1
|
Jonely M, Singh RK, Donelick HM, Bass BL, Noriega R. Loquacious-PD regulates the terminus-dependent molecular recognition of Dicer-2 toward double-stranded RNA. Chem Commun (Camb) 2021; 57:10879-10882. [PMID: 34590626 DOI: 10.1039/d1cc03843e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dicer-2 cleaves double-stranded RNA into siRNAs in a terminus-dependent manner as part of D. melanogaster's RNA interference pathway. Using ultrafast fluorescence, we probe the local environment of chromophores at the dsRNA terminus upon binding by Dicer-2 and interrogate the effects of Loquacious-PD, an accessory protein. We find substrate-selective modes of molecular recognition that distinguish between blunt and 3'overhang termini, but whose differences are greatly reduced by Loquacious-PD. These results connect the molecular recognition properties of Dicer-2 to its selective processing of dsRNAs with different termini and to its need for Loquacious-PD to efficiently produce endogenous siRNAs.
Collapse
Affiliation(s)
- McKenzie Jonely
- University of Utah, Department of Chemistry, Salt Lake City, UT 84112, USA.
| | - Raushan K Singh
- University of Utah, Department of Biochemistry, Salt Lake City, UT 84112, USA
| | - Helen M Donelick
- University of Utah, Department of Biochemistry, Salt Lake City, UT 84112, USA
| | - Brenda L Bass
- University of Utah, Department of Biochemistry, Salt Lake City, UT 84112, USA
| | - Rodrigo Noriega
- University of Utah, Department of Chemistry, Salt Lake City, UT 84112, USA.
| |
Collapse
|
2
|
Bou-Nader C, Pecqueur L, Barraud P, Fontecave M, Tisné C, Sacquin-Mora S, Hamdane D. Conformational Stability Adaptation of a Double-Stranded RNA-Binding Domain to Transfer RNA Ligand. Biochemistry 2019; 58:2463-2473. [PMID: 31045345 DOI: 10.1021/acs.biochem.9b00111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The double-stranded RNA-binding domain (dsRBD) is a broadly distributed domain among RNA-maturing enzymes. Although this domain recognizes dsRNA's structures via a conserved canonical structure adopting an α1-β1β2β3-α2 topology, several dsRBDs can accommodate discrete structural extensions expanding further their functional repertoire. How these structural elements engage cooperative communications with the canonical structure and how they contribute to the dsRBD's overall folding are poorly understood. Here, we addressed these issues using the dsRBD of human dihydrouridine synthase-2 (hDus2) (hDus2-dsRBD) as a model. This dsRBD harbors N- and C-terminal extensions, the former being directly involved in the recognition of tRNA substrate of hDus2. These extensions engage residues that form a long-range hydrophobic network (LHN) outside the RNA-binding interface. We show by coarse-grain Brownian dynamics that the Nt-extension and its residues F359 and Y364 rigidify the major folding nucleus of the canonical structure via an indirect effect. hDus2-dsRBD unfolds following a two-state cooperative model, whereas both F359A and Y364A mutants, designed to destabilize this LHN, unfold irreversibly. Structural and computational analyses show that these mutants are unstable due to an increase in the dynamics of the two extensions favoring solvent exposure of α2-helix and weakening the main folding nucleus rigidity. This LHN appears essential for maintaining a thermodynamic stability of the overall system and eventually a functional conformation for tRNA recognition. Altogether, our findings suggest that functional adaptability of extended dsRBDs is promoted by a cooperative hydrophobic coupling between the extensions acting as effectors and the folding nucleus of the canonical structure.
Collapse
Affiliation(s)
- Charles Bou-Nader
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France , Université Pierre et Marie Curie , 11 place Marcelin Berthelot , 75231 Paris Cedex 05 , France
| | - Ludovic Pecqueur
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France , Université Pierre et Marie Curie , 11 place Marcelin Berthelot , 75231 Paris Cedex 05 , France
| | - Pierre Barraud
- Expression Génétique Microbienne , UMR 8261, CNRS, Université Paris, Institut de Biologie Physico-Chimique , 13 rue Pierre et Marie Curie , 75005 Paris , France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France , Université Pierre et Marie Curie , 11 place Marcelin Berthelot , 75231 Paris Cedex 05 , France
| | - Carine Tisné
- Expression Génétique Microbienne , UMR 8261, CNRS, Université Paris, Institut de Biologie Physico-Chimique , 13 rue Pierre et Marie Curie , 75005 Paris , France
| | - Sophie Sacquin-Mora
- Laboratoire de Biochimie Théorique, CNRS UPR9080 , Institut de Biologie Physico-Chimique , 13 rue Pierre et Marie Curie , 75005 Paris , France
| | - Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France , Université Pierre et Marie Curie , 11 place Marcelin Berthelot , 75231 Paris Cedex 05 , France
| |
Collapse
|
3
|
Clavel M, Pélissier T, Descombin J, Jean V, Picart C, Charbonel C, Saez-Vásquez J, Bousquet-Antonelli C, Deragon JM. Parallel action of AtDRB2 and RdDM in the control of transposable element expression. BMC PLANT BIOLOGY 2015; 15:70. [PMID: 25849103 PMCID: PMC4351826 DOI: 10.1186/s12870-015-0455-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 02/13/2015] [Indexed: 05/03/2023]
Abstract
BACKGROUND In plants and animals, a large number of double-stranded RNA binding proteins (DRBs) have been shown to act as non-catalytic cofactors of DICERs and to participate in the biogenesis of small RNAs involved in RNA silencing. We have previously shown that the loss of Arabidopsis thaliana's DRB2 protein results in a significant increase in the population of RNA polymerase IV (p4) dependent siRNAs, which are involved in the RNA-directed DNA methylation (RdDM) process. RESULTS Surprisingly, despite this observation, we show in this work that DRB2 is part of a high molecular weight complex that does not involve RdDM actors but several chromatin regulator proteins, such as MSI4, PRMT4B and HDA19. We show that DRB2 can bind transposable element (TE) transcripts in vivo but that drb2 mutants do not have a significant variation in TE DNA methylation. CONCLUSION We propose that DRB2 is part of a repressive epigenetic regulator complex involved in a negative feedback loop, adjusting epigenetic state to transcription level at TE loci, in parallel of the RdDM pathway. Loss of DRB2 would mainly result in an increased production of TE transcripts, readily converted in p4-siRNAs by the RdDM machinery.
Collapse
Affiliation(s)
- Marion Clavel
- />Université de Perpignan Via Domitia, LGDP UMR CNRS-UPVD 5096, 58 Av. Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS UMR5096 LGDP, Perpignan Cedex, France
- />Present address: IBMP, UPR 2357, 12, rue du général Zimmer, 67084 Strasbourg cedex, France
| | - Thierry Pélissier
- />Université de Perpignan Via Domitia, LGDP UMR CNRS-UPVD 5096, 58 Av. Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS UMR5096 LGDP, Perpignan Cedex, France
- />Present address: UMR6293 CNRS - INSERM U1103 – GreD, Clermont Université, 24 avenue des Landais, B.P. 80026, 63171 Aubière Cedex, France
| | - Julie Descombin
- />Université de Perpignan Via Domitia, LGDP UMR CNRS-UPVD 5096, 58 Av. Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS UMR5096 LGDP, Perpignan Cedex, France
| | - Viviane Jean
- />Université de Perpignan Via Domitia, LGDP UMR CNRS-UPVD 5096, 58 Av. Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS UMR5096 LGDP, Perpignan Cedex, France
| | - Claire Picart
- />Université de Perpignan Via Domitia, LGDP UMR CNRS-UPVD 5096, 58 Av. Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS UMR5096 LGDP, Perpignan Cedex, France
| | - Cyril Charbonel
- />Université de Perpignan Via Domitia, LGDP UMR CNRS-UPVD 5096, 58 Av. Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS UMR5096 LGDP, Perpignan Cedex, France
| | - Julio Saez-Vásquez
- />Université de Perpignan Via Domitia, LGDP UMR CNRS-UPVD 5096, 58 Av. Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS UMR5096 LGDP, Perpignan Cedex, France
| | - Cécile Bousquet-Antonelli
- />Université de Perpignan Via Domitia, LGDP UMR CNRS-UPVD 5096, 58 Av. Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS UMR5096 LGDP, Perpignan Cedex, France
| | - Jean-Marc Deragon
- />Université de Perpignan Via Domitia, LGDP UMR CNRS-UPVD 5096, 58 Av. Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS UMR5096 LGDP, Perpignan Cedex, France
| |
Collapse
|
4
|
Fernández-Pevida A, Kressler D, de la Cruz J. Processing of preribosomal RNA in Saccharomyces cerevisiae. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:191-209. [PMID: 25327757 DOI: 10.1002/wrna.1267] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/02/2014] [Accepted: 09/02/2014] [Indexed: 11/07/2022]
Abstract
Most, if not all RNAs, are transcribed as precursors that require processing to gain functionality. Ribosomal RNAs (rRNA) from all organisms undergo both exo- and endonucleolytic processing. Also, in all organisms, rRNA processing occurs inside large preribosomal particles and is coupled to nucleotide modification, folding of the precursor rRNA (pre-rRNA), and assembly of the ribosomal proteins (r-proteins). In this review, we focus on the processing pathway of pre-rRNAs of cytoplasmic ribosomes in the yeast Saccharomyces cerevisiae, without doubt, the organism where this pathway is best characterized. We summarize the current understanding of the rRNA maturation process, particularly focusing on the pre-rRNA processing sites, the enzymes responsible for the cleavage or trimming reactions and the different mechanisms that monitor and regulate the pathway. Strikingly, the overall order of the various processing steps is reasonably well conserved in eukaryotes, perhaps reflecting common principles for orchestrating the concomitant events of pre-rRNA processing and ribosome assembly.
Collapse
Affiliation(s)
- Antonio Fernández-Pevida
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain; Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| | | | | |
Collapse
|
5
|
Turowski TW, Tollervey D. Cotranscriptional events in eukaryotic ribosome synthesis. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:129-39. [PMID: 25176256 DOI: 10.1002/wrna.1263] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/16/2014] [Accepted: 07/23/2014] [Indexed: 12/13/2022]
Abstract
Eukaryotic ribosomes are synthesized in a complex, multistep pathway. This begins with transcription of the rDNA genes by a specialized RNA polymerase, accompanied by the cotranscriptional binding of large numbers of ribosome synthesis factors, small nucleolar RNAs and ribosomal proteins. Cleavage of the nascent transcript releases the early pre-40S and pre-60S particles, which acquire export competence in the nucleoplasm prior to translocation through the nuclear pore complexes and final maturation to functional ribosomal subunits in the cytoplasm. This review will focus on the many and complex interactions occurring during pre-rRNA synthesis, particularly in budding yeast in which the pathway is best understood.
Collapse
Affiliation(s)
- Tomasz W Turowski
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
6
|
Gleghorn ML, Maquat LE. 'Black sheep' that don't leave the double-stranded RNA-binding domain fold. Trends Biochem Sci 2014; 39:328-40. [PMID: 24954387 DOI: 10.1016/j.tibs.2014.05.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/19/2014] [Accepted: 05/19/2014] [Indexed: 12/28/2022]
Abstract
The canonical double-stranded RNA (dsRNA)-binding domain (dsRBD) is composed of an α1-β1-β2-β3-α2 secondary structure that folds in three dimensions to recognize dsRNA. Recently, structural and functional studies of divergent dsRBDs revealed adaptations that include intra- and/or intermolecular protein interactions, sometimes in the absence of detectable dsRNA-binding ability. We describe here how discrete dsRBD components can accommodate pronounced amino-acid sequence changes while maintaining the core fold. We exemplify the growing importance of divergent dsRBDs in mRNA decay by discussing Dicer, Staufen (STAU)1 and 2, trans-activation responsive RNA-binding protein (TARBP)2, protein activator of protein kinase RNA-activated (PKR) (PACT), DiGeorge syndrome critical region (DGCR)8, DEAH box helicase proteins (DHX) 9 and 30, and dsRBD-like fold-containing proteins that have ribosome-related functions. We also elaborate on the computational limitations to discovering yet-to-be-identified divergent dsRBDs.
Collapse
Affiliation(s)
- Michael L Gleghorn
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
7
|
Liang YH, Lavoie M, Comeau MA, Abou Elela S, Ji X. Structure of a eukaryotic RNase III postcleavage complex reveals a double-ruler mechanism for substrate selection. Mol Cell 2014; 54:431-44. [PMID: 24703949 DOI: 10.1016/j.molcel.2014.03.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 12/23/2013] [Accepted: 02/27/2014] [Indexed: 11/19/2022]
Abstract
Ribonuclease III (RNase III) enzymes are a family of double-stranded RNA (dsRNA)-specific endoribonucleases required for RNA maturation and gene regulation. Prokaryotic RNase III enzymes have been well characterized, but how eukaryotic RNase IIIs work is less clear. Here, we describe the structure of the Saccharomyces cerevisiae RNase III (Rnt1p) postcleavage complex and explain why Rnt1p binds to RNA stems capped with an NGNN tetraloop. The structure shows specific interactions between a structural motif located at the end of the Rnt1p dsRNA-binding domain (dsRBD) and the guanine nucleotide in the second position of the loop. Strikingly, structural and biochemical analyses indicate that the dsRBD and N-terminal domains (NTDs) of Rnt1p function as two rulers that measure the distance between the tetraloop and the cleavage site. These findings provide a framework for understanding eukaryotic RNase IIIs.
Collapse
Affiliation(s)
- Yu-He Liang
- Biomolecular Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Mathieu Lavoie
- RNA Group/Groupe ARN, Département de microbiologie et d'infectiologie, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Marc-Andre Comeau
- RNA Group/Groupe ARN, Département de microbiologie et d'infectiologie, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Sherif Abou Elela
- RNA Group/Groupe ARN, Département de microbiologie et d'infectiologie, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada.
| | - Xinhua Ji
- Biomolecular Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
8
|
Kalinowska B, Banach M, Konieczny L, Marchewka D, Roterman I. Intrinsically disordered proteins--relation to general model expressing the active role of the water environment. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 94:315-46. [PMID: 24629190 DOI: 10.1016/b978-0-12-800168-4.00008-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This work discusses the role of unstructured polypeptide chain fragments in shaping the protein's hydrophobic core. Based on the "fuzzy oil drop" model, which assumes an idealized distribution of hydrophobicity density described by the 3D Gaussian, we can determine which fragments make up the core and pinpoint residues whose location conflicts with theoretical predictions. We show that the structural influence of the water environment determines the positions of disordered fragments, leading to the formation of a hydrophobic core overlaid by a hydrophilic mantle. This phenomenon is further described by studying selected proteins which are known to be unstable and contain intrinsically disordered fragments. Their properties are established quantitatively, explaining the causative relation between the protein's structure and function and facilitating further comparative analyses of various structural models.
Collapse
Affiliation(s)
- Barbara Kalinowska
- Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University, Krakow, Poland; Faculty of Physics, Astronomy and Applied Computer Science - Jagiellonian University, Krakow, Poland
| | - Mateusz Banach
- Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University, Krakow, Poland; Faculty of Physics, Astronomy and Applied Computer Science - Jagiellonian University, Krakow, Poland
| | - Leszek Konieczny
- Chair of Medical Biochemistry, Medical College, Jagiellonian University, Krakow, Poland
| | - Damian Marchewka
- Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University, Krakow, Poland; Faculty of Physics, Astronomy and Applied Computer Science - Jagiellonian University, Krakow, Poland
| | - Irena Roterman
- Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
9
|
Thapar R, Denmon AP, Nikonowicz EP. Recognition modes of RNA tetraloops and tetraloop-like motifs by RNA-binding proteins. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:49-67. [PMID: 24124096 DOI: 10.1002/wrna.1196] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 08/13/2013] [Accepted: 08/18/2013] [Indexed: 12/19/2022]
Abstract
RNA hairpins are the most commonly occurring secondary structural elements in RNAs and serve as nucleation sites for RNA folding, RNA-RNA, and RNA-protein interactions. RNA hairpins are frequently capped by tetraloops, and based on sequence similarity, three broad classes of RNA tetraloops have been defined: GNRA, UNCG, and CUYG. Other classes such as the UYUN tetraloop in histone mRNAs, the UGAA in 16S rRNA, the AUUA tetraloop from the MS2 bacteriophage, and the AGNN tetraloop that binds RNase III have also been characterized. The tetraloop structure is compact and is usually characterized by a paired interaction between the first and fourth nucleotides. The two unpaired nucleotides in the loop are usually involved in base-stacking or base-phosphate hydrogen bonding interactions. Several structures of RNA tetraloops, free and complexed to other RNAs or proteins, are now available and these studies have increased our understanding of the diverse mechanisms by which this motif is recognized. RNA tetraloops can mediate RNA-RNA contacts via the tetraloop-receptor motif, kissing hairpin loops, A-minor interactions, and pseudoknots. While these RNA-RNA interactions are fairly well understood, how RNA-binding proteins recognize RNA tetraloops and tetraloop-like motifs remains unclear. In this review, we summarize the structures of RNA tetraloop-protein complexes and the general themes that have emerged on sequence- and structure-specific recognition of RNA tetraloops. We highlight how proteins achieve molecular recognition of this nucleic acid motif, the structural adaptations observed in the tetraloop to accommodate the protein-binding partner, and the role of dynamics in recognition.
Collapse
Affiliation(s)
- Roopa Thapar
- Department of Structural Biology, Hauptman-Woodward Medical Research Institute, Buffalo, NY, USA; Department of Structural Biology, SUNY at Buffalo, Buffalo, NY, USA; Department of Biochemistry and Cell Biology, Rice University, Houston, TX, USA
| | | | | |
Collapse
|
10
|
Nicholson AW. Ribonuclease III mechanisms of double-stranded RNA cleavage. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:31-48. [PMID: 24124076 PMCID: PMC3867540 DOI: 10.1002/wrna.1195] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/09/2013] [Accepted: 08/10/2013] [Indexed: 12/22/2022]
Abstract
Double-stranded(ds) RNA has diverse roles in gene expression and regulation, host defense, and genome surveillance in bacterial and eukaryotic cells. A central aspect of dsRNA function is its selective recognition and cleavage by members of the ribonuclease III (RNase III) family of divalent-metal-ion-dependent phosphodiesterases. The processing of dsRNA by RNase III family members is an essential step in the maturation and decay of coding and noncoding RNAs, including miRNAs and siRNAs. RNase III, as first purified from Escherichia coli, has served as a biochemically well-characterized prototype, and other bacterial orthologs provided the first structural information. RNase III family members share a unique fold (RNase III domain) that can dimerize to form a structure that binds dsRNA and cleaves phosphodiesters on each strand, providing the characteristic 2 nt, 3′-overhang product ends. Ongoing studies are uncovering the functions of additional domains, including, inter alia, the dsRNA-binding and PAZ domains that cooperate with the RNase III domain to select target sites, regulate activity, confer processivity, and support the recognition of structurally diverse substrates. RNase III enzymes function in multicomponent assemblies that are regulated by diverse inputs, and at least one RNase III-related polypeptide can function as a noncatalytic, dsRNA-binding protein. This review summarizes the current knowledge of the mechanisms of catalysis and target site selection of RNase III family members, and also addresses less well understood aspects of these enzymes and their interactions with dsRNA. WIREs RNA 2014, 5:31–48. doi: 10.1002/wrna.1195
Collapse
Affiliation(s)
- Allen W Nicholson
- Department of Biology and Chemistry, College of Science & Technology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
11
|
Banach M, Roterman I, Prudhomme N, Chomilier J. Hydrophobic core in domains of immunoglobulin-like fold. J Biomol Struct Dyn 2013; 32:1583-600. [PMID: 23998258 DOI: 10.1080/07391102.2013.829756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This work analyzes proteins which contain an immunoglobulin fold, focusing on their hydrophobic core structure. The "fuzzy oil drop" model was used to measure the regularity of hydrophobicity distribution in globular domains belonging to proteins which exhibit the above-mentioned fold. Light-chain IgG domains are found to frequently contain regular hydrophobic cores, unlike the corresponding heavy-chain domains. Enzymes and DNA binding proteins present in the data-set are found to exhibit poor accordance with the hydrophobic core model.
Collapse
Affiliation(s)
- M Banach
- a Department of Bioinformatics and Telemedicine , Collegium Medicum, Jagiellonian University , Krakow , Poland
| | | | | | | |
Collapse
|
12
|
Post-transcriptional regulation of iron homeostasis in Saccharomyces cerevisiae. Int J Mol Sci 2013; 14:15785-809. [PMID: 23903042 PMCID: PMC3759886 DOI: 10.3390/ijms140815785] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 07/15/2013] [Accepted: 07/18/2013] [Indexed: 12/19/2022] Open
Abstract
Iron is an essential micronutrient for all eukaryotic organisms because it participates as a redox cofactor in a wide variety of biological processes. Recent studies in Saccharomyces cerevisiae have shown that in response to iron deficiency, an RNA-binding protein denoted Cth2 coordinates a global metabolic rearrangement that aims to optimize iron utilization. The Cth2 protein contains two Cx8Cx5Cx3H tandem zinc fingers (TZFs) that specifically bind to adenosine/uridine-rich elements within the 3′ untranslated region of many mRNAs to promote their degradation. The Cth2 protein shuttles between the nucleus and the cytoplasm. Once inside the nucleus, Cth2 binds target mRNAs and stimulates alternative 3′ end processing. A Cth2/mRNA-containing complex is required for export to the cytoplasm, where the mRNA is degraded by the 5′ to 3′ degradation pathway. This post-transcriptional regulatory mechanism limits iron utilization in nonessential pathways and activates essential iron-dependent enzymes such as ribonucleotide reductase, which is required for DNA synthesis and repair. Recent findings indicate that the TZF-containing tristetraprolin protein also functions in modulating human iron homeostasis. Elevated iron concentrations can also be detrimental for cells. The Rnt1 RNase III exonuclease protects cells from excess iron by promoting the degradation of a subset of the Fe acquisition system when iron levels rise.
Collapse
|