1
|
Math BA, Waibl F, Lamp LM, Fernández‐Quintero ML, Liedl KR. Cross-linking disulfide bonds govern solution structures of diabodies. Proteins 2023; 91:1316-1328. [PMID: 37376973 PMCID: PMC10952579 DOI: 10.1002/prot.26509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/19/2023] [Indexed: 06/29/2023]
Abstract
In the last years, antibodies have emerged as a promising new class of therapeutics, due to their combination of high specificity with long serum half-life and low risk of side-effects. Diabodies are a popular novel antibody format, consisting of two Fv domains connected with short linkers. Like IgG antibodies, they simultaneously bind two target proteins. However, they offer altered properties, given their smaller size and higher rigidity. In this study, we conducted the-to our knowledge-first molecular dynamics (MD) simulations of diabodies and find a surprisingly high conformational flexibility in the relative orientation of the two Fv domains. We observe rigidifying effects through the introduction of disulfide bonds in the Fv -Fv interface and characterize the effect of different disulfide bond locations on the conformation. Additionally, we compare VH -VL orientations and paratope dynamics between diabodies and an antigen binding fragment (Fab) of the same sequence. We find mostly consistent structures and dynamics, indicating similar antigen binding properties. The most significant differences can be found within the CDR-H2 loop dynamics. Of all CDR loops, the CDR-H2 is located closest to the artificial Fv -Fv interface. All examined diabodies show similar VH -VL orientations, Fv -Fv packing and CDR loop conformations. However, the variant with a P14C-K64C disulfide bond differs most from the Fab in our measures, including the CDR-H3 loop conformational ensemble. This suggests altered antigen binding properties and underlines the need for careful validation of the disulfide bond locations in diabodies.
Collapse
Affiliation(s)
- Barbara A. Math
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnsbruckAustria
| | - Franz Waibl
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnsbruckAustria
| | - Leonida M. Lamp
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnsbruckAustria
| | - Monica L. Fernández‐Quintero
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnsbruckAustria
| | - Klaus R. Liedl
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnsbruckAustria
| |
Collapse
|
2
|
Tsuboyama K, Dauparas J, Chen J, Laine E, Mohseni Behbahani Y, Weinstein JJ, Mangan NM, Ovchinnikov S, Rocklin GJ. Mega-scale experimental analysis of protein folding stability in biology and design. Nature 2023; 620:434-444. [PMID: 37468638 PMCID: PMC10412457 DOI: 10.1038/s41586-023-06328-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/14/2023] [Indexed: 07/21/2023]
Abstract
Advances in DNA sequencing and machine learning are providing insights into protein sequences and structures on an enormous scale1. However, the energetics driving folding are invisible in these structures and remain largely unknown2. The hidden thermodynamics of folding can drive disease3,4, shape protein evolution5-7 and guide protein engineering8-10, and new approaches are needed to reveal these thermodynamics for every sequence and structure. Here we present cDNA display proteolysis, a method for measuring thermodynamic folding stability for up to 900,000 protein domains in a one-week experiment. From 1.8 million measurements in total, we curated a set of around 776,000 high-quality folding stabilities covering all single amino acid variants and selected double mutants of 331 natural and 148 de novo designed protein domains 40-72 amino acids in length. Using this extensive dataset, we quantified (1) environmental factors influencing amino acid fitness, (2) thermodynamic couplings (including unexpected interactions) between protein sites, and (3) the global divergence between evolutionary amino acid usage and protein folding stability. We also examined how our approach could identify stability determinants in designed proteins and evaluate design methods. The cDNA display proteolysis method is fast, accurate and uniquely scalable, and promises to reveal the quantitative rules for how amino acid sequences encode folding stability.
Collapse
Affiliation(s)
- Kotaro Tsuboyama
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- PRESTO, Japan Science and Technology Agency, Tokyo, Japan
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Justas Dauparas
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jonathan Chen
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Elodie Laine
- Sorbonne Université, CNRS, IBPS, Laboratory of Computational and Quantitative Biology (LCQB), UMR 7238, Paris, France
| | - Yasser Mohseni Behbahani
- Sorbonne Université, CNRS, IBPS, Laboratory of Computational and Quantitative Biology (LCQB), UMR 7238, Paris, France
| | - Jonathan J Weinstein
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Niall M Mangan
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA
| | - Sergey Ovchinnikov
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA, USA
| | - Gabriel J Rocklin
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
3
|
Alonso Villela SM, Kraïem-Ghezal H, Bouhaouala-Zahar B, Bideaux C, Aceves Lara CA, Fillaudeau L. Production of recombinant scorpion antivenoms in E. coli: current state and perspectives. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12578-1. [PMID: 37199752 DOI: 10.1007/s00253-023-12578-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
Scorpion envenomation is a serious health problem in tropical and subtropical zones. The access to scorpion antivenom is sometimes limited in availability and specificity. The classical production process is cumbersome, from the hyper-immunization of the horses to the IgG digestion and purification of the F(ab)'2 antibody fragments. The production of recombinant antibody fragments in Escherichia coli is a popular trend due to the ability of this microbial host to produce correctly folded proteins. Small recombinant antibody fragments, such as single-chain variable fragments (scFv) and nanobodies (VHH), have been constructed to recognize and neutralize the neurotoxins responsible for the envenomation symptoms in humans. They are the focus of interest of the most recent studies and are proposed as potentially new generation of pharmaceuticals for their use in immunotherapy against scorpion stings of the Buthidae family. This literature review comprises the current status on the scorpion antivenom market and the analyses of cross-reactivity of commercial scorpion anti-serum against non-specific scorpion venoms. Recent studies on the production of new recombinant scFv and nanobodies will be presented, with a focus on the Androctonus and Centruroides scorpion species. Protein engineering-based technology could be the key to obtaining the next generation of therapeutics capable of neutralizing and cross-reacting against several types of scorpion venoms. KEY POINTS: • Commercial antivenoms consist of predominantly purified equine F(ab)'2fragments. • Nanobody-based antivenom can neutralize Androctonus venoms and have a low immunogenicity. • Affinity maturation and directed evolution are used to obtain potent scFv families against Centruroides scorpions.
Collapse
Affiliation(s)
| | - Hazar Kraïem-Ghezal
- Laboratoire Des Venins Et Molécules Thérapeutiques, Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur BP74, 1002, Tunis, Tunisia
| | - Balkiss Bouhaouala-Zahar
- Laboratoire Des Venins Et Molécules Thérapeutiques, Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur BP74, 1002, Tunis, Tunisia.
- Faculté de Médecine de Tunis, Université de Tunis El Manar, Tunis, Tunisia.
| | - Carine Bideaux
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | | | - Luc Fillaudeau
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| |
Collapse
|
4
|
Romero-Moreno JA, Serrano-Posada H, Olamendi-Portugal T, Possani LD, Becerril B, Riaño-Umbarila L. Development of a human antibody fragment cross-neutralizing scorpion toxins. Mol Immunol 2023; 155:165-174. [PMID: 36812764 DOI: 10.1016/j.molimm.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
Previously, it was demonstrated that from the single chain fragment variable (scFv) 3F it is possible to generate variants capable of neutralizing the Cn2 and Css2 toxins, as well as their respective venoms (Centruroides noxius and Centruroides suffusus). Despite this success, it has not been easy to modify the recognition of this family of scFvs toward other dangerous scorpion toxins. The analysis of toxin-scFv interactions and in vitro maturation strategies allowed us to propose a new maturation pathway for scFv 3F to broaden recognition toward other Mexican scorpion toxins. From maturation processes against toxins CeII9 from C. elegans and Ct1a from C. tecomanus, the scFv RAS27 was developed. This scFv showed an increased affinity and cross-reactivity for at least 9 different toxins while maintaining recognition for its original target, the Cn2 toxin. In addition, it was confirmed that it can neutralize at least three different toxins. These results constitute an important advance since it was possible to improve the cross-reactivity and neutralizing capacity of the scFv 3F family of antibodies.
Collapse
Affiliation(s)
- José Alberto Romero-Moreno
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca 62250, Mexico
| | - Hugo Serrano-Posada
- Investigador por México, CONACyT-Laboratorio de Biología Sintética, Estructural y Molecular, Laboratorio de Agrobiotecnología, Tecnoparque CLQ, Universidad de Colima, Carretera Los Limones-Loma de Juárez, Colima 28627, Mexico
| | - Timoteo Olamendi-Portugal
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca 62250, Mexico
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca 62250, Mexico
| | - Baltazar Becerril
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca 62250, Mexico.
| | - Lidia Riaño-Umbarila
- Investigadora por México, CONACyT-Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca 62250, Mexico.
| |
Collapse
|
5
|
Valencia-Martínez H, Olamendi-Portugal T, Restano-Cassulini R, Serrano-Posada H, Zamudio F, Possani LD, Riaño-Umbarila L, Becerril B. Characterization of Four Medically Important Toxins from Centruroides huichol Scorpion Venom and Its Neutralization by a Single Recombinant Antibody Fragment. Toxins (Basel) 2022; 14:toxins14060369. [PMID: 35737030 PMCID: PMC9227038 DOI: 10.3390/toxins14060369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
Centruroides huichol scorpion venom is lethal to mammals. Analysis of the venom allowed the characterization of four lethal toxins named Chui2, Chui3, Chui4, and Chui5. scFv 10FG2 recognized well all toxins except Chui5 toxin, therefore a partial neutralization of the venom was observed. Thus, scFv 10FG2 was subjected to three processes of directed evolution and phage display against Chui5 toxin until obtaining scFv HV. Interaction kinetic constants of these scFvs with the toxins were determined by surface plasmon resonance (SPR) as well as thermodynamic parameters of scFv variants bound to Chui5. In silico models allowed to analyze the molecular interactions that favor the increase in affinity. In a rescue trial, scFv HV protected 100% of the mice injected with three lethal doses 50 (LD50) of venom. Moreover, in mix-type neutralization assays, a combination of scFvs HV and 10FG2 protected 100% of mice injected with 5 LD50 of venom with moderate signs of intoxication. The ability of scFv HV to neutralize different toxins is a significant achievement, considering the diversity of the species of Mexican venomous scorpions, so this scFv is a candidate to be part of a recombinant anti-venom against scorpion stings in Mexico.
Collapse
Affiliation(s)
- Hugo Valencia-Martínez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca 62250, Mexico; (H.V.-M.); (T.O.-P.); (R.R.-C.); (F.Z.); (L.D.P.)
| | - Timoteo Olamendi-Portugal
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca 62250, Mexico; (H.V.-M.); (T.O.-P.); (R.R.-C.); (F.Z.); (L.D.P.)
| | - Rita Restano-Cassulini
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca 62250, Mexico; (H.V.-M.); (T.O.-P.); (R.R.-C.); (F.Z.); (L.D.P.)
| | - Hugo Serrano-Posada
- Investigador por México, CONACyT-Laboratorio de Biología Sintética, Estructural y Molecular, Laboratorio de Agrobiotecnología-Tecnoparque CLQ, Universidad de Colima, Carretera Los Limones-Loma de Juárez, Colima 28627, Mexico;
| | - Fernando Zamudio
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca 62250, Mexico; (H.V.-M.); (T.O.-P.); (R.R.-C.); (F.Z.); (L.D.P.)
| | - Lourival D. Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca 62250, Mexico; (H.V.-M.); (T.O.-P.); (R.R.-C.); (F.Z.); (L.D.P.)
| | - Lidia Riaño-Umbarila
- Investigadora por México, CONACyT-Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca 62250, Mexico
- Correspondence: (L.R.-U.); (B.B.); Tel.: +52-(777)-329-1669 (B.B.)
| | - Baltazar Becerril
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca 62250, Mexico; (H.V.-M.); (T.O.-P.); (R.R.-C.); (F.Z.); (L.D.P.)
- Correspondence: (L.R.-U.); (B.B.); Tel.: +52-(777)-329-1669 (B.B.)
| |
Collapse
|
6
|
Fernández-Taboada G, Riaño-Umbarila L, Olvera-Rodríguez A, Gómez-Ramírez IV, Losoya-Uribe LF, Becerril B. The venom of the scorpion Centruroides limpidus, which causes the highest number of stings in Mexico, is neutralized by two recombinant antibody fragments. Mol Immunol 2021; 137:247-255. [PMID: 34298407 DOI: 10.1016/j.molimm.2021.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022]
Abstract
Phage display and directed evolution have made it possible to generate recombinant antibodies in the format of single chain variable fragments (scFvs) capable of neutralizing different toxins and venoms of Mexican scorpions. Despite having managed to neutralize a significant number of venoms, some others have not yet been completely neutralized, due to the diversity of the toxic components present in them. An example is the venom of the scorpion Centruroides limpidus, which contains three toxins of medical importance, called Cll1, Cll2 and Cl13. The first two are neutralized by scFv 10FG2, while Cl13, due to its sequence divergence, was not even recognized. For this reason, the aim of the present work was the generation of a new scFv capable of neutralizing Cl13 toxin and thereby helping to neutralize the whole venom of this scorpion. By hybridoma technology, a monoclonal antibody (mAb B7) was generated, which was able to recognize and partially neutralize Cl13 toxin. From mAb B7, its scFv format was obtained, named scFv B7 and subjected to three cycles of directed evolution. At the end of these processes, scFv 11F which neutralized Cl13 toxin was obtained. This scFv, administered in conjunction with scFv 10FG2, allowed to fully neutralize the whole venom of Centruroides limpidus scorpion.
Collapse
Affiliation(s)
- Guillermo Fernández-Taboada
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 62250, Mexico.
| | - Lidia Riaño-Umbarila
- Cátedra CONACYT, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 62250, Mexico.
| | - Alejandro Olvera-Rodríguez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 62250, Mexico.
| | - Ilse Viridiana Gómez-Ramírez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 62250, Mexico.
| | - Luis Fernando Losoya-Uribe
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 62250, Mexico.
| | - Baltazar Becerril
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 62250, Mexico.
| |
Collapse
|
7
|
van der Kant R, Bauer J, Karow-Zwick AR, Kube S, Garidel P, Blech M, Rousseau F, Schymkowitz J. Adaption of human antibody λ and κ light chain architectures to CDR repertoires. Protein Eng Des Sel 2020; 32:109-127. [PMID: 31535139 PMCID: PMC6908821 DOI: 10.1093/protein/gzz012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/11/2019] [Indexed: 12/16/2022] Open
Abstract
Monoclonal antibodies bind with high specificity to a wide range of diverse antigens, primarily mediated by their hypervariable complementarity determining regions (CDRs). The defined antigen binding loops are supported by the structurally conserved β-sandwich framework of the light chain (LC) and heavy chain (HC) variable regions. The LC genes are encoded by two separate loci, subdividing the entity of antibodies into kappa (LCκ) and lambda (LCλ) isotypes that exhibit distinct sequence and conformational preferences. In this work, a diverse set of techniques were employed including machine learning, force field analysis, statistical coupling analysis and mutual information analysis of a non-redundant antibody structure collection. Thereby, it was revealed how subtle changes between the structures of LCκ and LCλ isotypes increase the diversity of antibodies, extending the predetermined restrictions of the general antibody fold and expanding the diversity of antigen binding. Interestingly, it was found that the characteristic framework scaffolds of κ and λ are stabilized by diverse amino acid clusters that determine the interplay between the respective fold and the embedded CDR loops. In conclusion, this work reveals how antibodies use the remarkable plasticity of the beta-sandwich Ig fold to incorporate a large diversity of CDR loops.
Collapse
Affiliation(s)
- Rob van der Kant
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, Leuven, Belgium.,Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49 Box, B-3000 Leuven, Belgium
| | - Joschka Bauer
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach/Riss, Germany
| | | | - Sebastian Kube
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach/Riss, Germany
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach/Riss, Germany
| | - Michaela Blech
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach/Riss, Germany
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, Leuven, Belgium.,Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49 Box, B-3000 Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, Leuven, Belgium.,Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49 Box, B-3000 Leuven, Belgium
| |
Collapse
|
8
|
Riaño-Umbarila L, Rojas-Trejo VM, Romero-Moreno JA, Costas M, Utrera-Espíndola I, Olamendi-Portugal T, Possani LD, Becerril B. Comparative assessment of the VH-VL and VL-VH orientations of single-chain variable fragments of scorpion toxin-neutralizing antibodies. Mol Immunol 2020; 122:141-147. [PMID: 32361416 DOI: 10.1016/j.molimm.2020.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/03/2020] [Accepted: 04/14/2020] [Indexed: 01/31/2023]
Abstract
The present study evaluated the effect of the change in the orientation of the VH-VL variable domains to VL-VH on the physicochemical and functional properties of two scorpion toxin-neutralizing scFvs. The results showed that the level of expression of proteins obtained from the periplasm of E. coli is the factor mainly affected, either with an increase or decrease in the amount of protein recovered. Likewise, the functional recognition activity in the presence of a denaturing agent showed slight variations in the two orientations. In contrast, recognition and biological activity (neutralizing capacity) are maintained. At the interaction level, the change marginally modified the kinetic association and dissociation constants without significantly modifying the value of the affinity constants. Similarly, it was observed that the thermodynamic stability of the proteins did not show significant variations either. These results contrast with some reports of the effect of changing the orientation of domains, suggesting that it is not possible to predict which orientation of the variable domains of an scFv is more favorable or if they are equivalent, as in the case of scFvs previously matured by directed evolution techniques.
Collapse
Affiliation(s)
- Lidia Riaño-Umbarila
- Cátedra CONACYT, Instituto de Biotecnología-Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos, 62250, Mexico.
| | - Vianey Margarita Rojas-Trejo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 62250, Mexico
| | - José Alberto Romero-Moreno
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 62250, Mexico
| | - Miguel Costas
- Laboratorio de Bio-Fisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Cd. Universitaria, UNAM, Ciudad de México, 04510, Mexico
| | - Irving Utrera-Espíndola
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 62250, Mexico
| | - Timoteo Olamendi-Portugal
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 62250, Mexico
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 62250, Mexico
| | - Baltazar Becerril
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 62250, Mexico.
| |
Collapse
|
9
|
Cnudde T, Lakhrif Z, Bourgoin J, Boursin F, Horiot C, Henriquet C, di Tommaso A, Juste MO, Jiacomini IG, Dimier-Poisson I, Pugnière M, Mévélec MN, Aubrey N. Exploration and Modulation of Antibody Fragment Biophysical Properties by Replacing the Framework Region Sequences. Antibodies (Basel) 2020; 9:E9. [PMID: 32326443 PMCID: PMC7344962 DOI: 10.3390/antib9020009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023] Open
Abstract
In order to increase the successful development of recombinant antibodies and fragments, it seems fundamental to enhance their expression and/or biophysical properties, such as the thermal, chemical, and pH stabilities. In this study, we employed a method bases on replacing the antibody framework region sequences, in order to promote more particularly single-chain Fragment variable (scFv) product quality. We provide evidence that mutations of the VH- C-C' loop might significantly improve the prokaryote production of well-folded and functional fragments with a production yield multiplied by 27 times. Additional mutations are accountable for an increase in the thermal (+19.6 °C) and chemical (+1.9 M) stabilities have also been identified. Furthermore, the hereby-produced fragments have shown to remain stable at a pH of 2.0, which avoids molecule functional and structural impairments during the purification process. Lastly, this study provides relevant information to the understanding of the relationship between the antibodies amino acid sequences and their respective biophysical properties.
Collapse
Affiliation(s)
- Thomas Cnudde
- INRAE, ISP, Université de Tours, F-37000 Tours, France; (T.C.); (Z.L.)
| | - Zineb Lakhrif
- INRAE, ISP, Université de Tours, F-37000 Tours, France; (T.C.); (Z.L.)
| | - Justine Bourgoin
- INRAE, ISP, Université de Tours, F-37000 Tours, France; (T.C.); (Z.L.)
| | - Fanny Boursin
- INRAE, ISP, Université de Tours, F-37000 Tours, France; (T.C.); (Z.L.)
| | - Catherine Horiot
- INRAE, ISP, Université de Tours, F-37000 Tours, France; (T.C.); (Z.L.)
| | - Corinne Henriquet
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, U1194, Université Montpellier, ICM Institut Régional du Cancer, 34090 Montpellier, France
| | - Anne di Tommaso
- INRAE, ISP, Université de Tours, F-37000 Tours, France; (T.C.); (Z.L.)
| | | | - Isabella Gizzi Jiacomini
- Laboratório de Imunoquímica, Departamento de Patologia Básica, Universidade Federal do Paraná, Curitiba 81530, PR, Brazil
| | | | - Martine Pugnière
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, U1194, Université Montpellier, ICM Institut Régional du Cancer, 34090 Montpellier, France
| | | | - Nicolas Aubrey
- INRAE, ISP, Université de Tours, F-37000 Tours, France; (T.C.); (Z.L.)
| |
Collapse
|
10
|
Ling WL, Lua WH, Gan SKE. Sagacity in antibody humanization for therapeutics, diagnostics and research purposes: considerations of antibody elements and their roles. Antib Ther 2020; 3:71-79. [PMID: 33928226 PMCID: PMC7990220 DOI: 10.1093/abt/tbaa005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/27/2020] [Accepted: 04/07/2020] [Indexed: 12/15/2022] Open
Abstract
The humanization of antibodies for therapeutics is a critical process that can determine the success of antibody drug development. However, the science underpinning this process remains elusive with different laboratories having very different methods. Well-funded laboratories can afford automated high-throughput screening methods to derive their best binder utilizing a very expensive initial set of equipment affordable only to a few. Often within these high-throughput processes, only standard key parameters, such as production, binding and aggregation are analyzed. Given the lack of suitable animal models, it is only at clinical trials that immunogenicity and allergy adverse effects are detected through anti-human antibodies as per FDA guidelines. While some occurrences that slip through can be mitigated by additional desensitization protocols, such adverse reactions to grafted humanized antibodies can be prevented at the humanization step. Considerations such as better antibody localization, avoidance of unspecific interactions to superantigens and the tailoring of antibody dependent triggering of immune responses, the antibody persistence on cells, can all be preemptively considered through a holistic sagacious approach, allowing for better outcomes in therapy and for research and diagnostic purposes.
Collapse
Affiliation(s)
- Wei-Li Ling
- Antibody & Product Development Lab, Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Wai-Heng Lua
- Antibody & Product Development Lab, Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Samuel Ken-En Gan
- Antibody & Product Development Lab, Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
- p53 Laboratory, ASTAR, 8A Biomedical Grove, #06-04/05 Neuros/Immunos, Singapore 138648
- Experimental Drug Development Center, ASTAR, 10 Biopolis Road, #05-01, Chromos, Singapore 138670
| |
Collapse
|
11
|
Yamashita T. Toward rational antibody design: recent advancements in molecular dynamics simulations. Int Immunol 2019; 30:133-140. [PMID: 29346652 DOI: 10.1093/intimm/dxx077] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 01/11/2018] [Indexed: 01/02/2023] Open
Abstract
Because antibodies have become an important therapeutic tool, rational antibody design is a challenging issue involving various science and technology fields. From the computational aspect, many types of design-assist methods have been developed, but their accuracy is not fully satisfactory. Because of recent advancements in computational power, molecular dynamics (MD) simulation has become a helpful tool to trace the motion of proteins and to characterize their properties. Thus, MD simulation has been applied to various systems involving antigen-antibody complexes and has been shown to provide accurate insight into antigen-antibody interactions and dynamics at an atomic resolution. Therefore, it is highly possible that MD simulation will play several roles complementing the conventional antibody design. In this review, we address several important features of MD simulation in the context of rational antibody design.
Collapse
Affiliation(s)
- Takefumi Yamashita
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Japan
| |
Collapse
|
12
|
Guiding recombinant antivenom development by omics technologies. N Biotechnol 2018; 45:19-27. [DOI: 10.1016/j.nbt.2017.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/16/2017] [Indexed: 11/23/2022]
|
13
|
Shin JW, Kim SI, Yoon A, Jin J, Park HB, Kim H, Chung J. The Versatility of Framework Regions of Chicken V H and V L to Mutations. Immune Netw 2018; 18:e3. [PMID: 29732232 PMCID: PMC5928418 DOI: 10.4110/in.2018.18.e3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/04/2018] [Accepted: 01/13/2018] [Indexed: 12/01/2022] Open
Abstract
To identify the interchangeability of VH and VL framework region (FR) residues, we artificially introduced random mutations at all residue positions in a chicken monoclonal antibody, which has only one functional VH and Vλ gene. When we classified the amino acids into 5 groups by their physicochemical properties, all FR residues could be replaced by another group except L23 (C), H36 (W), H86 (D), H104 (G), and H106 (G). Eighty-two (50.9%), 48 (29.8%), 17 (10.6%), and 9 FR residues (5.6%) could be replaced by 4, 3, 2, and 1 group(s), individually, without significant loss of reactivity. We also confirmed a similar level of versatility with 2 different chicken antibodies. This high level of versatility on FR residues has not been predicted because it has not been observed in the 150 chicken antibodies that we previously generated or in the 1,269 naïve chicken VH sequences publically available. In conclusion, chicken antibody FR residues are highly interchangeable and this property can be applied for improving the physicochemical property of antibody including thermal stability, solubility and viscosity.
Collapse
Affiliation(s)
- Jung Won Shin
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sang Il Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Cancer Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Aerin Yoon
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Junyeong Jin
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hyung Bae Park
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hyori Kim
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea
| | - Junho Chung
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
14
|
|
15
|
Rodríguez-Rodríguez ER, Olamendi-Portugal T, Serrano-Posada H, Arredondo-López JN, Gómez-Ramírez I, Fernández-Taboada G, Possani LD, Anguiano-Vega GA, Riaño-Umbarila L, Becerril B. Broadening the neutralizing capacity of a family of antibody fragments against different toxins from Mexican scorpions. Toxicon 2016; 119:52-63. [DOI: 10.1016/j.toxicon.2016.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/12/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
|
16
|
Karim-Silva S, Moura JD, Noiray M, Minozzo JC, Aubrey N, Alvarenga LM, Billiald P. Generation of recombinant antibody fragments with toxin-neutralizing potential in loxoscelism. Immunol Lett 2016; 176:90-6. [DOI: 10.1016/j.imlet.2016.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/03/2016] [Accepted: 05/17/2016] [Indexed: 01/22/2023]
|
17
|
Laustsen AH, Solà M, Jappe EC, Oscoz S, Lauridsen LP, Engmark M. Biotechnological Trends in Spider and Scorpion Antivenom Development. Toxins (Basel) 2016; 8:E226. [PMID: 27455327 PMCID: PMC4999844 DOI: 10.3390/toxins8080226] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 06/19/2016] [Accepted: 07/13/2016] [Indexed: 12/28/2022] Open
Abstract
Spiders and scorpions are notorious for their fearful dispositions and their ability to inject venom into prey and predators, causing symptoms such as necrosis, paralysis, and excruciating pain. Information on venom composition and the toxins present in these species is growing due to an interest in using bioactive toxins from spiders and scorpions for drug discovery purposes and for solving crystal structures of membrane-embedded receptors. Additionally, the identification and isolation of a myriad of spider and scorpion toxins has allowed research within next generation antivenoms to progress at an increasingly faster pace. In this review, the current knowledge of spider and scorpion venoms is presented, followed by a discussion of all published biotechnological efforts within development of spider and scorpion antitoxins based on small molecules, antibodies and fragments thereof, and next generation immunization strategies. The increasing number of discovery and development efforts within this field may point towards an upcoming transition from serum-based antivenoms towards therapeutic solutions based on modern biotechnology.
Collapse
Affiliation(s)
- Andreas Hougaard Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen East, Denmark.
| | - Mireia Solà
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Emma Christine Jappe
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Saioa Oscoz
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Line Præst Lauridsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Mikael Engmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
- Department of Bio and Health Informatics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
18
|
Luna-Martínez OD, Vidal-Limón A, Villalba-Velázquez MI, Sánchez-Alcalá R, Garduño-Juárez R, Uversky VN, Becerril B. Simple approach for ranking structure determining residues. PeerJ 2016; 4:e2136. [PMID: 27366642 PMCID: PMC4924125 DOI: 10.7717/peerj.2136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/25/2016] [Indexed: 12/30/2022] Open
Abstract
Mutating residues has been a common task in order to study structural properties of the protein of interest. Here, we propose and validate a simple method that allows the identification of structural determinants; i.e., residues essential for preservation of the stability of global structure, regardless of the protein topology. This method evaluates all of the residues in a 3D structure of a given globular protein by ranking them according to their connectivity and movement restrictions without topology constraints. Our results matched up with sequence-based predictors that look up for intrinsically disordered segments, suggesting that protein disorder can also be described with the proposed methodology.
Collapse
Affiliation(s)
- Oscar D Luna-Martínez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México , Cuernavaca , Morelos , Mexico
| | - Abraham Vidal-Limón
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica , San Luis Potosí , Mexico
| | | | - Rosalba Sánchez-Alcalá
- Instituto de Biotecnología, Universidad Nacional Autónoma de México , Cuernavaca , Morelos , Mexico
| | - Ramón Garduño-Juárez
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México , Cuernavaca , Morelos , Mexico
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, University of South Florida, Tampa, FL, United States; Institute for Biological Instrumentation, Russian Academy of Sciences, Puschino, Moscow Region, Russia; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Russian Academy of Sciences, St. Petersburg, Russia
| | - Baltazar Becerril
- Instituto de Biotecnología, Universidad Nacional Autónoma de México , Cuernavaca , Morelos , Mexico
| |
Collapse
|
19
|
Entzminger KC, Johnson JL, Hyun J, Lieberman RL, Maynard JA. Increased Fab thermoresistance via VH-targeted directed evolution. Protein Eng Des Sel 2015; 28:365-77. [PMID: 26283664 DOI: 10.1093/protein/gzv037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/15/2015] [Indexed: 01/17/2023] Open
Abstract
Antibody aggregation is frequently mediated by the complementarity determining regions within the variable domains and can significantly decrease purification yields, shorten shelf-life and increase the risk of anti-drug immune responses. Aggregation-resistant antibodies could offset these risks; accordingly, we have developed a directed evolution strategy to improve Fab stability. A Fab-phage display vector was constructed and the VH domain targeted for mutagenesis by error-prone PCR. To enrich for thermoresistant clones, the resulting phage library was transiently heated, followed by selection for binding to an anti-light chain constant domain antibody. Five unique variants were identified, each possessing one to three amino acid substitutions. Each engineered Fab possessed higher, Escherichia coli expression yield, a 2-3°C increase in apparent melting temperature and improved aggregation resistance upon heating at high concentration. Select mutations were combined and shown to confer additive improvements to these biophysical characteristics. Finally, the wild-type and most stable triple variant Fab variant were converted into a human IgG1 and expressed in mammalian cells. Both expression level and aggregation resistance were similarly improved in the engineered IgG1. Analysis of the wild-type Fab crystal structure provided a structural rationale for the selected residues changes. This approach can help guide future Fab stabilization efforts.
Collapse
Affiliation(s)
| | - Jennifer L Johnson
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| | | | - Raquel L Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| | - Jennifer A Maynard
- Chemical Engineering, University of Texas at Austin, 1 University Station, Austin, TX 78712, USA
| |
Collapse
|
20
|
Chen Y, Huang X, Wang R, Wang S, Shi N. The structure of a GFP-based antibody (fluorobody) to TLH, a toxin from Vibrio parahaemolyticus. Acta Crystallogr F Struct Biol Commun 2015; 71:913-8. [PMID: 26144238 PMCID: PMC4498714 DOI: 10.1107/s2053230x15008845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/06/2015] [Indexed: 01/27/2023] Open
Abstract
A fluorobody is a manmade hybrid molecule that is composed of green fluorescent protein (GFP) and a fragment of antibody, which combines the affinity and specificity of an antibody with the visibility of a GFP. It is able to provide a real-time indication of binding while avoiding the use of tags and secondary binding reagents. Here, the expression, purification and crystal structure of a recombinant fluorobody for TLH (thermolabile haemolysin), a toxin from the lethal food-borne disease bacterium Vibrio parahaemolyticus, are presented. This is the first structure of a fluorobody to be reported. Crystals belonging to space group P4(3)2(1)2, with unit-cell parameters a = b = 63.35, c = 125.90 Å, were obtained by vapour diffusion in hanging drops and the structure was refined to an Rfree of 16.7% at 1.5 Å resolution. The structure shows a CDR loop of the antibody on the GFP scaffold.
Collapse
Affiliation(s)
- Yaoguang Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, People’s Republic of China
| | - Xiaocheng Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, People’s Republic of China
| | - Rongzhi Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, People’s Republic of China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, People’s Republic of China
| | - Ning Shi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, People’s Republic of China
| |
Collapse
|
21
|
Engineering venom's toxin-neutralizing antibody fragments and its therapeutic potential. Toxins (Basel) 2014; 6:2541-67. [PMID: 25153256 PMCID: PMC4147596 DOI: 10.3390/toxins6082541] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/16/2014] [Accepted: 08/04/2014] [Indexed: 11/24/2022] Open
Abstract
Serum therapy remains the only specific treatment against envenoming, but anti-venoms are still prepared by fragmentation of polyclonal antibodies isolated from hyper-immunized horse serum. Most of these anti-venoms are considered to be efficient, but their production is tedious, and their use may be associated with adverse effects. Recombinant antibodies and smaller functional units are now emerging as credible alternatives and constitute a source of still unexploited biomolecules capable of neutralizing venoms. This review will be a walk through the technologies that have recently been applied leading to novel antibody formats with better properties in terms of homogeneity, specific activity and possible safety.
Collapse
|
22
|
Akazawa-Ogawa Y, Takashima M, Lee YH, Ikegami T, Goto Y, Uegaki K, Hagihara Y. Heat-induced irreversible denaturation of the camelid single domain VHH antibody is governed by chemical modifications. J Biol Chem 2014; 289:15666-79. [PMID: 24739391 DOI: 10.1074/jbc.m113.534222] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The variable domain of camelid heavy chain antibody (VHH) is highly heat-resistant and is therefore ideal for many applications. Although understanding the process of heat-induced irreversible denaturation is essential to improve the efficacy of VHH, its inactivation mechanism remains unclear. Here, we showed that chemical modifications predominantly governed the irreversible denaturation of VHH at high temperatures. After heat treatment, the activity of VHH was dependent only on the incubation time at 90 °C and was insensitive to the number of heating (90 °C)-cooling (20 °C) cycles, indicating a negligible role for folding/unfolding intermediates on permanent denaturation. The residual activity was independent of concentration; therefore, VHH lost its activity in a unimolecular manner, not by aggregation. A VHH mutant lacking Asn, which is susceptible to chemical modifications, had significantly higher heat resistance than did the wild-type protein, indicating the importance of chemical modifications to VHH denaturation.
Collapse
Affiliation(s)
- Yoko Akazawa-Ogawa
- From the National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan and
| | - Mizuki Takashima
- From the National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan and
| | - Young-Ho Lee
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Takahisa Ikegami
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Yuji Goto
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Koichi Uegaki
- From the National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan and
| | - Yoshihisa Hagihara
- From the National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan and
| |
Collapse
|
23
|
Riaño-Umbarila L, Olamendi-Portugal T, Morelos-Juárez C, Gurrola GB, Possani LD, Becerril B. A novel human recombinant antibody fragment capable of neutralizing Mexican scorpion toxins. Toxicon 2013; 76:370-6. [DOI: 10.1016/j.toxicon.2013.09.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 08/08/2013] [Accepted: 09/12/2013] [Indexed: 11/24/2022]
|
24
|
Sela-Culang I, Kunik V, Ofran Y. The structural basis of antibody-antigen recognition. Front Immunol 2013; 4:302. [PMID: 24115948 PMCID: PMC3792396 DOI: 10.3389/fimmu.2013.00302] [Citation(s) in RCA: 323] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 09/12/2013] [Indexed: 11/18/2022] Open
Abstract
The function of antibodies (Abs) involves specific binding to antigens (Ags) and activation of other components of the immune system to fight pathogens. The six hypervariable loops within the variable domains of Abs, commonly termed complementarity determining regions (CDRs), are widely assumed to be responsible for Ag recognition, while the constant domains are believed to mediate effector activation. Recent studies and analyses of the growing number of available Ab structures, indicate that this clear functional separation between the two regions may be an oversimplification. Some positions within the CDRs have been shown to never participate in Ag binding and some off-CDRs residues often contribute critically to the interaction with the Ag. Moreover, there is now growing evidence for non-local and even allosteric effects in Ab-Ag interaction in which Ag binding affects the constant region and vice versa. This review summarizes and discusses the structural basis of Ag recognition, elaborating on the contribution of different structural determinants of the Ab to Ag binding and recognition. We discuss the CDRs, the different approaches for their identification and their relationship to the Ag interface. We also review what is currently known about the contribution of non-CDRs regions to Ag recognition, namely the framework regions (FRs) and the constant domains. The suggested mechanisms by which these regions contribute to Ag binding are discussed. On the Ag side of the interaction, we discuss attempts to predict B-cell epitopes and the suggested idea to incorporate Ab information into B-cell epitope prediction schemes. Beyond improving the understanding of immunity, characterization of the functional role of different parts of the Ab molecule may help in Ab engineering, design of CDR-derived peptides, and epitope prediction.
Collapse
Affiliation(s)
- Inbal Sela-Culang
- The Goodman Faculty of Life Sciences, Bar Ilan University , Ramat Gan , Israel
| | | | | |
Collapse
|