1
|
Schneider S, Kozuch J, Boxer SG. The Interplay of Electrostatics and Chemical Positioning in the Evolution of Antibiotic Resistance in TEM β-Lactamases. ACS CENTRAL SCIENCE 2021; 7:1996-2008. [PMID: 34963893 PMCID: PMC8704030 DOI: 10.1021/acscentsci.1c00880] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Indexed: 05/25/2023]
Abstract
The interplay of enzyme active site electrostatics and chemical positioning is important for understanding the origin(s) of enzyme catalysis and the design of novel catalysts. We reconstruct the evolutionary trajectory of TEM-1 β-lactamase to TEM-52 toward extended-spectrum activity to better understand the emergence of antibiotic resistance and to provide insights into the structure-function paradigm and noncovalent interactions involved in catalysis. Utilizing a detailed kinetic analysis and the vibrational Stark effect, we quantify the changes in rates and electric fields in the Michaelis and acyl-enzyme complexes for penicillin G and cefotaxime to ascertain the evolutionary role of electric fields to modulate function. These data are combined with MD simulations to interpret and quantify the substrate-dependent structural changes during evolution. We observe that this evolutionary trajectory utilizes a large preorganized electric field and substrate-dependent chemical positioning to facilitate catalysis. This governs the evolvability, substrate promiscuity, and protein fitness landscape in TEM β-lactamase antibiotic resistance.
Collapse
Affiliation(s)
| | | | - Steven G. Boxer
- Chemistry Department, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
2
|
Mukherjee SK, Mukherjee M, Mishra PP. Impact of Mutation on the Structural Stability and the Conformational Landscape of Inhibitor-Resistant TEM β-Lactamase: A High-Performance Molecular Dynamics Simulation Study. J Phys Chem B 2021; 125:11188-11196. [PMID: 34609140 DOI: 10.1021/acs.jpcb.1c05988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gain-of-function mutations and structural adjustment toward β-lactamase inhibitors in the TEM-type β-lactamases among the uropathogenic E. coli (UPEC) culminate in treatment complications and demands detailed investigation. In this study, uncharacterized amino acid substitutions, M69L/I84V/W165G/V184A/V262I/N276S, in inhibitor-resistant TEM (IRT) β-lactamase isolated from clinical UPEC were subjected to extensive molecular dynamics (EMD) simulations for 100 ns to estimate parameters such as root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), the radius of gyration (Rg), contour plot (Rg/RMSD), secondary structure element (SSE), etc. Residue interaction networks, principal component analysis (PCA), and correlation heatmaps were generated to predict the relation between functionally important atomic motions to uncover the structural stability of the mutants. To avoid the false positive conclusion of the simulation study, we performed three identically parameterize replicas of 100 ns each. Alterations in hydrophobic interactions resulted in conformation changes exhibited as comparable residue interaction networks. Besides, PCA and porcupine plot analysis based on the ensemble of structure from molecular dynamics trajectories revealed the collective atomic motions of the IRT variants that impart structural flexibility to their active site loop. This study conducted on IRT mutants that delineate intricate protein motions contributes to their stability and folding, which is an absolute necessity for designing candidate molecules owing to the clinical threat of emerging resistance against potent β-lactam antibiotics.
Collapse
Affiliation(s)
- Sandip K Mukherjee
- Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, 108, Chittaranjan Ave, Kolkata, West Bengal 700073, India
| | - Mandira Mukherjee
- Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, 108, Chittaranjan Ave, Kolkata, West Bengal 700073, India
| | - Padmaja P Mishra
- Chemical Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, West Bengal 700064, India.,Homi Bhaba National Institute, Anushaktinagar, Mumbai, Maharashtra 400094, India
| |
Collapse
|
3
|
Shurina BA, Page RC. Structural Comparisons of Cefotaximase (CTX-M-ase) Sub Family 1. Front Microbiol 2021; 12:688509. [PMID: 34504475 PMCID: PMC8421805 DOI: 10.3389/fmicb.2021.688509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/22/2021] [Indexed: 12/17/2022] Open
Abstract
The cefotaximase or CTX-M, family of serine-β-lactamases represents a significant clinical concern due to the ability for these enzymes to confer resistance to a broad array of β-lactam antibiotics an inhibitors. This behavior lends CTX-M-ases to be classified as extended spectrum β-lactamases (ESBL). Across the family of CTX-M-ases most closely related to CTX-M-1, the structures of CTX-M-15 with a library of different ligands have been solved and serve as the basis of comparison within this review. Herein we focus on the structural changes apparent in structures of CTX-M-15 in complex with diazabicyclooctane (DABCO) and boronic acid transition state analog inhibitors. Interactions between a positive surface patch near the active site and complementary functional groups of the bound inhibitor play key roles in the dictating the conformations of active site residues. The insights provided by analyzing structures of CTX-M-15 in complex with DABCO and boronic acid transition state analog inhibitors and analyzing existing structures of CTX-M-64 offer opportunities to move closer to making predictions as to how CTX-M-ases may interact with potential drug candidates, setting the stage for the further development of new antibiotics and β-lactamase inhibitors.
Collapse
Affiliation(s)
- Ben A Shurina
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, United States
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, United States.,Cell, Molecular, and Structural Biology Program, Miami University, Oxford, OH, United States
| |
Collapse
|
4
|
The Role of Rigid Residues in Modulating TEM-1 β-Lactamase Function and Thermostability. Int J Mol Sci 2021; 22:ijms22062895. [PMID: 33809335 PMCID: PMC7999226 DOI: 10.3390/ijms22062895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/18/2023] Open
Abstract
The relationship between protein motions (i.e., dynamics) and enzymatic function has begun to be explored in β-lactamases as a way to advance our understanding of these proteins. In a recent study, we analyzed the dynamic profiles of TEM-1 (a ubiquitous class A β-lactamase) and several ancestrally reconstructed homologues. A chief finding of this work was that rigid residues that were allosterically coupled to the active site appeared to have profound effects on enzyme function, even when separated from the active site by many angstroms. In the present work, our aim was to further explore the implications of protein dynamics on β-lactamase function by altering the dynamic profile of TEM-1 using computational protein design methods. The Rosetta software suite was used to mutate amino acids surrounding either rigid residues that are highly coupled to the active site or to flexible residues with no apparent communication with the active site. Experimental characterization of ten designed proteins indicated that alteration of residues surrounding rigid, highly coupled residues, substantially affected both enzymatic activity and stability; in contrast, native-like activities and stabilities were maintained when flexible, uncoupled residues, were targeted. Our results provide additional insight into the structure-function relationship present in the TEM family of β-lactamases. Furthermore, the integration of computational protein design methods with analyses of protein dynamics represents a general approach that could be used to extend our understanding of the relationship between dynamics and function in other enzyme classes.
Collapse
|
5
|
Guliy OI, Zaitsev BD, Borodina IA. New approach for determination of antimicrobial susceptibility to antibiotics by an acoustic sensor. Appl Microbiol Biotechnol 2019; 104:1283-1290. [PMID: 31865437 DOI: 10.1007/s00253-019-10295-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 12/19/2022]
Abstract
For the first time, a rapid method was proposed to determine the susceptibility of Escherichia coli cells to antibiotics by the example of ampicillin by using a biological sensor based on a slot mode in an acoustic delay line. It has been established that an indicator of the antibiotic activity to microbial cells is the difference between the recorded sensor's signal before and after exposure cells with antibiotic. The depth and frequency of the peaks of resonant absorption in the frequency dependence of the insertion loss of sensor varied after adding an antibiotic with different concentrations to the microbial cells. By using the acoustic sensor based on slot-mode a criterion of E. coli sensitivity to ampicillin was established. The advantages of this method are the ability to carry out the analysis directly in the liquid, the short analysis time (within 10-15 min), and the possibility to reusable sensor.
Collapse
Affiliation(s)
- O I Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, 410049, Russia.
| | - B D Zaitsev
- Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov Branch, Saratov, 410019, Russia
| | - I A Borodina
- Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov Branch, Saratov, 410019, Russia
| |
Collapse
|
6
|
Clasen J, Birkegård AC, Græsbøll K, Folkesson A. Evolution of TEM-type extended-spectrum β-lactamases in Escherichia coli by cephalosporins. J Glob Antimicrob Resist 2019; 19:32-39. [PMID: 31048029 DOI: 10.1016/j.jgar.2019.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/07/2019] [Accepted: 03/18/2019] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVES This study was conducted to examine the molecular mechanisms responsible for the evolution of TEM-type extended-spectrum β-lactamases (ESBLs) following selective pressure from four third-generation cephalosporins, namely ceftazidime, cefotaxime, ceftriaxone and ceftibuten. In addition, selective enrichment for ESBL detection in environmental samples was investigated. METHODS Using experimental evolution, resistant variants were isolated and mutations in TEM-1 were examined by DNA sequencing. Resistance levels and the development of cross-resistance were determined for ESBL-producing isolates by Etest and disk diffusion assay. Selective plating with or without prior growth in selective broth was used to examine the approach of selective enrichment for ESBL detection. RESULTS The third-generation cephalosporins ceftazidime, cefotaxime and ceftriaxone selected for ESBLs, whereas ceftibuten did not. All ESBL variants additionally remained susceptible to ceftibuten. DNA sequencing of the TEM-1 coding sequence of mutants revealed mutations not previously isolated through selection. This indicates that the potential for ESBL evolution is much broader than can be inferred from sequence analysis of clinical samples alone. The results also indicate that selective enrichment for enhanced detection of ESBL-producers may give unreliable results owing to the selection of spontaneous mutations in narrow-spectrum β-lactamases resulting in TEM-type ESBL-producers. CONCLUSION These results help explain the molecular changes responsible for evolution of TEM-type ESBLs and meanwhile question the appropriate use of selective enrichment for detection of ESBLs in environmental samples.
Collapse
Affiliation(s)
- Julie Clasen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Anna Camilla Birkegård
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Kaare Græsbøll
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Anders Folkesson
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
7
|
Palzkill T. Structural and Mechanistic Basis for Extended-Spectrum Drug-Resistance Mutations in Altering the Specificity of TEM, CTX-M, and KPC β-lactamases. Front Mol Biosci 2018; 5:16. [PMID: 29527530 PMCID: PMC5829062 DOI: 10.3389/fmolb.2018.00016] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 02/08/2018] [Indexed: 11/13/2022] Open
Abstract
The most common mechanism of resistance to β-lactam antibiotics in Gram-negative bacteria is the production of β-lactamases that hydrolyze the drugs. Class A β-lactamases are serine active-site hydrolases that include the common TEM, CTX-M, and KPC enzymes. The TEM enzymes readily hydrolyze penicillins and older cephalosporins. Oxyimino-cephalosporins, such as cefotaxime and ceftazidime, however, are poor substrates for TEM-1 and were introduced, in part, to circumvent β-lactamase-mediated resistance. Nevertheless, the use of these antibiotics has lead to evolution of numerous variants of TEM with mutations that significantly increase the hydrolysis of the newer cephalosporins. The CTX-M enzymes emerged in the late 1980s and hydrolyze penicillins and older cephalosporins and derive their name from the ability to also hydrolyze cefotaxime. The CTX-M enzymes, however, do not efficiently hydrolyze ceftazidime. Variants of CTX-M enzymes, however, have evolved that exhibit increased hydrolysis of ceftazidime. Finally, the KPC enzyme emerged in the 1990s and is characterized by its broad specificity that includes penicillins, most cephalosporins, and carbapenems. The KPC enzyme, however, does not efficiently hydrolyze ceftazidime. As with the TEM and CTX-M enzymes, variants have recently evolved that extend the spectrum of KPC β-lactamase to include ceftazidime. This review discusses the structural and mechanistic basis for the expanded substrate specificity of each of these enzymes that result from natural mutations that confer oxyimino-cephalosporin resistance. For the TEM enzyme, extended-spectrum mutations act by establishing new interactions with the cephalosporin. These mutations increase the conformational heterogeneity of the active site to create sub-states that better accommodate the larger drugs. The mutations expanding the spectrum of CTX-M enzymes also affect the flexibility and conformation of the active site to accommodate ceftazidime. Although structural data are limited, extended-spectrum mutations in KPC may act by mediating new, direct interactions with substrate and/or altering conformations of the active site. In many cases, mutations that expand the substrate profile of these enzymes simultaneously decrease the thermodynamic stability. This leads to the emergence of additional global suppressor mutations that help correct the stability defects leading to increased protein expression and increased antibiotic resistance.
Collapse
Affiliation(s)
- Timothy Palzkill
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, United States
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
8
|
Knies JL, Cai F, Weinreich DM. Enzyme Efficiency but Not Thermostability Drives Cefotaxime Resistance Evolution in TEM-1 β-Lactamase. Mol Biol Evol 2017; 34:1040-1054. [PMID: 28087769 PMCID: PMC5400381 DOI: 10.1093/molbev/msx053] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A leading intellectual challenge in evolutionary genetics is to identify the specific phenotypes that drive adaptation. Enzymes offer a particularly promising opportunity to pursue this question, because many enzymes' contributions to organismal fitness depend on a comparatively small number of experimentally accessible properties. Moreover, on first principles the demands of enzyme thermostability stand in opposition to the demands of catalytic activity. This observation, coupled with the fact that enzymes are only marginally thermostable, motivates the widely held hypothesis that mutations conferring functional improvement require compensatory mutations to restore thermostability. Here, we explicitly test this hypothesis for the first time, using four missense mutations in TEM-1 β-lactamase that jointly increase cefotaxime Minimum Inhibitory Concentration (MIC) ∼1500-fold. First, we report enzymatic efficiency (kcat/KM) and thermostability (Tm, and thence ΔG of folding) for all combinations of these mutations. Next, we fit a quantitative model that predicts MIC as a function of kcat/KM and ΔG. While kcat/KM explains ∼54% of the variance in cefotaxime MIC (∼92% after log transformation), ΔG does not improve explanatory power of the model. We also find that cefotaxime MIC rises more slowly in kcat/KM than predicted. Several explanations for these discrepancies are suggested. Finally, we demonstrate substantial sign epistasis in MIC and kcat/KM, and antagonistic pleiotropy between phenotypes, in spite of near numerical additivity in the system. Thus constraints on selectively accessible trajectories, as well as limitations in our ability to explain such constraints in terms of underlying mechanisms are observed in a comparatively "well-behaved" system.
Collapse
Affiliation(s)
- Jennifer L Knies
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI
| | - Fei Cai
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI
| | - Daniel M Weinreich
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI
| |
Collapse
|
9
|
Yang J, Li Q, Bian L. Spectroscopic analysis and docking simulation on the recognition and binding of TEM-1 β-lactamase with β-lactam antibiotics. Exp Ther Med 2017; 14:3288-3298. [PMID: 28912880 DOI: 10.3892/etm.2017.4853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 03/17/2017] [Indexed: 11/05/2022] Open
Abstract
The interaction between TEM-1 β-lactamase and antibiotics is very important in the hydrolysis of antibiotics. In the present study, the recognition and binding of TEM-1 β-lactamase with three β-lactam antibiotics, including penicillin G, cefalexin and cefoxitin, was investigated by fluorescence and ultraviolet-visible absorption spectra in combination with molecular docking in the temperature range of 278-288 K and under simulated physiological conditions. The results demonstrated that the fluorescence emissions of TEM-1 β-lactamase were extinguished by static quenching and the energy of TEM-1 β-lactamase was transferred in a non-radioactive manner. The binding of TEM-1 β-lactamase with the three antibiotics was a spontaneously exothermic process, with binding constants of 1.41×107, 7.81×106 and 5.43×104 at 278 K. Furthermore, binding was driven by enthalpy change and the binding forces between them were mainly hydrogen bonding and Van der Waals forces. A TEM-1 β-lactamase only bound with one antibiotic at a time and the binding capacity between them was closely associated with the functional groups and flexibility in the antibiotics. In addition, a conformational change occurred in the TEM-1 β-lactamases when they bound with the three antibiotics and TEM-1 β-lactamase-antibiotic complexes were formed. The present study provided an insight into the recognition and binding of TEM-1 β-lactamase with β-lactam antibiotics, which may be helpful for designing a novel substrate for TEM-1 β-lactamase and developing novel antibiotics that are resistant to the enzyme.
Collapse
Affiliation(s)
- Jianting Yang
- Department of Traditional Chinese Medicine, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China.,Drug and Equipment Department, Weapon Industry 521 Hospital, Xi'an, Shaanxi 710065, P.R. China
| | - Qian Li
- Department of Traditional Chinese Medicine, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Liujiao Bian
- Department of Traditional Chinese Medicine, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| |
Collapse
|
10
|
Binding of TEM-1 beta-lactamase to beta-lactam antibiotics by frontal affinity chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1051:75-83. [DOI: 10.1016/j.jchromb.2017.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/08/2017] [Accepted: 03/14/2017] [Indexed: 11/22/2022]
|
11
|
Steinberg B, Ostermeier M. Environmental changes bridge evolutionary valleys. SCIENCE ADVANCES 2016; 2:e1500921. [PMID: 26844293 PMCID: PMC4737206 DOI: 10.1126/sciadv.1500921] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/12/2015] [Indexed: 05/31/2023]
Abstract
In the basic fitness landscape metaphor for molecular evolution, evolutionary pathways are presumed to follow uphill steps of increasing fitness. How evolution can cross fitness valleys is an open question. One possibility is that environmental changes alter the fitness landscape such that low-fitness sequences reside on a hill in alternate environments. We experimentally test this hypothesis on the antibiotic resistance gene TEM-15 β-lactamase by comparing four evolutionary strategies shaped by environmental changes. The strategy that included initial steps of selecting for low antibiotic resistance (negative selection) produced superior alleles compared with the other three strategies. We comprehensively examined possible evolutionary pathways leading to one such high-fitness allele and found that an initially deleterious mutation is key to the allele's evolutionary history. This mutation is an initial gateway to an otherwise relatively inaccessible area of sequence space and participates in higher-order, positive epistasis with a number of neutral to slightly beneficial mutations. The ability of negative selection and environmental changes to provide access to novel fitness peaks has important implications for natural evolutionary mechanisms and applied directed evolution.
Collapse
|
12
|
Abstract
The emergence and spread of antibiotic resistance among human pathogens is a relevant problem for human health and one of the few evolution processes amenable to experimental studies. In the present review, we discuss some basic aspects of antibiotic resistance, including mechanisms of resistance, origin of resistance genes, and bottlenecks that modulate the acquisition and spread of antibiotic resistance among human pathogens. In addition, we analyse several parameters that modulate the evolution landscape of antibiotic resistance. Learning why some resistance mechanisms emerge but do not evolve after a first burst, whereas others can spread over the entire world very rapidly, mimicking a chain reaction, is important for predicting the evolution, and relevance for human health, of a given mechanism of resistance. Because of this, we propose that the emergence and spread of antibiotic resistance can only be understood in a multi-parameter space. Measuring the effect on antibiotic resistance of parameters such as contact rates, transfer rates, integration rates, replication rates, diversification rates, and selection rates, for different genes and organisms, growing under different conditions in distinct ecosystems, will allow for a better prediction of antibiotic resistance and possibilities of focused interventions.
Collapse
Affiliation(s)
- José Luis Martínez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049, Madrid, Spain
| | - Fernando Baquero
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|