)
- Pawel Dabrowski-Tumanski
- Faculty of Chemistry, University of Warsaw, 02-093, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, 02-097, Warsaw, Poland
| | - Joanna I Sulkowska
- Faculty of Chemistry, University of Warsaw, 02-093, Warsaw, Poland;
- Centre of New Technologies, University of Warsaw, 02-097, Warsaw, Poland
| |
Collapse
|
10
|
Okumura M, Shimamoto S, Hidaka Y. Chemical methods for producing disulfide bonds in peptides and proteins to study folding regulation. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2014; 76:28.7.1-28.7.13. [PMID: 24692016 DOI: 10.1002/0471140864.ps2807s76] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Disulfide bonds play a critical role in the folding of secretory and membrane proteins. Oxidative folding reactions of disulfide bond-containing proteins typically require several hours or days, and numerous misbridged disulfide isomers are often observed as intermediates. The rate-determining step in refolding is thought to be the disulfide-exchange reaction from nonnative to native disulfide bonds in folding intermediates, which often precipitate during the refolding process because of their hydrophobic properties. To overcome this, chemical additives or a disulfide catalyst, protein disulfide isomerase (PDI), are generally used in refolding experiments to regulate disulfide-coupled peptide and protein folding. This unit describes such methods in the context of the thermodynamic and kinetic control of peptide and protein folding, including (1) regulation of disulfide-coupled peptides and protein folding assisted by chemical additives, (2) reductive unfolding of disulfide-containing peptides and proteins, and (3) regulation of disulfide-coupled peptide and protein folding using PDI.
Collapse
Affiliation(s)
- Masaki Okumura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi, Japan
| | | | - Yuji Hidaka
- Faculty of Science and Engineering, Kinki University, Osaka, Japan
| |
Collapse
|
11
|
Chen Z, Cao Z, Li W, Wu Y. Cloning and characterization of a novel Kunitz-type inhibitor from scorpion with unique cysteine framework. Toxicon 2013; 72:5-10. [PMID: 23747274 DOI: 10.1016/j.toxicon.2013.05.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/20/2013] [Accepted: 05/22/2013] [Indexed: 01/14/2023]
Abstract
Kunitz-type proteins from animal venom are good tools for understanding structure-function relationships between serine proteases and their inhibitors. We used a cDNA library to clone and characterize the Buthus martensi Kunitz-type protease inhibitor (BmKPI) present in the venom gland of the scorpion B. martensi. The gene codes for a signal peptide of 19 residues and a mature peptide of 64 residues. The mature BmKPI peptide possesses a unique cysteine framework reticulated by four disulfide bridges, unlike many other Kunitz-type proteins with three disulfide bridges. The recombinant BmKPI peptide was functionally expressed and showed strong inhibitory activity toward trypsin (Ki 1.8 × 10⁻⁶ M), chymotrypsin (Ki 3.2 × 10⁻⁸ M), and elastase (Ki 1.6 × 10⁻⁷ M). Structure-functional relationship between elastase and BmKPI was further studied. Cysteine mutagenesis experiment showed that the unique disulfide bridge Cys53-Cys61 had little effect on its inhibiting elastase. Molecular dynamics simulation revealed that BmKPI possesses elastase inhibitory active sites similar to the classical Kunitz-type venom peptides, although their cysteine frameworks were different. These results showed that BmKPI is a new multifunctional serine protease inhibitor. To the best of our knowledge, BmKPI is the first functionally characterized Kunitz-type elastase inhibitor derived from scorpion venoms.
Collapse
Affiliation(s)
- Zongyun Chen
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China.
| | | | | | | |
Collapse
|
12
|
Nozach H, Fruchart-Gaillard C, Fenaille F, Beau F, Ramos OHP, Douzi B, Saez NJ, Moutiez M, Servent D, Gondry M, Thaï R, Cuniasse P, Vincentelli R, Dive V. High throughput screening identifies disulfide isomerase DsbC as a very efficient partner for recombinant expression of small disulfide-rich proteins in E. coli. Microb Cell Fact 2013; 12:37. [PMID: 23607455 PMCID: PMC3668227 DOI: 10.1186/1475-2859-12-37] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/28/2013] [Indexed: 12/13/2022] Open
Abstract
Background Disulfide-rich proteins or DRPs are versatile bioactive compounds that encompass a wide variety of pharmacological, therapeutic, and/or biotechnological applications. Still, the production of DRPs in sufficient quantities is a major bottleneck for their complete structural or functional characterization. Recombinant expression of such small proteins containing multiple disulfide bonds in the bacteria E. coli is considered difficult and general methods and protocols, particularly on a high throughput scale, are limited. Results Here we report a high throughput screening approach that allowed the systematic investigation of the solubilizing and folding influence of twelve cytoplasmic partners on 28 DRPs in the strains BL21 (DE3) pLysS, Origami B (DE3) pLysS and SHuffle® T7 Express lysY (1008 conditions). The screening identified the conditions leading to the successful soluble expression of the 28 DRPs selected for the study. Amongst 336 conditions tested per bacterial strain, soluble expression was detected in 196 conditions using the strain BL21 (DE3) pLysS, whereas only 44 and 50 conditions for soluble expression were identified for the strains Origami B (DE3) pLysS and SHuffle® T7 Express lysY respectively. To assess the redox states of the DRPs, the solubility screen was coupled with mass spectrometry (MS) to determine the exact masses of the produced DRPs or fusion proteins. To validate the results obtained at analytical scale, several examples of proteins expressed and purified to a larger scale are presented along with their MS and functional characterization. Conclusions Our results show that the production of soluble and functional DRPs with cytoplasmic partners is possible in E. coli. In spite of its reducing cytoplasm, BL21 (DE3) pLysS is more efficient than the Origami B (DE3) pLysS and SHuffle® T7 Express lysY trxB-/gor- strains for the production of DRPs in fusion with solubilizing partners. However, our data suggest that oxidation of the proteins occurs ex vivo. Our protocols allow the production of a large diversity of DRPs using DsbC as a fusion partner, leading to pure active DRPs at milligram scale in many cases. These results open up new possibilities for the study and development of DRPs with therapeutic or biotechnological interest whose production was previously a limitation.
Collapse
Affiliation(s)
- Hervé Nozach
- CEA, iBiTec-S, Service d'Ingénierie Moléculaire des Protéines, CEA Saclay, Gif sur Yvette F-91191, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
NMR as a tool to identify and characterize protein folding intermediates. Arch Biochem Biophys 2013; 531:90-9. [DOI: 10.1016/j.abb.2012.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/03/2012] [Accepted: 09/04/2012] [Indexed: 11/20/2022]
|
14
|
Joshi RS, Mishra M, Tamhane VA, Ghosh A, Sonavane U, Suresh CG, Joshi R, Gupta VS, Giri AP. The remarkable efficiency of a Pin-II proteinase inhibitor sans two conserved disulfide bonds is due to enhanced flexibility and hydrogen bond density in the reactive site loop. J Biomol Struct Dyn 2012; 32:13-26. [PMID: 23256852 DOI: 10.1080/07391102.2012.745378] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Capsicum annuum (L.) expresses diverse potato type II family proteinase inhibitors comprising of inhibitory repeat domain (IRD) as basic functional unit. Most IRDs contain eight conserved cysteines forming four disulfide bonds, which are indispensible for their stability and activity. We investigated the functional significance of evolutionary variations in IRDs and their role in mediating interaction between the inhibitor and cognate proteinase. Among the 18 IRDs encoded by C. annuum, IRD-7, -9, and -12 were selected for further characterization on the basis of variation in their reactive site loop, number of conserved cysteine residues, and higher theoretical ΔGbind for interaction with Helicoverpa armigera trypsin. Moreover, inhibition kinetics showed that IRD-9, despite loss of some of the disulfide bonds, was a more potent proteinase inhibitor among the three selected IRDs. Molecular dynamic simulations revealed that serine residues in the place of cysteines at seventh and eighth positions of IRD-9 resulted in an increase in the density of intramolecular hydrogen bonds and reactive site loop flexibility. Results of the serine residues chemical modification also supported this observation and provided a possible explanation for the remarkable inhibitory potential of IRD-9. Furthermore, this natural variant among IRDs showed special attributes like stability to proteolysis and synergistic inhibitory effect on other IRDs. It is likely that IRDs have coevolved selective specialization of their structure and function as a response towards specific insect proteases they encountered. Understanding the molecular mechanism of pest protease-plant proteinaceous inhibitor interaction will help in developing effective pest control strategies. An animated interactive 3D complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:39.
Collapse
Affiliation(s)
- Rakesh S Joshi
- a Plant Molecular Biology Unit, Biochemical Sciences Division , CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road, Pune , 411 008 , MS , India
| | | | | | | | | | | | | | | | | |
Collapse
|