1
|
Elhusseiny MH, Elsayed MM, Mady WH, Mahana O, Bakry NR, Abdelaziz O, Arafa AS, Shahein MA, Eid S, Naguib MM. Genetic features of avian influenza (A/H5N8) clade 2.3.4.4b isolated from quail in Egypt. Virus Res 2024; 350:199482. [PMID: 39396573 DOI: 10.1016/j.virusres.2024.199482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Several genotypes of the highly pathogenic avian influenza (HPAI) virus H5N8 subtype within clade 2.3.4.4b continue to circulate in different species of domestic birds across Egypt. It is believed that quail contribute to virus replication and adaptation to other gallinaceous poultry species and humans. This study provides genetic characterization of the full genome of HPAI H5N8 isolated from quail in Egypt. The virus was isolated from a commercial quail farm associated with respiratory signs. To characterize the genetic features of the detected virus, gene sequencing via Sanger technology and phylogenetic analysis were performed. The results revealed high nucleotide identity with the HPAI H5N8 virus from Egypt, which has multiple basic amino acid motifs PLREKRRKR/GLF at the hemagglutinin (HA) cleavage site. Phylogenetic analysis of the eight gene segments revealed that the quail isolate is grouped with HPAI H5N8 viruses of clade 2.3.4.4b and closely related to the most recent circulating H5N8 viruses in Egypt. Whole-genome characterization revealed amino acid preferences for avian receptors with few mutations, indicating their affinity for human-like receptors and increased virulence in mammals, such as S123P, S133A, T156A and A263T in the HA gene. In addition, the sequencing results revealed a lack of markers associated with influenza antiviral resistance in the neuraminidase and matrix-2 coding proteins. The results of the present study support the spread of HPAIV H5N8 to species other than chickens in Egypt. Therefore, continuous surveillance of AIV in different bird species in Egypt followed by full genomic characterization is needed for better virus control and prevention.
Collapse
Affiliation(s)
- Mohamed H Elhusseiny
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Moataz M Elsayed
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Wesam H Mady
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Osama Mahana
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Neveen R Bakry
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Ola Abdelaziz
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Abdel-Sattar Arafa
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | | | - Samah Eid
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Mahmoud M Naguib
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, Egypt; Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK.
| |
Collapse
|
2
|
Nooruzzaman M, Mumu TT, Hossain I, Kabiraj CK, Begum JA, Rahman MM, Ali MZ, Giasuddin M, King J, Diel DG, Chowdhury EH, Harder T, Islam MR, Parvin R. Continuing evolution of H5N1 highly pathogenic avian influenza viruses of clade 2.3.2.1a G2 genotype in domestic poultry of Bangladesh during 2018-2021. Avian Pathol 2024:1-14. [PMID: 39382006 DOI: 10.1080/03079457.2024.2403427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 10/10/2024]
Abstract
We characterized 15 H5N1 HPAI viruses from different small- and medium-scale poultry flocks across Bangladesh during 2018-2021 based on their complete genome sequences. The antigenic relatedness of H5N1 HPAI viruses from different timepoints was analysed. During 2020-2021, 42.11% of the flocks tested positive for at least one of the respiratory infections, with 15.79% showing influenza A virus, of which 8.77% tested positive for HPAIV H5N1. Co-infections with two to four pathogens were detected in 15.8% of flocks. Phylogeny and gene constellation analyses based on complete genome sequences of 15 HPAI viruses revealed the continuing circulation of H5 clade 2.3.2.1a genotype G2 viruses. In the HA protein of the study isolates, functionally meaningful mutations caused the loss of an N-linked glycosylation site (T156A), a modified antigenic site A (S141P), and a mutation in the receptor binding pocket (E193R/K). Consequently, antigenic analysis revealed a significant loss of cross-reactivity between viruses from different host species and periods. Most viruses displayed oseltamivir resistance markers at positions V96, I97, S227, and N275 (N1 numbering) of the NA protein. In addition, for the PB2, M1, and NS1 proteins, significant mutations were noticed that have been associated with polymerase activity and increased virulence for mammals in all study isolates. These results highlight the need for intensified genomic surveillance of HPAI circulating in poultry in Bangladesh and for establishing appropriate control measures to decrease the circulation of these viruses in poultry in the country.
Collapse
Affiliation(s)
- Mohammed Nooruzzaman
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Tanjin Tamanna Mumu
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Ismail Hossain
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Congriev Kumar Kabiraj
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Jahan Ara Begum
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Mijanur Rahman
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md Zulfekar Ali
- National Reference Laboratory for Avian Influenza, Animal Health Research Division, Bangladesh Livestock Research Institute, Dhaka, Bangladesh
| | - Mohammed Giasuddin
- National Reference Laboratory for Avian Influenza, Animal Health Research Division, Bangladesh Livestock Research Institute, Dhaka, Bangladesh
| | - Jacqueline King
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Diego G Diel
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Emdadul Haque Chowdhury
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Mohammad Rafiqul Islam
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Rokshana Parvin
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
3
|
Shi K, Feng S, Zhao L, Chen J, Song W, Jia Y, Qu X, Liu Z, Jia W, Du S, Liao M. N-glycosylation on hemagglutinin head reveals inter-branch antigenic variability of avian influenza virus H5-subtypes. Int J Biol Macromol 2024; 273:132901. [PMID: 38848854 DOI: 10.1016/j.ijbiomac.2024.132901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/19/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
H5-subtype avian influenza virus (AIV) is globally prevalent and undergoes frequent antigenic drift, necessitating regular updates to vaccines. One of the many influencing elements that cause incompatibility between vaccinations and epidemic strains is the dynamic alteration of glycosylation sites. However, the biological significance of N-glycosylation in the viral evolution and antigenic changes is unclear. Here, we performed a systematic analysis of glycosylation sites on the HA1 subunit of H5N1, providing insights into the changes of primary glycosylation sites, including 140 N, 156 N, and 170 N within the antigenic epitopes of HA1 protein. Multiple recombinant viruses were then generated based on HA genes of historical vaccine strains and deactivated for immunizing SPF chickens. Inactivated recombinant strains showed relatively closer antigenicity compared to which has identical N-glycosylation patterns. The N-glycosylation modification discrepancy highlights the inter-branch antigenic diversity of H5-subtype viruses in avian influenza and serves as a vital foundation for improving vaccination tactics.
Collapse
Affiliation(s)
- Keyi Shi
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Saixiang Feng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Li Zhao
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Junhong Chen
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Wei Song
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yusheng Jia
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyun Qu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhicheng Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Weixin Jia
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Shouwen Du
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Wuhan 430030, China.
| | - Ming Liao
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Zhongkai University of Agricultural and Engineering, Guangzhou 510550, China.
| |
Collapse
|
4
|
Gao C, Wen F, Guan M, Hatuwal B, Li L, Praena B, Tang CY, Zhang J, Luo F, Xie H, Webby R, Tao YJ, Wan XF. MAIVeSS: streamlined selection of antigenically matched, high-yield viruses for seasonal influenza vaccine production. Nat Commun 2024; 15:1128. [PMID: 38321021 PMCID: PMC10847134 DOI: 10.1038/s41467-024-45145-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
Vaccines are the main pharmaceutical intervention used against the global public health threat posed by influenza viruses. Timely selection of optimal seed viruses with matched antigenicity between vaccine antigen and circulating viruses and with high yield underscore vaccine efficacy and supply, respectively. Current methods for selecting influenza seed vaccines are labor intensive and time-consuming. Here, we report the Machine-learning Assisted Influenza VaccinE Strain Selection framework, MAIVeSS, that enables streamlined selection of naturally circulating, antigenically matched, and high-yield influenza vaccine strains directly from clinical samples by using molecular signatures of antigenicity and yield to support optimal candidate vaccine virus selection. We apply our framework on publicly available sequences to select A(H1N1)pdm09 vaccine candidates and experimentally confirm that these candidates have optimal antigenicity and growth in cells and eggs. Our framework can potentially reduce the optimal vaccine candidate selection time from months to days and thus facilitate timely supply of seasonal vaccines.
Collapse
Affiliation(s)
- Cheng Gao
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, 65211, USA
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, MO, 65211, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Feng Wen
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, 39762, USA
| | - Minhui Guan
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, 65211, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Bijaya Hatuwal
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, 65211, USA
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, MO, 65211, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Lei Li
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
- Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Beatriz Praena
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, 65211, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Cynthia Y Tang
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, 65211, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, 65211, USA
| | - Jieze Zhang
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Feng Luo
- University School of Computing, Clemson University, Clemson, SC, 29634, USA
| | - Hang Xie
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Richard Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 63141, USA
| | - Yizhi Jane Tao
- Department of BioSciences, Rice University, Houston, TX, 77251, USA
| | - Xiu-Feng Wan
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, 65211, USA.
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, MO, 65211, USA.
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65211, USA.
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, 39762, USA.
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
5
|
Li X, Li Y, Shang X, Kong H. A sequence-based machine learning model for predicting antigenic distance for H3N2 influenza virus. Front Microbiol 2024; 15:1345794. [PMID: 38314434 PMCID: PMC10834737 DOI: 10.3389/fmicb.2024.1345794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024] Open
Abstract
Introduction Seasonal influenza A H3N2 viruses are constantly changing, reducing the effectiveness of existing vaccines. As a result, the World Health Organization (WHO) needs to frequently update the vaccine strains to match the antigenicity of emerged H3N2 variants. Traditional assessments of antigenicity rely on serological methods, which are both labor-intensive and time-consuming. Although numerous computational models aim to simplify antigenicity determination, they either lack a robust quantitative linkage between antigenicity and viral sequences or focus restrictively on selected features. Methods Here, we propose a novel computational method to predict antigenic distances using multiple features, including not only viral sequence attributes but also integrating four distinct categories of features that significantly affect viral antigenicity in sequences. Results This method exhibits low error in virus antigenicity prediction and achieves superior accuracy in discerning antigenic drift. Utilizing this method, we investigated the evolution process of the H3N2 influenza viruses and identified a total of 21 major antigenic clusters from 1968 to 2022. Discussion Interestingly, our predicted antigenic map aligns closely with the antigenic map generated with serological data. Thus, our method is a promising tool for detecting antigenic variants and guiding the selection of vaccine candidates.
Collapse
Affiliation(s)
- Xingyi Li
- School of Computer Science, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Big Data Storage and Management MIIT Lab, Xi'an, Shaanxi, China
| | - Yanyan Li
- School of Computer Science, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Big Data Storage and Management MIIT Lab, Xi'an, Shaanxi, China
| | - Xuequn Shang
- School of Computer Science, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Big Data Storage and Management MIIT Lab, Xi'an, Shaanxi, China
| | - Huihui Kong
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| |
Collapse
|
6
|
Mosaad Z, Elhusseiny MH, Zanaty A, Fathy MM, Hagag NM, Mady WH, Said D, Elsayed MM, Erfan AM, Rabie N, Samir A, Samy M, Arafa AS, Selim A, Abdelhakim AM, Lindahl JF, Eid S, Lundkvist Å, Shahein MA, Naguib MM. Emergence of Highly Pathogenic Avian Influenza A Virus (H5N1) of Clade 2.3.4.4b in Egypt, 2021-2022. Pathogens 2023; 12:90. [PMID: 36678438 PMCID: PMC9863303 DOI: 10.3390/pathogens12010090] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/06/2023] Open
Abstract
Wild migratory birds have the capability to spread avian influenza virus (AIV) over long distances as well as transmit the virus to domestic birds. In this study, swab and tissue samples were obtained from 190 migratory birds during close surveillance in Egypt in response to the recent outbreaks of the highly pathogenic avian influenza (HPAI) H5N1 virus. The collected samples were tested for a variety of AIV subtypes (H5N1, H9N2, H5N8, and H6N2) as well as other pathogens such as NDV, IBV, ILT, IBDV, and WNV. Among all of the tested samples, the HPAI H5N1 virus was found in six samples; the other samples were found to be negative for all of the tested pathogens. The Egyptian HPAI H5N1 strains shared genetic traits with the HPAI H5N1 strains that are currently being reported in Europe, North America, Asia, and Africa in 2021-2022. Whole genome sequencing revealed markers associated with mammalian adaption and virulence traits among different gene segments, similar to those found in HPAI H5N1 strains detected in Europe and Africa. The detection of the HPAI H5N1 strain of clade 2.3.4.4b in wild birds in Egypt underlines the risk of the introduction of this strain into the local poultry population. Hence, there is reason to be vigilant and continue epidemiological and molecular monitoring of the AIV in close proximity to the domestic-wild bird interface.
Collapse
Affiliation(s)
- Zienab Mosaad
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Mohamed H. Elhusseiny
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Ali Zanaty
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Mustafa M. Fathy
- Animal Health Research Institute-Mansour Branch, Agriculture Research Center (ARC), Dakahlia 35511, Egypt
| | - Naglaa M. Hagag
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Wesam H. Mady
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Dalia Said
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Moataz M. Elsayed
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Ahmed M. Erfan
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Neveen Rabie
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Abdelhafez Samir
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Mohamed Samy
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Abdel-Satar Arafa
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Abdullah Selim
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | | | - Johanna F. Lindahl
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, 75121 Uppsala, Sweden
| | - Samah Eid
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, 75121 Uppsala, Sweden
| | - Momtaz A. Shahein
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Mahmoud M. Naguib
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, 75121 Uppsala, Sweden
| |
Collapse
|
7
|
Molecular Epidemiology and Evolutionary Analysis of Avian Influenza A(H5) Viruses Circulating in Egypt, 2019–2021. Viruses 2022; 14:v14081758. [PMID: 36016379 PMCID: PMC9415572 DOI: 10.3390/v14081758] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
The highly pathogenic avian influenza (HPAI) H5N8 virus was first detected in Egypt in late 2016. Since then, the virus has spread rapidly among different poultry sectors, becoming the dominant HPAI H5 subtype reported in Egypt. Different genotypes of the HPAI H5N8 virus were reported in Egypt; however, the geographic patterns and molecular evolution of the Egyptian HPAI H5N8 viruses are still unclear. Here, extensive epidemiological surveillance was conducted, including more than half a million samples collected from different poultry sectors (farms/backyards/live bird markets) from all governorates in Egypt during 2019–2021. In addition, genetic characterization and evolutionary analyses were performed using 47 selected positive H5N8 isolates obtained during the same period. The result of the conducted surveillance showed that HPAI H5N8 viruses of clade 2.3.4.4b continue to circulate in different locations in Egypt, with an obvious seasonal pattern, and no further detection of the HPAI H5N1 virus of clade 2.2.1.2 was observed in the poultry population during 2019–2021. In addition, phylogenetic and Bayesian analyses revealed that two major genotypes (G5 and G6) of HPAI H5N8 viruses were continually expanding among the poultry sectors in Egypt. Notably, molecular dating analysis suggested that the Egyptian HPAI H5N8 virus is the potential ancestral viruses of the European H5N8 viruses of 2020–2021. In summary, the data of this study highlight the current epidemiology, diversity, and evolution of HPAI H5N8 viruses in Egypt and call for continuous monitoring of the genetic features of the avian influenza viruses in Egypt.
Collapse
|
8
|
Wang Y, Tang CY, Wan XF. Antigenic characterization of influenza and SARS-CoV-2 viruses. Anal Bioanal Chem 2022; 414:2841-2881. [PMID: 34905077 PMCID: PMC8669429 DOI: 10.1007/s00216-021-03806-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022]
Abstract
Antigenic characterization of emerging and re-emerging viruses is necessary for the prevention of and response to outbreaks, evaluation of infection mechanisms, understanding of virus evolution, and selection of strains for vaccine development. Primary analytic methods, including enzyme-linked immunosorbent/lectin assays, hemagglutination inhibition, neuraminidase inhibition, micro-neutralization assays, and antigenic cartography, have been widely used in the field of influenza research. These techniques have been improved upon over time for increased analytical capacity, and some have been mobilized for the rapid characterization of the SARS-CoV-2 virus as well as its variants, facilitating the development of highly effective vaccines within 1 year of the initially reported outbreak. While great strides have been made for evaluating the antigenic properties of these viruses, multiple challenges prevent efficient vaccine strain selection and accurate assessment. For influenza, these barriers include the requirement for a large virus quantity to perform the assays, more than what can typically be provided by the clinical samples alone, cell- or egg-adapted mutations that can cause antigenic mismatch between the vaccine strain and circulating viruses, and up to a 6-month duration of vaccine development after vaccine strain selection, which allows viruses to continue evolving with potential for antigenic drift and, thus, antigenic mismatch between the vaccine strain and the emerging epidemic strain. SARS-CoV-2 characterization has faced similar challenges with the additional barrier of the need for facilities with high biosafety levels due to its infectious nature. In this study, we review the primary analytic methods used for antigenic characterization of influenza and SARS-CoV-2 and discuss the barriers of these methods and current developments for addressing these challenges.
Collapse
Affiliation(s)
- Yang Wang
- MU Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Cynthia Y Tang
- MU Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
| | - Xiu-Feng Wan
- MU Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, MO, USA.
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA.
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA.
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
9
|
Nuñez IA, Huang Y, Ross TM. Next-Generation Computationally Designed Influenza Hemagglutinin Vaccines Protect against H5Nx Virus Infections. Pathogens 2021; 10:1352. [PMID: 34832509 PMCID: PMC8625041 DOI: 10.3390/pathogens10111352] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/28/2022] Open
Abstract
H5N1 COBRA hemagglutinin (HA) sequences, termed human COBRA-2 HA, were constructed through layering of HA sequences from viruses isolated from humans collected between 2004-2007 using only clade 2 strains. These COBRA HA proteins, when expressed on the surface of virus-like particles (VLP), elicited protective immune responses in mice, ferrets, and non-human primates. However, these vaccines were not as effective at inducing neutralizing antibodies against newly circulating viruses. Therefore, COBRA HA-based vaccines were updated in order to elicit protective antibodies against the current circulating clades of H5Nx viruses. Next-generation COBRA HA vaccines were designed to encompass the newly emerging viruses circulating in wild avian populations. HA amino acid sequences from avian and human H5 influenza viruses isolated between 2011-2017 were downloaded from the GISAID (Global Initiative on Sharing All Influenza Data). Mice were vaccinated with H5 COBRA rHA that elicited antibodies with hemagglutinin inhibition (HAI) activity against H5Nx viruses from five clades. The H5 COBRA rHA vaccine, termed IAN8, elicited protective immune responses against mice challenged with A/Sichuan/26621/2014 and A/Vietnam/1203/2004. This vaccine elicited antibodies with HAI activity against viruses from clades 2.2, 2.3.2.1, 2.3.4.2, 2.2.1 and 2.2.2. Lungs from vaccinated mice had decreased viral titers and the levels of cellular infiltration in mice vaccinated with IAN-8 rHA were similar to mice vaccinated with wild-type HA comparator vaccines or mock vaccinated controls. Overall, these next-generation H5 COBRA HA vaccines elicited protective antibodies against both historical H5Nx influenza viruses, as well as currently circulating clades of H5N1, H5N6, and H5N8 influenza viruses.
Collapse
Affiliation(s)
- Ivette A. Nuñez
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (I.A.N.); (Y.H.)
| | - Ying Huang
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (I.A.N.); (Y.H.)
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (I.A.N.); (Y.H.)
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
10
|
Waters K, Gao C, Ykema M, Han L, Voth L, Tao YJ, Wan XF. Triple reassortment increases compatibility among viral ribonucleoprotein genes of contemporary avian and human influenza A viruses. PLoS Pathog 2021; 17:e1009962. [PMID: 34618879 PMCID: PMC8525756 DOI: 10.1371/journal.ppat.1009962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/19/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022] Open
Abstract
Compatibility among the influenza A virus (IAV) ribonucleoprotein (RNP) genes affects viral replication efficiency and can limit the emergence of novel reassortants, including those with potential pandemic risks. In this study, we determined the polymerase activities of 2,451 RNP reassortants among three seasonal and eight enzootic IAVs by using a minigenome assay. Results showed that the 2009 H1N1 RNP are more compatible with the tested enzootic RNP than seasonal H3N2 RNP and that triple reassortment increased such compatibility. The RNP reassortants among 2009 H1N1, canine H3N8, and avian H4N6 IAVs had the highest polymerase activities. Residues in the RNA binding motifs and the contact regions among RNP proteins affected polymerase activities. Our data indicates that compatibility among seasonal and enzootic RNPs are selective, and enzoosis of multiple strains in the animal-human interface can facilitate emergence of an RNP with increased replication efficiency in mammals, including humans.
Collapse
Affiliation(s)
- Kaitlyn Waters
- Missouri University Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri, United States of America
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, United States of America
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi, United States of America
| | - Cheng Gao
- Missouri University Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri, United States of America
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, Missouri, United States of America
| | - Matthew Ykema
- Department of BioSciences, Rice University, Houston, Texas, United States of America
| | - Lei Han
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi, United States of America
| | - Lynden Voth
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Yizhi Jane Tao
- Department of BioSciences, Rice University, Houston, Texas, United States of America
| | - Xiu-Feng Wan
- Missouri University Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri, United States of America
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, United States of America
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi, United States of America
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
11
|
Waters K, Wan HJ, Han L, Xue J, Ykema M, Tao YJ, Wan XF. Variations outside the conserved motifs of PB1 catalytic active site may affect replication efficiency of the RNP complex of influenza A virus. Virology 2021; 559:145-155. [PMID: 33887645 PMCID: PMC8579824 DOI: 10.1016/j.virol.2021.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 12/24/2022]
Abstract
PB1 functions as the catalytic subunit of influenza virus RNA polymerase complex and plays an essential role in viral RNA transcription and replication. To determine plasticity in the PB1 enzymatic site and map catalytically important residues, 658 mutants were constructed, each with one to seven mutations in the enzymatic site of PB1. The polymerase activities of these mutants were quantified using a minigenome assay, and polymerase activity-associated residues were identified using sparse learning. Results showed that polymerase activities are affected by the residues not only within the conserved motifs, but also across the inter-motif regions of PB1, and the latter are primarily located at the base of the palm domain, a region that is conserved in avian PB1 but with high sequence diversity in swine PB1. Our results suggest that mutations outside the PB1 conserved motifs may affect RNA replication and could be associated with influenza virus host adaptation.
Collapse
Affiliation(s)
- Kaitlyn Waters
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, USA; Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Hamilton J Wan
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, USA; Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Lei Han
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Jianli Xue
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Matthew Ykema
- Department of BioSciences, Rice University, Houston, TX, 77251, USA
| | - Yizhi J Tao
- Department of BioSciences, Rice University, Houston, TX, 77251, USA
| | - Xiu-Feng Wan
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, USA; Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, 39762, USA; Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
12
|
Mosad SM, El-Gohary FA, Ali HS, El-Sharkawy H, Elmahallawy EK. Pathological and Molecular Characterization of H5 Avian Influenza Virus in Poultry Flocks from Egypt over a Ten-Year Period (2009-2019). Animals (Basel) 2020; 10:ani10061010. [PMID: 32527004 PMCID: PMC7341251 DOI: 10.3390/ani10061010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Avian influenza virus (H5) remains one of the challenging zoonotic viruses in Egypt. Our study investigated the occurrence of this virus among chickens from Dakhalia governorate, Egypt over ten years through histopathological examination and molecular characterization of the virus. The molecular characterization was followed by sequencing and phylogenetic analysis of the positive samples. Importantly, we have reported several interesting pathological changes and high occurrence of the H5 avian influenza virus, the phylogenetic analysis revealed that positive samples were aligned with several Egyptian sub clades. Clearly, our study concludes the widespread of the virus among poultry flocks in Egypt and suggests further future research aims to develop an efficient surveillance program with investigation into the effectiveness of the implemented control measures for controlling this disease of public health concern. Abstract Avian influenza virus (AIV) remains one of the enzootic zoonotic diseases that challenges the poultry industry in Egypt. In the present study, a total of 500 tissue samples were collected from 100 chicken farms (broilers and layers) suspected to be infected with AIV through the period from 2009 to 2019 from Dakahlia governorate, Egypt. These samples were pooled in 100 working samples and screened for AIV then the positive samples were subjected to histopathological examination combined with real time-polymerase chain reaction (RRT-PCR). RRT-PCR positive samples were also subjected to conventional reverse transcriptase-polymerase chain reaction (RT-PCR) for detection of H5 AIV and some of these resulting positive samples were sequenced for detection of the molecular nature of the studied virus. Interestingly, the histopathological examination revealed necrotic liver with leukocytic infiltration with degenerative changes with necrotic pancreatitis, edema, and intense lymphoid depletion of splenic tissue and hyperplastic tracheal epithelium. Likewise, edema and congested sub mucosal blood vessels and intense bronchial necrosis with hyalinized wall vascular wall and heterophils infiltration were reported. Pneumonic areas with intense leukocytic aggregation mainly and vasculitis of the pulmonary blood vessels were also detected in lung. Collectively, these significant pathological changes in examined tissues cohered with AIV infection. Regarding the molecular characterization, 66 samples were positive for AIV by RRT-PCR and 52 of them were positive for H5 AIV by RT-PCR. The phylogenetic analysis revealed that the H5 viruses identified in this study were aligned with other Egyptian H5N1 AIVs in the Egyptian sub clade 2.2.1, while some of the identified strains were aligned with other Egyptian H5N8 strains in the new Egyptian sub clade 2.3.4.4. Taken together, our present findings emphasize the wide spread of AIV in Egypt and the importance of developing an efficient surveillance and periodical screening program for controlling such disease of public health concern.
Collapse
Affiliation(s)
- Samah Mosad Mosad
- Department of Virology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Fatma A. El-Gohary
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Hanaa Said Ali
- Department of Pathology, Animal Health Research Institute, Mansoura Branch, Mansoura 35516, Egypt;
| | - Hanem El-Sharkawy
- Department of Poultry and Rabbit Diseases, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33511, Egypt;
| | - Ehab Kotb Elmahallawy
- Department of Biomedical Sciences, University of León, 24071 León, Spain
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
- Correspondence:
| |
Collapse
|
13
|
Li L, Chang D, Han L, Zhang X, Zaia J, Wan XF. Multi-task learning sparse group lasso: a method for quantifying antigenicity of influenza A(H1N1) virus using mutations and variations in glycosylation of Hemagglutinin. BMC Bioinformatics 2020; 21:182. [PMID: 32393178 PMCID: PMC7216668 DOI: 10.1186/s12859-020-3527-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/30/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In addition to causing the pandemic influenza outbreaks of 1918 and 2009, subtype H1N1 influenza A viruses (IAVs) have caused seasonal epidemics since 1977. Antigenic property of influenza viruses are determined by both protein sequence and N-linked glycosylation of influenza glycoproteins, especially hemagglutinin (HA). The currently available computational methods are only considered features in protein sequence but not N-linked glycosylation. RESULTS A multi-task learning sparse group least absolute shrinkage and selection operator (LASSO) (MTL-SGL) regression method was developed and applied to derive two types of predominant features including protein sequence and N-linked glycosylation in hemagglutinin (HA) affecting variations in serologic data for human and swine H1N1 IAVs. Results suggested that mutations and changes in N-linked glycosylation sites are associated with the rise of antigenic variants of H1N1 IAVs. Furthermore, the implicated mutations are predominantly located at five reported antibody-binding sites, and within or close to the HA receptor binding site. All of the three N-linked glycosylation sites (i.e. sequons NCSV at HA 54, NHTV at HA 125, and NLSK at HA 160) identified by MTL-SGL to determine antigenic changes were experimentally validated in the H1N1 antigenic variants using mass spectrometry analyses. Compared with conventional sparse learning methods, MTL-SGL achieved a lower prediction error and higher accuracy, indicating that grouped features and MTL in the MTL-SGL method are not only able to handle serologic data generated from multiple reagents, supplies, and protocols, but also perform better in genetic sequence-based antigenic quantification. CONCLUSIONS In summary, the results of this study suggest that mutations and variations in N-glycosylation in HA caused antigenic variations in H1N1 IAVs and that the sequence-based antigenicity predictive model will be useful in understanding antigenic evolution of IAVs.
Collapse
Affiliation(s)
- Lei Li
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Deborah Chang
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Lei Han
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA.,Tencent AI Lab, Shenzhen, China
| | - Xiaojian Zhang
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA.,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA.,MU Center for Research on Influenza Systems Biology (CRISB), University of Missouri, Columbia, MO, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Joseph Zaia
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Xiu-Feng Wan
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA. .,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA. .,MU Center for Research on Influenza Systems Biology (CRISB), University of Missouri, Columbia, MO, USA. .,Bond Life Sciences Center, University of Missouri, Columbia, MO, USA. .,Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, MO, USA. .,MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
14
|
Nuñez IA, Ross TM. Human COBRA 2 vaccine contains two major epitopes that are responsible for eliciting neutralizing antibody responses against heterologous clades of viruses. Vaccine 2020; 38:830-839. [PMID: 31733946 DOI: 10.1016/j.vaccine.2019.10.097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 01/13/2023]
Abstract
Highly pathogenic H5N1 influenza viruses continue to spread around the globe and reassort with low pathogenic avian influenza viruses often resulting in morbidity and mortality to not only waterfowl, but also poultry. Our group previously developed two hemagglutinin (HA) based vaccines using a methodology termed computationally optimized broadly reactive antigen (COBRA). Each of these HA antigens, Human COBRA 2 (Hu-CO) and Human-Avian COBRA 2 (Hu-Av CO) elicit antibodies with hemagglutination-inhibition (HAI) activity against viruses from various clades, but not always the same viruses. Here, we have sought to identify residues in these two HA molecules that are critical fordifferential HAI activity against various H5Nx influenza viruses. The two HA antigens are remarkedly similar in the globular head region, except for 4 residues at amino acids 140, 141, 155, and 156. By mutating these amino acids in each HA antigen, chimeric HA proteins were used to elicit immune responses in mice. When the Asn-Thr pair at position 155-156 in the Hu-CO HA was converted to the Ser-Ala residues found in the Hu-Av CO HA, the elicited antibodies lost HAI activity against clade 2.3.2.1 H5Nx viruses, such as A/Hubei/01/2010. When this Asn-Thr motif was added at these positions in the Hu-Av CO HA molecule, HAI activity in the elicited sera against A/Hubei/01/2010 was significantly increased. We speculate that a putative N-linked glycosylation at this location in the Hu-CO HA antigen is a key driver in the elicitation of antibodies with HAI activity to different locations on wild-type H5 HA molecules resulting in differential neutralization of viral infection and protection in vivo against H5 influenza virus induced disease.
Collapse
Affiliation(s)
- Ivette A Nuñez
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, University of Georgia, Athens, GA, USA.
| |
Collapse
|
15
|
Han L, Li L, Wen F, Zhong L, Zhang T, Wan XF. Graph-guided multi-task sparse learning model: a method for identifying antigenic variants of influenza A(H3N2) virus. Bioinformatics 2019; 35:77-87. [PMID: 29878046 DOI: 10.1093/bioinformatics/bty457] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 06/06/2018] [Indexed: 11/14/2022] Open
Abstract
Motivation Influenza virus antigenic variants continue to emerge and cause disease outbreaks. Time-consuming, costly and middle-throughput serologic methods using virus isolates are routinely used to identify influenza antigenic variants for vaccine strain selection. However, the resulting data are notoriously noisy and difficult to interpret and integrate because of variations in reagents, supplies and protocol implementation. A novel method without such limitations is needed for antigenic variant identification. Results We developed a Graph-Guided Multi-Task Sparse Learning (GG-MTSL) model that uses multi-sourced serologic data to learn antigenicity-associated mutations and infer antigenic variants. By applying GG-MTSL to influenza H3N2 hemagglutinin sequences, we showed the method enables rapid characterization of antigenic profiles and identification of antigenic variants in real time and on a large scale. Furthermore, sequences can be generated directly by using clinical samples, thus minimizing biases due to culture-adapted mutation during virus isolation. Availability and implementation MATLAB source codes developed for GG-MTSL are available through http://sysbio.cvm.msstate.edu/files/GG-MTSL/. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Lei Han
- Department of Basic Science, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA.,Tencent AI Lab, Tencent, Shenzhen, China
| | - Lei Li
- Department of Basic Science, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Feng Wen
- Department of Basic Science, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Lei Zhong
- Department of Basic Science, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Tong Zhang
- Tencent AI Lab, Tencent, Shenzhen, China
| | - Xiu-Feng Wan
- Department of Basic Science, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| |
Collapse
|
16
|
Zhang L, Feng S, Duan G, Li Y, Liu G. Detection of Microaneurysms in Fundus Images Based on an Attention Mechanism. Genes (Basel) 2019; 10:genes10100817. [PMID: 31627420 PMCID: PMC6827155 DOI: 10.3390/genes10100817] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/02/2019] [Accepted: 10/14/2019] [Indexed: 11/29/2022] Open
Abstract
Microaneurysms (MAs) are the earliest detectable diabetic retinopathy (DR) lesions. Thus, the ability to automatically detect MAs is critical for the early diagnosis of DR. However, achieving the accurate and reliable detection of MAs remains a significant challenge due to the size and complexity of retinal fundus images. Therefore, this paper presents a novel MA detection method based on a deep neural network with a multilayer attention mechanism for retinal fundus images. First, a series of equalization operations are performed to improve the quality of the fundus images. Then, based on the attention mechanism, multiple feature layers with obvious target features are fused to achieve preliminary MA detection. Finally, the spatial relationships between MAs and blood vessels are utilized to perform a secondary screening of the preliminary test results to obtain the final MA detection results. We evaluated the method on the IDRiD_VOC dataset, which was collected from the open IDRiD dataset. The results show that our method effectively improves the average accuracy and sensitivity of MA detection.
Collapse
Affiliation(s)
- Lizong Zhang
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Shuxin Feng
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Guiduo Duan
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Ying Li
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Guisong Liu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
- School of Computer Science, Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan 528400, China.
| |
Collapse
|
17
|
Degoot AM, Adabor ES, Chirove F, Ndifon W. Predicting Antigenicity of Influenza A Viruses Using biophysical ideas. Sci Rep 2019; 9:10218. [PMID: 31308446 PMCID: PMC6629677 DOI: 10.1038/s41598-019-46740-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 07/01/2019] [Indexed: 11/18/2022] Open
Abstract
Antigenic variations of influenza A viruses are induced by genomic mutation in their trans-membrane protein HA1, eliciting viral escape from neutralization by antibodies generated in prior infections or vaccinations. Prediction of antigenic relationships among influenza viruses is useful for designing (or updating the existing) influenza vaccines, provides important insights into the evolutionary mechanisms underpinning viral antigenic variations, and helps to understand viral epidemiology. In this study, we present a simple and physically interpretable model that can predict antigenic relationships among influenza A viruses, based on biophysical ideas, using both genomic amino acid sequences and experimental antigenic data. We demonstrate the applicability of the model using a benchmark dataset of four subtypes of influenza A (H1N1, H3N2, H5N1, and H9N2) viruses and report on its performance profiles. Additionally, analysis of the model’s parameters confirms several observations that are consistent with the findings of other previous studies, for which we provide plausible explanations.
Collapse
Affiliation(s)
- Abdoelnaser M Degoot
- Research Department, African Institute for Mathematical Sciences, Next Einstein Initiative, Kigali, Rwanda. .,University of KwaZulu-Natal, School of Mathematics, Statistics and Computer Science, Pietermaritzburg, 3209, South Africa. .,DST-NRF Centre of Excellence in Mathematical and Statistical Sciences (CoE-MaSS), Gauteng, Wits, 2050, South Africa.
| | - Emmanuel S Adabor
- Research Centre, African Institute for Mathematical Sciences, Cape Town, 7945, South Africa
| | - Faraimunashe Chirove
- University of KwaZulu-Natal, School of Mathematics, Statistics and Computer Science, Pietermaritzburg, 3209, South Africa
| | - Wilfred Ndifon
- Research Department, African Institute for Mathematical Sciences, Next Einstein Initiative, Kigali, Rwanda.
| |
Collapse
|
18
|
Hassan KE, El-Kady MF, El-Sawah AAA, Luttermann C, Parvin R, Shany S, Beer M, Harder T. Respiratory disease due to mixed viral infections in poultry flocks in Egypt between 2017 and 2018: Upsurge of highly pathogenic avian influenza virus subtype H5N8 since 2018. Transbound Emerg Dis 2019; 68:21-36. [PMID: 31297991 DOI: 10.1111/tbed.13281] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023]
Abstract
For several years, poultry production in Egypt has been suffering from co-circulation of multiple respiratory viruses including highly pathogenic avian influenza virus (HPAIV) H5N1 (clade 2.2.1.2) and low pathogenic H9N2 (clade G1-B). Incursion of HPAIV H5N8 (clade 2.3.4.4b) to Egypt in November 2016 via wild birds followed by spread into commercial poultry flocks further complicated the situation. Current analyses focussed on 39 poultry farms suffering from respiratory manifestation and high mortality in six Egyptian governorates during 2017-2018. Real-time RT-PCR (RT-qPCR) substantiated the co-presence of at least two respiratory virus species in more than 80% of the investigated flocks. The percentage of HPAIV H5N1-positive holdings was fairly stable in 2017 (12.8%) and 2018 (10.2%), while the percentage of HPAIV H5N8-positive holdings increased from 23% in 2017 to 66.6% during 2018. The proportion of H9N2-positive samples was constantly high (2017:100% and 2018:63%), and H9N2 co-circulated with HPAIV H5N8 in 22 out of 39 (56.8%) flocks. Analyses of 26 H5, 18 H9 and 4 N2 new sequences confirmed continuous genetic diversification. In silico analysis revealed numerous amino acid substitutions in the HA and NA proteins suggestive of increased adaptation to mammalian hosts and putative antigenic variation. For sensitive detection of H9N2 viruses by RT-qPCR, an update of primers and probe sequences was crucial. Reasons for the relative increase of HPAIV H5N8 infections versus H5N1 remained unclear, but lack of suitable vaccines against clade 2.3.4.4b cannot be excluded. A reconsideration of surveillance and control measures should include updating of diagnostic tools and vaccination strategies.
Collapse
Affiliation(s)
- Kareem E Hassan
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald-Riems, Germany.,Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Magdy F El-Kady
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Azza A A El-Sawah
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Christine Luttermann
- Institute of Immunology Virology, Friedrich-Loeffler-Institute, Greifswald-Riems, Germany
| | - Rokshana Parvin
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald-Riems, Germany.,Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Salama Shany
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald-Riems, Germany
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald-Riems, Germany
| |
Collapse
|
19
|
Multiple introductions of reassorted highly pathogenic avian influenza viruses (H5N8) clade 2.3.4.4b causing outbreaks in wild birds and poultry in Egypt. INFECTION GENETICS AND EVOLUTION 2017; 58:56-65. [PMID: 29248796 DOI: 10.1016/j.meegid.2017.12.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/10/2017] [Accepted: 12/13/2017] [Indexed: 01/16/2023]
Abstract
Recently, an increased incidence of outbreaks of highly pathogenic avian influenza (HPAI) H5N8 in poultry linked to infected migratory birds has been reported from different European, Asian and African countries. In Egypt, incursion of HPAI H5N8 virus of clade 2.3.4.4b has been recently registered. Full genomic characterization of 3 virus isolates from wild birds and poultry (backyard and commercial farm sectors) showed high nucleotide similarity among the HA, NA, M, and NS gene segments of the three Egyptian HPAI H5N8 viruses, indicating that they are descendants of a common ancestral virus. However, the analyzed Egyptian H5N8 viruses revealed distinct genotypes involving different origins of the PB2, PB1, PA and/or NP segments. In genotype-1 represented by strain A/common-coot/Egypt/CA285/2016 the PB2 and NP segments showed closest relationship to H5N6 and H6N2 viruses, recently detected in Italy. The second is replacement of PB1 and NP genes A novel reassortant, represented by strain A/duck/Egypt/SS19/2017, showed an exchange of PB1 and NP genes which might have originated from H6N8 or H1N1 and H6N2 viruses. Finally, replacement of PA and NP genes characterized strain A/duck/Egypt/F446/2017. Bayesian phylogeographic analyses revealed that Egyptian H5N8 viruses are highly likely derived from Russian 2016 HPAI H5N8 virus (A/great_crested_grebe/Uvs-Nuur_Lake/341/2016 (H5N8)) and the reassortment likely occurred before incursion to Egypt.
Collapse
|
20
|
Wang Z, Hall B, Xu J, Shi X. A Sparse Learning Framework for Joint Effect Analysis of Copy Number Variants. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2017; 14:1013-1027. [PMID: 28991724 DOI: 10.1109/tcbb.2015.2462332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Copy number variants (CNVs), including large deletions and duplications, represent an unbalanced change of DNA segments. Abundant in human genomes, CNVs contribute to a large proportion of human genetic diversity, with impact on many human phenotypes. Although recent advances in genetic studies have shed light on the impact of individual CNVs on different traits, the analysis of joint effect of multiple interactive CNVs lags behind from many perspectives. A primary reason is that the large number of CNV combinations and interactions in the human genome make it computationally challenging to perform such joint analysis. To address this challenge, we developed a novel sparse learning framework that combines sparse learning with biological networks to identify interacting CNVs with joint effect on particular traits. We showed that our approach performs well in identifying CNVs with joint phenotypic effect using simulated data. Applied to a real human genomic dataset from the 1,000 Genomes Project, our approach identified multiple CNVs that collectively contribute to population differentiation. We found a set of multiple CNVs that have joint effect in different populations, and affect gene expression differently in distinct populations. These results provided a collection of CNVs that likely have downstream biomedical implications in individuals from diverse population backgrounds.
Collapse
|
21
|
Yao Y, Li X, Liao B, Huang L, He P, Wang F, Yang J, Sun H, Zhao Y, Yang J. Predicting influenza antigenicity from Hemagglutintin sequence data based on a joint random forest method. Sci Rep 2017; 7:1545. [PMID: 28484283 PMCID: PMC5431489 DOI: 10.1038/s41598-017-01699-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/03/2017] [Indexed: 11/09/2022] Open
Abstract
Timely identification of emerging antigenic variants is critical to influenza vaccine design. The accuracy of a sequence-based antigenic prediction method relies on the choice of amino acids substitution matrices. In this study, we first compared a comprehensive 95 substitution matrices reflecting various amino acids properties in predicting the antigenicity of influenza viruses by a random forest model. We then proposed a novel algorithm called joint random forest regression (JRFR) to jointly consider top substitution matrices. We applied JRFR to human H3N2 seasonal influenza data from 1968 to 2003. A 10-fold cross-validation shows that JRFR outperforms other popular methods in predicting antigenic variants. In addition, our results suggest that structure features are most relevant to influenza antigenicity. By restricting the analysis to data involving two adjacent antigenic clusters, we inferred a few key amino acids mutation driving the 11 historical antigenic drift events, pointing to experimentally validated mutations. Finally, we constructed an antigenic cartography of all H3N2 viruses with hemagglutinin (the glycoprotein on the surface of the influenza virus responsible for its binding to host cells) sequence available from NCBI flu database, and showed an overall correspondence and local inconsistency between genetic and antigenic evolution of H3N2 influenza viruses.
Collapse
Affiliation(s)
- Yuhua Yao
- School of Mathematics and Statistics, Hainan Normal University, Haikou, 570100, P. R. China
| | - Xianhong Li
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Bo Liao
- College of Information Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Li Huang
- College of Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Pingan He
- College of Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Fayou Wang
- School of Mathematics and Information Science, Henan Polytechnic University, Henan, 454000, P. R. China
| | - Jiasheng Yang
- Department of Civil and Environmental Engineering, National Universality of Singapore, Singapore, 119077, Singapore
| | - Hailiang Sun
- College of Veterinary Medicine, Huanan Agricultural University, Guangzhou, 510000, P. R. China
| | - Yulong Zhao
- Department of Mathematics, City University of Hong Kong, Hong Kong, P. R. China.
| | - Jialiang Yang
- School of Mathematics and Statistics, Hainan Normal University, Haikou, 570100, P. R. China. .,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, 10029, USA.
| |
Collapse
|
22
|
Guo X, Zhang J, Cai Z, Du DZ, Pan Y. Searching Genome-Wide Multi-Locus Associations for Multiple Diseases Based on Bayesian Inference. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2017; 14:600-610. [PMID: 26887006 DOI: 10.1109/tcbb.2016.2527648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Taking the advantage of high-throughput single nucleotide polymorphism (SNP) genotyping technology, large genome-wide association studies (GWASs) have been considered to hold promise for unraveling complex relationships between genotypes and phenotypes. Current multi-locus-based methods are insufficient to detect interactions with diverse genetic effects on multifarious diseases. Also, statistic tests for high-order epistasis ( ≥ 2 SNPs) raise huge computational and analytical challenges because the computation increases exponentially as the growth of the cardinality of SNPs combinations. In this paper, we provide a simple, fast and powerful method, named DAM, using Bayesian inference to detect genome-wide multi-locus epistatic interactions in multiple diseases. Experimental results on simulated data demonstrate that our method is powerful and efficient. We also apply DAM on two GWAS datasets from WTCCC, i.e., Rheumatoid Arthritis and Type 1 Diabetes, and identify some novel findings. Therefore, we believe that our method is suitable and efficient for the full-scale analysis of multi-disease-related interactions in GWASs.
Collapse
|
23
|
Different cross protection scopes of two avian influenza H5N1 vaccines against infection of layer chickens with a heterologous highly pathogenic virus. Res Vet Sci 2017; 114:143-152. [PMID: 28411501 DOI: 10.1016/j.rvsc.2017.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 11/22/2022]
Abstract
Avian influenza (AI) virus strains vary in antigenicity, and antigenic differences between circulating field virus and vaccine virus will affect the effectiveness of vaccination of poultry. Antigenic relatedness can be assessed by measuring serological cross-reactivity using haemagglutination inhibition (HI) tests. Our study aims to determine the relation between antigenic relatedness expressed by the Archetti-Horsfall ratio, and reduction of virus transmission of highly pathogenic H5N1 AI strains among vaccinated layers. Two vaccines were examined, derived from H5N1 AI virus strains A/Ck/WJava/Sukabumi/006/2008 and A/Ck/CJava/Karanganyar/051/2009. Transmission experiments were carried out in four vaccine and two control groups, with six sets of 16 specified pathogen free (SPF) layer chickens. Birds were vaccinated at 4weeks of age with one strain and challenge-infected with the homologous or heterologous strain at 8weeks of age. No transmission or virus shedding occurred in groups challenged with the homologous strain. In the group vaccinated with the Karanganyar strain, high cross-HI responses were observed, and no transmission of the Sukabumi strain occurred. However, in the group vaccinated with the Sukabumi strain, cross-HI titres were low, virus shedding was not reduced, and multiple transmissions to contact birds were observed. This study showed large differences in cross-protection of two vaccines based on two different highly pathogenic H5N1 virus strains. This implies that extrapolation of in vitro data to clinical protection and reduction of virus transmission might not be straightforward.
Collapse
|
24
|
Wong FYK, Phommachanh P, Kalpravidh W, Chanthavisouk C, Gilbert J, Bingham J, Davies KR, Cooke J, Eagles D, Phiphakhavong S, Shan S, Stevens V, Williams DT, Bounma P, Khambounheuang B, Morrissy C, Douangngeun B, Morzaria S. Reassortant highly pathogenic influenza A(H5N6) virus in Laos. Emerg Infect Dis 2015; 21:511-6. [PMID: 25695754 PMCID: PMC4344285 DOI: 10.3201/eid2103.141488] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In March 2014, avian influenza in poultry in Laos was caused by an emergent influenza A(H5N6) virus. Genetic analysis indicated that the virus had originated from reassortment of influenza A(H5N1) clade 2.3.2.1b, variant clade 2.3.4, and influenza A(H6N6) viruses that circulate broadly in duck populations in southern and eastern China.
Collapse
|
25
|
Development of broadly reactive H5N1 vaccine against different Egyptian H5N1 viruses. Vaccine 2015; 33:2670-7. [DOI: 10.1016/j.vaccine.2015.04.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 03/18/2015] [Accepted: 04/10/2015] [Indexed: 11/24/2022]
|
26
|
Kobayashi-Ishihara M, Takahashi H, Ohnishi K, Nishimura K, Terahara K, Ato M, Itamura S, Kageyama T, Tsunetsugu-Yokota Y. Broad cross-reactive epitopes of the H5N1 influenza virus identified by murine antibodies against the A/Vietnam/1194/2004 hemagglutinin. PLoS One 2014; 9:e99201. [PMID: 24945805 PMCID: PMC4063728 DOI: 10.1371/journal.pone.0099201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/12/2014] [Indexed: 01/07/2023] Open
Abstract
There is an urgent need for a rapid diagnostic system to detect the H5 subtype of the influenza A virus. We previously developed monoclonal antibodies (mAbs) against the H5 hemagglutinin (HA) for use in a rapid diagnostic kit. In this study, we determined the epitopes of the anti-H5 HA murine mAbs OM-b, AY-2C2, and YH-1A1. Binding assays of the mAbs to different strains of H5 HAs indicated that OM-b and AY-2C2 cross-reacted with HAs from clades 1, 2.1.3.2, 2.2, and 2.3.4, whereas YH-1A1 failed to bind to those of clades 2.1.3.2 and 2.3.4. HA chimeras revealed that the epitopes for each of the mAbs were in the HA1 region. Analysis of escape mutants revealed that OM-b and AY-2C2 mAbs interacted mainly with amino acid residues D43 and G46, and the YH-1A1 mAb interacted with G139 and K or R140 of H5 HA. Multiple alignments of H5 HA protein sequences showed that D43 and G46 were very conserved among H5N1 HAs, except those in clade 2.2.1 and clade 7 (88.7%). The epitope for YH-1A1 mAb was highly variable in the HAs of H5N1, although it was well conserved in those of H5N2-N9. The OM-b and AY-2C2 mAbs could bind to the HAs of clades 1.1 and 2.3.2.1 that are currently epidemic in Asia, and we conclude that these would be effective for the detection of H5N1 infections in this region.
Collapse
Affiliation(s)
- Mie Kobayashi-Ishihara
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Hitoshi Takahashi
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Kazuo Ohnishi
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Kengo Nishimura
- Tsuruga Institute of Biotechnology, Toyobo, Co., Ltd., Tsuruga, Fukui, Japan
| | - Kazutaka Terahara
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Manabu Ato
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Shigeyuki Itamura
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Tsutomu Kageyama
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Yasuko Tsunetsugu-Yokota
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
- Department of Medical Technology, School of Human Sciences, Tokyo University of Technology, Ohta-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
27
|
El-Shesheny R, Kandeil A, Bagato O, Maatouq AM, Moatasim Y, Rubrum A, Song MS, Webby RJ, Ali MA, Kayali G. Molecular characterization of avian influenza H5N1 virus in Egypt and the emergence of a novel endemic subclade. J Gen Virol 2014; 95:1444-1463. [PMID: 24722680 DOI: 10.1099/vir.0.063495-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Clade 2.2 highly pathogenic H5N1 viruses have been in continuous circulation in Egyptian poultry since 2006. Their persistence caused significant genetic drift that led to the reclassification of these viruses into subclades 2.2.1 and 2.2.1.1. Here, we conducted full-genome sequence and phylogenetic analyses of 45 H5N1 isolated during 2006-2013 through systematic surveillance in Egypt, and 53 viruses that were sequenced previously and available in the public domain. Results indicated that H5N1 viruses in Egypt continue to evolve and a new distinct cluster has emerged. Mutations affecting viral virulence, pathogenicity, transmission, receptor-binding preference and drug resistance were studied. In light of our findings that H5N1 in Egypt continues to evolve, surveillance and molecular studies need to be sustained.
Collapse
Affiliation(s)
| | | | | | | | | | - Adam Rubrum
- St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Min-Suk Song
- St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Richard J Webby
- St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | - Ghazi Kayali
- St Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
28
|
Ye J, Xu Y, Harris J, Sun H, Bowman AS, Cunningham F, Cardona C, Yoon KJ, Slemons RD, Wan XF. Mutation from arginine to lysine at the position 189 of hemagglutinin contributes to the antigenic drift in H3N2 swine influenza viruses. Virology 2013; 446:225-9. [PMID: 24074585 PMCID: PMC4161209 DOI: 10.1016/j.virol.2013.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 05/30/2013] [Accepted: 08/06/2013] [Indexed: 11/24/2022]
Abstract
Two distinct antigenic clusters were previously identified among the H3N2 swine influenza A viruses (IAVs) and were designated H3N2SIV-alpha and H3N2SIV-beta (Feng et al., 2013. Journal of Virology 87 (13), 7655-7667). A consistent mutation was observed at the position 189 of hemagglutinin (R189K) between H3N2SIV-alpha and H3N2SIV-beta fair isolates. To evaluate the contribution of R189K mutation to the antigenic drift from H3N2SIV-alpha to H3N2SIV-beta, four reassortant viruses with 189R or 189K were generated. The antigenic cartography demonstrated that the R189K mutation in the hemagglutinin of H3N2 IAV contributed to the antigenic drift, separating these viruses into H3N2SIV-alpha to H3N2SIV-beta. This R189K mutation was also found to contribute to the cross-reaction with several ferret sera raised against historical human IAVs with hemagglutinin carrying 189K. This study suggests that the R189K mutation plays a vital role in the antigenicity of swine and human H3N2 IAVs and identification of this antigenic determinant will help us rapidly identify antigenic variants in influenza surveillance.
Collapse
Affiliation(s)
- Jianqiang Ye
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, the United States
| | - Yifei Xu
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, the United States
| | - Jillian Harris
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, the United States
| | - Hailiang Sun
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, the United States
| | - Andrew S. Bowman
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, the United States
| | - Fred Cunningham
- USDA/APHIS/WS, National Wildlife Research Center, Mississippi Field Station, Mississippi State, MS 39762, the United States
| | - Carol Cardona
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, the United States
| | - Kyoungjin J. Yoon
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, the United States
| | - Richard D. Slemons
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, the United States
| | - Xiu-Feng Wan
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, the United States
| |
Collapse
|
29
|
Shore DA, Yang H, Balish AL, Shepard SS, Carney PJ, Chang JC, Davis CT, Donis RO, Villanueva JM, Klimov AI, Stevens J. Structural and antigenic variation among diverse clade 2 H5N1 viruses. PLoS One 2013; 8:e75209. [PMID: 24086467 PMCID: PMC3785507 DOI: 10.1371/journal.pone.0075209] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 08/10/2013] [Indexed: 12/15/2022] Open
Abstract
Antigenic variation among circulating H5N1 highly pathogenic avian influenza A viruses mandates the continuous production of strain-specific pre-pandemic vaccine candidates and represents a significant challenge for pandemic preparedness. Here we assessed the structural, antigenic and receptor-binding properties of three H5N1 HPAI virus hemagglutinins, which were recently selected by the WHO as vaccine candidates [A/Egypt/N03072/2010 (Egypt10, clade 2.2.1), A/Hubei/1/2010 (Hubei10, clade 2.3.2.1) and A/Anhui/1/2005 (Anhui05, clade 2.3.4)]. These analyses revealed that antigenic diversity among these three isolates was restricted to changes in the size and charge of amino acid side chains at a handful of positions, spatially equivalent to the antigenic sites identified in H1 subtype viruses circulating among humans. All three of the H5N1 viruses analyzed in this study were responsible for fatal human infections, with the most recently-isolated strains, Hubei10 and Egypt10, containing multiple residues in the receptor-binding site of the HA, which were suspected to enhance mammalian transmission. However, glycan-binding analyses demonstrated a lack of binding to human α2-6-linked sialic acid receptor analogs for all three HAs, reinforcing the notion that receptor-binding specificity contributes only partially to transmissibility and pathogenesis of HPAI viruses and suggesting that changes in host specificity must be interpreted in the context of the host and environmental factors, as well as the virus as a whole. Together, our data reveal structural linkages with phylogenetic and antigenic analyses of recently emerged H5N1 virus clades and should assist in interpreting the significance of future changes in antigenic and receptor-binding properties.
Collapse
Affiliation(s)
- David A. Shore
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Hua Yang
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Amanda L. Balish
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Samuel S. Shepard
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Paul J. Carney
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jessie C. Chang
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Charles T. Davis
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ruben O. Donis
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Julie M. Villanueva
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Alexander I. Klimov
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - James Stevens
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
30
|
Ibrahim M, Eladl AH, Sultan HA, Arafa AS, Abdel Razik AG, Abd El Rahman S, El-Azm KIA, Saif YM, Lee CW. Antigenic analysis of H5N1 highly pathogenic avian influenza viruses circulating in Egypt (2006-2012). Vet Microbiol 2013; 167:651-61. [PMID: 24139721 DOI: 10.1016/j.vetmic.2013.09.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 09/10/2013] [Accepted: 09/17/2013] [Indexed: 11/25/2022]
Abstract
The highly pathogenic avian influenza (HPAI) H5N1 in Egypt circulated continuously after its introduction in February 2006 with substantial economic losses and frequent human infections. Phylogenetic analysis of the available HA sequences revealed the presence of two main sublineages; the classic 2.2.1 and the variant 2.2.1.1. The classic 2.2.1 had subdivided into two clusters of viruses; cluster C1 contained the originally introduced virus and isolates from 2006 to 2009 and cluster C2 emerged in 2007 and continues to circulate. The variant 2.2.1.1 represents the isolates mainly from chickens and subdivided into two clusters; cluster V1 contains isolates from 2007 to 2009 and cluster V2 contains isolates from 2008 to 2011. Sequence analysis revealed 28 amino acid mutations in the previously reported antigenic sites and high evolution rate which may be due to selective pressure from vaccination and/or natural infection. Antigenic analysis of 18 H5N1 isolates from 2006 to 2012 that represent different clusters was conducted using hemagglutination inhibition (HI) and virus neutralization (VN) assays using hyperimmune sera produced by immunizing SPF chickens with inactivated whole-virus. Antigenic relatedness of ancestral Egyptian H5N1 isolate (459-3/06) with other isolates ranged from 30.7% to 79.1% indicating significant antigenic drift of the H5N1 viruses from the ancestral strains. The antigenic relatedness between C2 and V2 clusters ranged from 28.9% to 68% supporting the need for vaccine seed strains from both clusters. Interestingly, A/CK/EG/1709-6/2008 H5N1 strain showed a broad cross reactivity against viruses in different H5N1 clusters (antigenic relatedness ranged from 63.9% to 85.8%) demonstrating a potential candidate as a vaccine strain. Antigenic cartography which facilitates a quantitative interpretation and easy visualization of serological data was constructed based on HI results and further demonstrated the several antigenic groups among Egyptian H5N1 viruses. In conclusion, the cross reactivity between the co-circulating H5N1 strains may not be adequate for protection against each other and it is recommended to test vaccines that contain isolates from different antigenic groups in experimental infection trials for the selection of vaccine seed strain. Furthermore, the continuous monitoring for detecting the emerging variants followed by detailed antigenic analysis for updating vaccines is warranted.
Collapse
Affiliation(s)
- Mahmoud Ibrahim
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, United States; Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Sadat City, Menoufia, Egypt
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Diabetic retinopathy risk prediction for fundus examination using sparse learning: a cross-sectional study. BMC Med Inform Decis Mak 2013; 13:106. [PMID: 24033926 PMCID: PMC3847617 DOI: 10.1186/1472-6947-13-106] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 09/02/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Blindness due to diabetic retinopathy (DR) is the major disability in diabetic patients. Although early management has shown to prevent vision loss, diabetic patients have a low rate of routine ophthalmologic examination. Hence, we developed and validated sparse learning models with the aim of identifying the risk of DR in diabetic patients. METHODS Health records from the Korea National Health and Nutrition Examination Surveys (KNHANES) V-1 were used. The prediction models for DR were constructed using data from 327 diabetic patients, and were validated internally on 163 patients in the KNHANES V-1. External validation was performed using 562 diabetic patients in the KNHANES V-2. The learning models, including ridge, elastic net, and LASSO, were compared to the traditional indicators of DR. RESULTS Considering the Bayesian information criterion, LASSO predicted DR most efficiently. In the internal and external validation, LASSO was significantly superior to the traditional indicators by calculating the area under the curve (AUC) of the receiver operating characteristic. LASSO showed an AUC of 0.81 and an accuracy of 73.6% in the internal validation, and an AUC of 0.82 and an accuracy of 75.2% in the external validation. CONCLUSION The sparse learning model using LASSO was effective in analyzing the epidemiological underlying patterns of DR. This is the first study to develop a machine learning model to predict DR risk using health records. LASSO can be an excellent choice when both discriminative power and variable selection are important in the analysis of high-dimensional electronic health records.
Collapse
|
32
|
Krejcova L, Hynek D, Kopel P, Merlos Rodrigo MA, Adam V, Hubalek J, Babula P, Trnkova L, Kizek R. Development of a magnetic electrochemical bar code array for point mutation detection in the H5N1 neuraminidase gene. Viruses 2013; 5:1719-39. [PMID: 23860384 PMCID: PMC3738958 DOI: 10.3390/v5071719] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/10/2013] [Accepted: 07/01/2013] [Indexed: 12/29/2022] Open
Abstract
Since its first official detection in the Guangdong province of China in 1996, the highly pathogenic avian influenza virus of H5N1 subtype (HPAI H5N1) has reportedly been the cause of outbreaks in birds in more than 60 countries, 24 of which were European. The main issue is still to develop effective antiviral drugs. In this case, single point mutation in the neuraminidase gene, which causes resistance to antiviral drug and is, therefore, subjected to many studies including ours, was observed. In this study, we developed magnetic electrochemical bar code array for detection of single point mutations (mismatches in up to four nucleotides) in H5N1 neuraminidase gene. Paramagnetic particles Dynabeads® with covalently bound oligo (dT)25 were used as a tool for isolation of complementary H5N1 chains (H5N1 Zhejin, China and Aichi). For detection of H5N1 chains, oligonucleotide chains of lengths of 12 (+5 adenine) or 28 (+5 adenine) bp labeled with quantum dots (CdS, ZnS and/or PbS) were used. Individual probes hybridized to target molecules specifically with efficiency higher than 60%. The obtained signals identified mutations present in the sequence. Suggested experimental procedure allows obtaining further information from the redox signals of nucleic acids. Moreover, the used biosensor exhibits sequence specificity and low limits of detection of subnanogram quantities of target nucleic acids.
Collapse
Affiliation(s)
- Ludmila Krejcova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic; E-Mails: (L.K.); (D.H.); (P.K.); (M.A.M.R.); (V.A.); (L.T.)
| | - David Hynek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic; E-Mails: (L.K.); (D.H.); (P.K.); (M.A.M.R.); (V.A.); (L.T.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic; E-Mails: (J.H.); (P.B.)
| | - Pavel Kopel
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic; E-Mails: (L.K.); (D.H.); (P.K.); (M.A.M.R.); (V.A.); (L.T.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic; E-Mails: (J.H.); (P.B.)
| | - Miguel Angel Merlos Rodrigo
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic; E-Mails: (L.K.); (D.H.); (P.K.); (M.A.M.R.); (V.A.); (L.T.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic; E-Mails: (J.H.); (P.B.)
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic; E-Mails: (L.K.); (D.H.); (P.K.); (M.A.M.R.); (V.A.); (L.T.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic; E-Mails: (J.H.); (P.B.)
| | - Jaromir Hubalek
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic; E-Mails: (J.H.); (P.B.)
- Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 10, Brno CZ-616 00, Czech Republic
| | - Petr Babula
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic; E-Mails: (J.H.); (P.B.)
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1-3, Brno CZ-612 42, Czech Republic
| | - Libuse Trnkova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic; E-Mails: (L.K.); (D.H.); (P.K.); (M.A.M.R.); (V.A.); (L.T.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic; E-Mails: (J.H.); (P.B.)
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, Brno CZ-611 37, Czech Republic
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic; E-Mails: (L.K.); (D.H.); (P.K.); (M.A.M.R.); (V.A.); (L.T.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic; E-Mails: (J.H.); (P.B.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +420-545-133-350; Fax: +420-545-212-044
| |
Collapse
|
33
|
Sun H, Yang J, Zhang T, Long LP, Jia K, Yang G, Webby RJ, Wan XF. Using sequence data to infer the antigenicity of influenza virus. mBio 2013; 4:e00230-13. [PMID: 23820391 PMCID: PMC3705446 DOI: 10.1128/mbio.00230-13] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/10/2013] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The efficacy of current influenza vaccines requires a close antigenic match between circulating and vaccine strains. As such, timely identification of emerging influenza virus antigenic variants is central to the success of influenza vaccination programs. Empirical methods to determine influenza virus antigenic properties are time-consuming and mid-throughput and require live viruses. Here, we present a novel, experimentally validated, computational method for determining influenza virus antigenicity on the basis of hemagglutinin (HA) sequence. This method integrates a bootstrapped ridge regression with antigenic mapping to quantify antigenic distances by using influenza HA1 sequences. Our method was applied to H3N2 seasonal influenza viruses and identified the 13 previously recognized H3N2 antigenic clusters and the antigenic drift event of 2009 that led to a change of the H3N2 vaccine strain. IMPORTANCE This report supplies a novel method for quantifying antigenic distance and identifying antigenic variants using sequences alone. This method will be useful in influenza vaccine strain selection by significantly reducing the human labor efforts for serological characterization and will increase the likelihood of correct influenza vaccine candidate selection.
Collapse
Affiliation(s)
- Hailiang Sun
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Jialiang Yang
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Tong Zhang
- Department of Statistics, Rutgers University, Piscataway, New Jersey, USA
| | - Li-Ping Long
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Kun Jia
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Guohua Yang
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Xiu-Feng Wan
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| |
Collapse
|
34
|
Halbherr SJ, Brostoff T, Tippenhauer M, Locher S, Berger Rentsch M, Zimmer G. Vaccination with recombinant RNA replicon particles protects chickens from H5N1 highly pathogenic avian influenza virus. PLoS One 2013; 8:e66059. [PMID: 23762463 PMCID: PMC3677925 DOI: 10.1371/journal.pone.0066059] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 05/02/2013] [Indexed: 01/17/2023] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIV) of subtype H5N1 not only cause a devastating disease in domestic chickens and turkeys but also pose a continuous threat to public health. In some countries, H5N1 viruses continue to circulate and evolve into new clades and subclades. The rapid evolution of these viruses represents a problem for virus diagnosis and control. In this work, recombinant vesicular stomatitis virus (VSV) vectors expressing HA of subtype H5 were generated. To comply with biosafety issues the G gene was deleted from the VSV genome. The resulting vaccine vector VSV*ΔG(HA) was propagated on helper cells providing the VSV G protein in trans. Vaccination of chickens with a single intramuscular dose of 2×10⁸ infectious replicon particles without adjuvant conferred complete protection from lethal H5N1 infection. Subsequent application of the same vaccine strongly boosted the humoral immune response and completely prevented shedding of challenge virus and transmission to sentinel birds. The vaccine allowed serological differentiation of infected from vaccinated animals (DIVA) by employing a commercially available ELISA. Immunized chickens produced antibodies with neutralizing activity against multiple H5 viruses representing clades 1, 2.2, 2.5, and low-pathogenic avian influenza viruses (classical clade). Studies using chimeric H1/H5 hemagglutinins showed that the neutralizing activity was predominantly directed against the globular head domain. In summary, these results suggest that VSV replicon particles are safe and potent DIVA vaccines that may help to control avian influenza viruses in domestic poultry.
Collapse
Affiliation(s)
- Stefan J Halbherr
- Institute of Virology and Immunology-IVI, Mittelhäusern, Switzerland
| | | | | | | | | | | |
Collapse
|
35
|
Noisumdaeng P, Pooruk P, Kongchanagul A, Assanasen S, Kitphati R, Auewarakul P, Puthavathana P. Biological properties of H5 hemagglutinin expressed by vaccinia virus vector and its immunological reactivity with human sera. Viral Immunol 2013; 26:49-59. [PMID: 23374152 DOI: 10.1089/vim.2012.0055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A recombinant vaccinia virus harboring the full length hemagglutinin (HA) gene derived from a highly pathogenic avian influenza A/Thailand/1(KAN-1)/2004 (H5N1) virus (rVac-H5 HA virus) was constructed. The immunogenicity of the expressed HA protein was characterized using goat antiserum, mouse monoclonal antibody, and human sera. The expressed HA protein localized both in the cytoplasm and on the cytoplasmic membrane of the thymidine kinase negative cells infected with the rVac-H5 HA virus, as determined by immunofluorescence assay. Western blot analysis demonstrated that the rVac-H5 HA protein was post-translationally processed by proteolytic cleavage of the HA0 precursor into HA1 and HA2 domains; and all of these HA forms were immunogenic in BALB/c mice. The molecular weight (MW) of each HA domain was the same as the wild-type H5 HA produced in Madin-Darby canine kidney cells infected with the H5N1 virus, but was higher than that expressed by a baculovirus-insect cell system. Sera from all H5N1 survivors reacted to HA0, HA1, and HA2 domains; whereas sera from H5N1-uninfected subjects reacted to the HA2 domain only, but not to HA0 or HA1, indicating that some cross-subtypic immunity exists in the general population. There was a lot-to-lot variation of the recombinant HA produced in the baculovirus-insect cell system that might affect the detection rate of antibody directed against certain HA domains.
Collapse
Affiliation(s)
- Pirom Noisumdaeng
- Department of Microbiology, Mahidol University, Bangkok-noi, Bangkok, Thailand
| | | | | | | | | | | | | |
Collapse
|