1
|
Uchikubo-Kamo T, Ishimoto N, Umezawa H, Hirohama M, Ono M, Kawabata H, Kamata K, Ohki M, Yoshida H, Park JH, Tame JRH, Kawaguchi A, Park SY. Structural insights into Influenza A virus RNA polymerase PB1 binding to nuclear import host factor RanBP5. Biochem Biophys Res Commun 2024; 739:150952. [PMID: 39536408 DOI: 10.1016/j.bbrc.2024.150952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 10/27/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
The genome of influenza A viruses consists of eight RNA segments that form a heterotrimer, and the viral genome undergoes transcription and replication in the nucleus. Thus, during infection, newly synthesized RNA polymerase subunits must be imported into the nucleus. Although several models have been proposed for this process, the consensus is that the RNA polymerase subunits PB1 and PA form a dimer in the cytoplasm and are transported into the nucleus by Ran binding protein 5 (RanBP5). The PB2 subunit undergoes separate transport to complete the nuclear import. However, the molecular mechanism of nuclear import by host factors and their interactions with proteins are largely unknown. Here we present the structural analysis of the RanBP5 and PB1 NLS domain complex by cryo-EM at 3.2 Å resolution. The pattern shows that the NLS domain of PB1 does not exist in a secondary structure and interacts with RanBP5 in a wrapped state. In addition, biochemical analyses of the mutant have identified critical amino acid sites involved in complex binding. The results suggest a stepwise assembly of influenza virus structural components regulated by nuclear import mechanisms and host factor binding, with important implications for drug discovery research.
Collapse
Affiliation(s)
- Tomomi Uchikubo-Kamo
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, 230-0045, Japan
| | - Naito Ishimoto
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, 230-0045, Japan
| | - Haruka Umezawa
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, 230-0045, Japan
| | - Mikako Hirohama
- Department of Infection Biology, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Maasa Ono
- Department of Infection Biology, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Haruka Kawabata
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, 230-0045, Japan
| | - Kenichi Kamata
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, 230-0045, Japan
| | - Mio Ohki
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, 230-0045, Japan
| | - Hisashi Yoshida
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, 230-0045, Japan
| | - Jae-Hyun Park
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, 230-0045, Japan; Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Jeremy R H Tame
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, 230-0045, Japan
| | - Atsushi Kawaguchi
- Department of Infection Biology, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Japan.
| | - Sam-Yong Park
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, 230-0045, Japan.
| |
Collapse
|
2
|
Smith AM, Li Y, Velarde A, Cheng Y, Frankel AD. The HIV-1 Nuclear Export Complex Reveals the Role of RNA in Crm1 Cargo Recognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.22.614349. [PMID: 39345625 PMCID: PMC11430062 DOI: 10.1101/2024.09.22.614349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Crm1 is a highly conserved nuclear exportin that transports >1000 human proteins including ribonucleoprotein (RNP) complexes. The interface between Crm1 and RNP cargos is unknown. The HIV regulatory protein, Rev, was one of the first identified cargos for Crm1 and contains a prototypic nuclear export sequence (NES). We present the cryo-electron microscopy structure of the HIV-1 nuclear export complex (Crm1/Ran-GTP and the Rev/RRE RNP). Rev binds at a previously unseen protein-protein binding site that stabilizes a unique Crm1 dimer and positions two NESs within the Crm1 dimer. The orientation of Rev binding positions the RRE within a charged pocket on the inside of the Crm1 toroid, mediating direct RNA-Ran-GTP contacts, highlighting the significant role of the RRE in the interaction. Structure based mutations, combined with cell-based assays, show that Crm1 has multiple distinct cargo recognition sites and explains how Crm1 can recognize a diverse range of protein and RNP cargos.
Collapse
|
3
|
Kose S, Ogawa Y, Imamoto N. Thermal Stress and Nuclear Transport. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:61-78. [PMID: 39289274 DOI: 10.1007/978-981-97-4584-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Nuclear transport is the basis for the biological reaction of eukaryotic cells, as it is essential to coordinate nuclear and cytoplasmic events separated by nuclear envelope. Although we currently understand the basic molecular mechanisms of nuclear transport in detail, many unexplored areas remain. For example, it is believed that the regulations and biological functions of the nuclear transport receptors (NTRs) highlights the significance of the transport pathways in physiological contexts. However, physiological significance of multiple parallel transport pathways consisting of more than 20 NTRs is still poorly understood, because our knowledge of each pathway, regarding their substrate information or how they are differently regulated, is still limited. In this report, we describe studies showing how nuclear transport systems in general are affected by temperature rises, namely, thermal stress or heat stress. We will then focus on Importin α family members and unique transport factor Hikeshi, because these two NTRs are affected in heat stress. Our present review will provide an additional view to point out the importance of diversity of the nuclear transport pathways in eukaryotic cells.
Collapse
Affiliation(s)
- Shingo Kose
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan.
| | - Yutaka Ogawa
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan.
| | - Naoko Imamoto
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan.
| |
Collapse
|
4
|
Shaffer JM, Jiou J, Tripathi K, Olaluwoye OS, Fung HYJ, Chook YM, D'Arcy S. Molecular basis of RanGTP-activated release of Histones H2A-H2B from Importin-9. Structure 2023; 31:903-911.e3. [PMID: 37379840 PMCID: PMC10527638 DOI: 10.1016/j.str.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023]
Abstract
Imp9 is the primary importin for shuttling H2A-H2B from the cytoplasm to the nucleus. It employs an unusual mechanism where the binding of RanGTP is insufficient to release H2A-H2B. The resulting stable RanGTP·Imp9·H2A-H2B complex gains nucleosome assembly activity with H2A-H2B able to be deposited into an assembling nucleosome in vitro. Using hydrogen-deuterium exchange coupled with mass spectrometry (HDX), we show that Imp9 stabilizes H2A-H2B beyond the direct-binding site, like other histone chaperones. HDX also shows that binding of RanGTP releases H2A-H2B contacts at Imp9 HEAT repeats 4-5, but not 18-19. DNA- and histone-binding surfaces of H2A-H2B are exposed in the ternary complex, facilitating nucleosome assembly. We also reveal that RanGTP has a weaker affinity for Imp9 when H2A-H2B is bound. Imp9 thus provides a connection between the nuclear import of H2A-H2B and its deposition into chromatin.
Collapse
Affiliation(s)
- Joy M Shaffer
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson 75080, USA
| | - Jenny Jiou
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75390, USA
| | - Kiran Tripathi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson 75080, USA
| | - Oladimeji S Olaluwoye
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson 75080, USA
| | - Ho Yee Joyce Fung
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75390, USA
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75390, USA
| | - Sheena D'Arcy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson 75080, USA.
| |
Collapse
|
5
|
Sallis S, Bérubé-Simard FA, Grondin B, Leduc E, Azouz F, Bélanger C, Pilon N. The CHARGE syndrome-associated protein FAM172A controls AGO2 nuclear import. Life Sci Alliance 2023; 6:e202302133. [PMID: 37221016 PMCID: PMC10205598 DOI: 10.26508/lsa.202302133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/25/2023] Open
Abstract
CHARGE syndrome is a neural crest-related disorder mainly caused by mutation of the chromatin remodeler-coding gene CHD7 Alternative causes include mutation of other chromatin and/or splicing factors. One of these additional players is the poorly characterized FAM172A, which we previously found in a complex with CHD7 and the small RNA-binding protein AGO2 at the chromatin-spliceosome interface. Focusing on the FAM172A-AGO2 interplay, we now report that FAM172A is a direct binding partner of AGO2 and, as such, one of the long sought-after regulators of AGO2 nuclear import. We show that this FAM172A function mainly relies on its classical bipartite nuclear localization signal and associated canonical importin-α/β pathway, being enhanced by CK2-induced phosphorylation and abrogated by a CHARGE syndrome-associated missense mutation. Overall, this study thus strengthens the notion that noncanonical nuclear functions of AGO2 and associated regulatory mechanisms might be clinically relevant.
Collapse
Affiliation(s)
- Sephora Sallis
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Montréal, Montreal, Canada
| | - Félix-Antoine Bérubé-Simard
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada
| | - Benoit Grondin
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Montréal, Montreal, Canada
| | - Elizabeth Leduc
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Montréal, Montreal, Canada
| | - Fatiha Azouz
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Montréal, Montreal, Canada
| | - Catherine Bélanger
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada
| | - Nicolas Pilon
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Montréal, Montreal, Canada
- Department of Pediatrics, Université de Montréal, Montreal, Canada
| |
Collapse
|
6
|
Jiou J, Shaffer JM, Bernades NE, Fung HYJ, Kikumoto Dias J, D’Arcy S, Chook YM. Mechanism of RanGTP priming H2A-H2B release from Kap114 in an atypical RanGTP•Kap114•H2A-H2B complex. Proc Natl Acad Sci U S A 2023; 120:e2301199120. [PMID: 37450495 PMCID: PMC10629556 DOI: 10.1073/pnas.2301199120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Previously, we showed that the nuclear import receptor Importin-9 wraps around the H2A-H2B core to chaperone and transport it from the cytoplasm to the nucleus. However, unlike most nuclear import systems where RanGTP dissociates cargoes from their importins, RanGTP binds stably to the Importin-9•H2A-H2B complex, and formation of the ternary RanGTP•Importin-9•H2A-H2B complex facilitates H2A-H2B release to the assembling nucleosome. It was unclear how RanGTP and the cargo H2A-H2B can bind simultaneously to an importin, and how interactions of the three components position H2A-H2B for release. Here, we show cryo-EM structures of Importin-9•RanGTP and of its yeast homolog Kap114, including Kap114•RanGTP, Kap114•H2A-H2B, and RanGTP•Kap114•H2A-H2B, to explain how the conserved Kap114 binds H2A-H2B and RanGTP simultaneously and how the GTPase primes histone transfer to the nucleosome. In the ternary complex, RanGTP binds to the N-terminal repeats of Kap114 in the same manner as in the Kap114/Importin-9•RanGTP complex, and H2A-H2B binds via its acidic patch to the Kap114 C-terminal repeats much like in the Kap114/Importin-9•H2A-H2B complex. Ran binds to a different conformation of Kap114 in the ternary RanGTP•Kap114•H2A-H2B complex. Here, Kap114 no longer contacts the H2A-H2B surface proximal to the H2A docking domain that drives nucleosome assembly, positioning it for transfer to the assembling nucleosome or to dedicated H2A-H2B chaperones in the nucleus.
Collapse
Affiliation(s)
- Jenny Jiou
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Joy M. Shaffer
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX75080
| | - Natalia E. Bernades
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Ho Yee Joyce Fung
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Juliana Kikumoto Dias
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX75080
| | - Sheena D’Arcy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX75080
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
7
|
Steiner A, Favre S, Mack M, Hausharter A, Pillet B, Hafner J, Mitterer V, Kressler D, Pertschy B, Zierler I. Dissecting the Nuclear Import of the Ribosomal Protein Rps2 (uS5). Biomolecules 2023; 13:1127. [PMID: 37509163 PMCID: PMC10377357 DOI: 10.3390/biom13071127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The ribosome is assembled in a complex process mainly taking place in the nucleus. Consequently, newly synthesized ribosomal proteins have to travel from the cytoplasm into the nucleus, where they are incorporated into nascent ribosomal subunits. In this study, we set out to investigate the mechanism mediating nuclear import of the small subunit ribosomal protein Rps2. We demonstrate that an internal region in Rps2, ranging from amino acids 76 to 145, is sufficient to target a 3xyEGFP reporter to the nucleus. The importin-β Pse1 interacts with this Rps2 region and is involved in its import, with Rps2 residues arginine 95, arginine 97, and lysine 99 being important determinants for both Pse1 binding and nuclear localization. Moreover, our data reveal a second import mechanism involving the N-terminal region of Rps2, which depends on the presence of basic residues within amino acids 10 to 28. This Rps2 segment overlaps with the binding site of the dedicated chaperone Tsr4; however, the nuclear import of Rps2 via the internal as well as the N-terminal nuclear-targeting element does not depend on Tsr4. Taken together, our study has unveiled hitherto undescribed nuclear import signals, showcasing the versatility of the mechanisms coordinating the nuclear import of ribosomal proteins.
Collapse
Affiliation(s)
- Andreas Steiner
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria; (A.S.); (M.M.); (V.M.)
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Sébastien Favre
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland; (S.F.); (B.P.); (D.K.)
| | - Maximilian Mack
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria; (A.S.); (M.M.); (V.M.)
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Annika Hausharter
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria; (A.S.); (M.M.); (V.M.)
| | - Benjamin Pillet
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland; (S.F.); (B.P.); (D.K.)
| | - Jutta Hafner
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria; (A.S.); (M.M.); (V.M.)
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Valentin Mitterer
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria; (A.S.); (M.M.); (V.M.)
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Dieter Kressler
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland; (S.F.); (B.P.); (D.K.)
| | - Brigitte Pertschy
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria; (A.S.); (M.M.); (V.M.)
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Ingrid Zierler
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria; (A.S.); (M.M.); (V.M.)
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
8
|
Shaffer JM, Jiou J, Tripathi K, Olaluwoye OS, Fung HYJ, Chook YM, D’Arcy S. Molecular basis of RanGTP-activated nucleosome assembly with Histones H2A-H2B bound to Importin-9. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525896. [PMID: 36747879 PMCID: PMC9901172 DOI: 10.1101/2023.01.27.525896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Padavannil et al. 2019 show that Importin-9 (Imp9) transports Histones H2A-H2B from the cytoplasm to the nucleus using a non-canonical mechanism whereby binding of a GTP-bound Ran GTPase (RanGTP) fails to evict the H2A-H2B cargo. Instead, a stable complex forms, comprised of equimolar RanGTP, Imp9, and H2A-H2B. Unlike the binary Imp9•H2A-H2B complex, this RanGTP•Imp9•H2A-H2B ternary complex can release H2A-H2B to an assembling nucleosome. Here, we define the molecular basis for this RanGTP-activated nucleosome assembly by Imp9. We use hydrogen-deuterium exchange coupled with mass spectrometry and compare the dynamics and interfaces of the RanGTP•Imp9•H2A-H2B ternary complex to those in the Imp9•H2A-H2B or Imp9•RanGTP binary complexes. Our data are consistent with the Imp9•H2A-H2B structure by Padavannil et al. 2019 showing that Imp9 HEAT repeats 4-5 and 18-19 contact H2A-H2B, as well as many homologous importin•RanGTP structures showing that importin HEAT repeats 1 and 3, and the h8 loop, contact RanGTP. We show that Imp9 stabilizes H2A-H2B beyond the direct binding site, similar to other histone chaperones. Importantly, we reveal that binding of RanGTP releases H2A-H2B interaction at Imp9 HEAT repeats 4-5, but not 18-19. This exposes DNA- and histone-binding surfaces of H2A-H2B, thereby facilitating nucleosome assembly. We also reveal that RanGTP has a weaker affinity for Imp9 when H2A-H2B is bound. This may ensure that H2A-H2B is only released in high RanGTP concentrations near chromatin. We delineate the molecular link between the nuclear import of H2A-H2B and its deposition into chromatin by Imp9. Significance Imp9 is the primary importin for shuttling H2A-H2B from the cytoplasm to the nucleus. It employs an unusual mechanism where the binding of RanGTP alone is insufficient to release H2A-H2B. The resulting stable RanGTP•Imp9•H2A-H2B complex gains nucleosome assembly activity as H2A-H2B can be deposited onto an assembling nucleosome. We show that H2A-H2B is allosterically stabilized via interactions with both N- and C-terminal portions of Imp9, reinforcing its chaperone-like behavior. RanGTP binding causes H2A-H2B release from the N-terminal portion of Imp9 only. The newly-exposed H2A-H2B surfaces can interact with DNA or H3-H4 in nucleosome assembly. Imp9 thus plays a multi-faceted role in histone import, storage, and deposition regulated by RanGTP, controlling histone supply in the nucleus and to chromatin.
Collapse
Affiliation(s)
- Joy M. Shaffer
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, United States, 75080
| | - Jenny Jiou
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States, 75390
| | - Kiran Tripathi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, United States, 75080
| | - Oladimeji S. Olaluwoye
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, United States, 75080
| | - Ho Yee Joyce Fung
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States, 75390
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States, 75390
| | - Sheena D’Arcy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, United States, 75080
| |
Collapse
|
9
|
Jafarinia H, Van der Giessen E, Onck PR. Molecular basis of C9orf72 poly-PR interference with the β-karyopherin family of nuclear transport receptors. Sci Rep 2022; 12:21324. [PMID: 36494425 PMCID: PMC9734553 DOI: 10.1038/s41598-022-25732-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Nucleocytoplasmic transport (NCT) is affected in several neurodegenerative diseases including C9orf72-ALS. It has recently been found that arginine-containing dipeptide repeat proteins (R-DPRs), translated from C9orf72 repeat expansions, directly bind to several importins. To gain insight into how this can affect nucleocytoplasmic transport, we use coarse-grained molecular dynamics simulations to study the molecular interaction of poly-PR, the most toxic DPR, with several Kapβs (importins and exportins). We show that poly-PR-Kapβ binding depends on the net charge per residue (NCPR) of the Kapβ, salt concentration of the solvent, and poly-PR length. Poly-PR makes contact with the inner surface of most importins, which strongly interferes with Kapβ binding to cargo-NLS, IBB, and RanGTP in a poly-PR length-dependent manner. Longer poly-PRs at higher concentrations are also able to make contact with the outer surface of importins that contain several binding sites to FG-Nups. We also show that poly-PR binds to exportins, especially at lower salt concentrations, interacting with several RanGTP and FG-Nup binding sites. Overall, our results suggest that poly-PR might cause length-dependent defects in cargo loading, cargo release, Kapβ transport and Ran gradient across the nuclear envelope.
Collapse
Affiliation(s)
- Hamidreza Jafarinia
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Erik Van der Giessen
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Patrick R Onck
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands.
| |
Collapse
|
10
|
Bernardes NE, Fung HYJ, Li Y, Chen Z, Chook YM. Structure of IMPORTIN-4 bound to the H3-H4-ASF1 histone-histone chaperone complex. Proc Natl Acad Sci U S A 2022; 119:e2207177119. [PMID: 36103578 PMCID: PMC9499513 DOI: 10.1073/pnas.2207177119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
IMPORTIN-4, the primary nuclear import receptor of core histones H3 and H4, binds the H3-H4 dimer and histone chaperone ASF1 prior to nuclear import. However, how H3-H3-ASF1 is recognized for transport cannot be explained by available crystal structures of IMPORTIN-4-histone tail peptide complexes. Our 3.5-Å IMPORTIN-4-H3-H4-ASF1 cryoelectron microscopy structure reveals the full nuclear import complex and shows a binding mode different from suggested by previous structures. The N-terminal half of IMPORTIN-4 clamps the globular H3-H4 domain and H3 αN helix, while its C-terminal half binds the H3 N-terminal tail weakly; tail contribution to binding energy is negligible. ASF1 binds H3-H4 without contacting IMPORTIN-4. Together, ASF1 and IMPORTIN-4 shield nucleosomal H3-H4 surfaces to chaperone and import it into the nucleus where RanGTP binds IMPORTIN-4, causing large conformational changes to release H3-H4-ASF1. This work explains how full-length H3-H4 binds IMPORTIN-4 in the cytoplasm and how it is released in the nucleus.
Collapse
Affiliation(s)
- Natália Elisa Bernardes
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Ho Yee Joyce Fung
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Yang Li
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Zhe Chen
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
11
|
Wing CE, Fung HYJ, Chook YM. Karyopherin-mediated nucleocytoplasmic transport. Nat Rev Mol Cell Biol 2022; 23:307-328. [PMID: 35058649 PMCID: PMC10101760 DOI: 10.1038/s41580-021-00446-7] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 12/25/2022]
Abstract
Efficient and regulated nucleocytoplasmic trafficking of macromolecules to the correct subcellular compartment is critical for proper functions of the eukaryotic cell. The majority of the macromolecular traffic across the nuclear pores is mediated by the Karyopherin-β (or Kap) family of nuclear transport receptors. Work over more than two decades has shed considerable light on how the different Kap family members bring their respective cargoes into the nucleus or the cytoplasm in efficient and highly regulated manners. In this Review, we overview the main features and established functions of Kap family members, describe how Kaps recognize their cargoes and discuss the different ways in which these Kap-cargo interactions can be regulated, highlighting new findings and open questions. We also describe current knowledge of the import and export of the components of three large gene expression machines - the core replisome, RNA polymerase II and the ribosome - pointing out the questions that persist about how such large macromolecular complexes are trafficked to serve their function in a designated subcellular location.
Collapse
|
12
|
Semmelink MFW, Steen A, Veenhoff LM. Measuring and Interpreting Nuclear Transport in Neurodegenerative Disease-The Example of C9orf72 ALS. Int J Mol Sci 2021; 22:9217. [PMID: 34502125 PMCID: PMC8431710 DOI: 10.3390/ijms22179217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 11/25/2022] Open
Abstract
Transport from and into the nucleus is essential to all eukaryotic life and occurs through the nuclear pore complex (NPC). There are a multitude of data supporting a role for nuclear transport in neurodegenerative diseases, but actual transport assays in disease models have provided diverse outcomes. In this review, we summarize how nuclear transport works, which transport assays are available, and what matters complicate the interpretation of their results. Taking a specific type of ALS caused by mutations in C9orf72 as an example, we illustrate these complications, and discuss how the current data do not firmly answer whether the kinetics of nucleocytoplasmic transport are altered. Answering this open question has far-reaching implications, because a positive answer would imply that widespread mislocalization of proteins occurs, far beyond the reported mislocalization of transport reporters, and specific proteins such as FUS, or TDP43, and thus presents a challenge for future research.
Collapse
Affiliation(s)
| | | | - Liesbeth M. Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (M.F.W.S.); (A.S.)
| |
Collapse
|
13
|
Nuclear import of histones. Biochem Soc Trans 2021; 48:2753-2767. [PMID: 33300986 PMCID: PMC7752055 DOI: 10.1042/bst20200572] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022]
Abstract
The transport of histones from the cytoplasm to the nucleus of the cell, through the nuclear membrane, is a cellular process that regulates the supply of new histones in the nucleus and is key for DNA replication and transcription. Nuclear import of histones is mediated by proteins of the karyopherin family of nuclear transport receptors. Karyopherins recognize their cargos through linear motifs known as nuclear localization/export sequences or through folded domains in the cargos. Karyopherins interact with nucleoporins, proteins that form the nuclear pore complex, to promote the translocation of their cargos into the nucleus. When binding to histones, karyopherins not only function as nuclear import receptors but also as chaperones, protecting histones from non-specific interactions in the cytoplasm, in the nuclear pore and possibly in the nucleus. Studies have also suggested that karyopherins might participate in histones deposition into nucleosomes. In this review we describe structural and biochemical studies from the last two decades on how karyopherins recognize and transport the core histone proteins H3, H4, H2A and H2B and the linker histone H1 from the cytoplasm to the nucleus, which karyopherin is the major nuclear import receptor for each of these histones, the oligomeric state of histones during nuclear import and the roles of post-translational modifications, histone-chaperones and RanGTP in regulating these nuclear import pathways.
Collapse
|
14
|
Kimura M, Imai K, Morinaka Y, Hosono-Sakuma Y, Horton P, Imamoto N. Distinct mutations in importin-β family nucleocytoplasmic transport receptors transportin-SR and importin-13 affect specific cargo binding. Sci Rep 2021; 11:15649. [PMID: 34341383 PMCID: PMC8329185 DOI: 10.1038/s41598-021-94948-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 07/20/2021] [Indexed: 01/25/2023] Open
Abstract
Importin-(Imp)β family nucleocytoplasmic transport receptors (NTRs) are supposed to bind to their cargoes through interaction between a confined interface on an NTR and a nuclear localization or export signal (NLS/NES) on a cargo. Although consensus NLS/NES sequence motifs have been defined for cargoes of some NTRs, many experimentally identified cargoes of those NTRs lack those motifs, and consensus NLSs/NESs have been reported for only a few NTRs. Crystal structures of NTR-cargo complexes have exemplified 3D structure-dependent binding of cargoes lacking a consensus NLS/NES to different sites on an NTR. Since only a limited number of NTR-cargo interactions have been studied, whether most cargoes lacking a consensus NLS/NES bind to the same confined interface or to various sites on an NTR is still unclear. Addressing this issue, we generated four mutants of transportin-(Trn)SR, of which many cargoes lack a consensus NLS, and eight mutants of Imp13, where no consensus NLS has been defined, and we analyzed their binding to as many as 40 cargo candidates that we previously identified by a nuclear import reaction-based method. The cargoes bind differently to the NTR mutants, suggesting that positions on an NTR contribute differently to the binding of respective cargoes.
Collapse
Affiliation(s)
- Makoto Kimura
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan.
| | - Kenichiro Imai
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.
| | - Yuriko Morinaka
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Yoshiko Hosono-Sakuma
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Paul Horton
- Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - Naoko Imamoto
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan.
| |
Collapse
|
15
|
Brandi V, Polticelli F. In Silico Analysis of Huntingtin Homologs in Lower Eukaryotes. Int J Mol Sci 2021; 22:3214. [PMID: 33809947 PMCID: PMC8004120 DOI: 10.3390/ijms22063214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
Huntington's disease is a rare neurodegenerative and autosomal dominant disorder. HD is caused by a mutation in the gene coding for huntingtin (Htt). The result is the production of a mutant Htt with an abnormally long polyglutamine repeat that leads to pathological Htt aggregates. Although the structure of human Htt has been determined, albeit at low resolution, its functions and how they are performed are largely unknown. Moreover, there is little information on the structure and function of Htt in other organisms. The comparison of Htt homologs can help to understand if there is a functional conservation of domains in the evolution of Htt in eukaryotes. In this work, through a computational approach, Htt homologs from lower eukaryotes have been analysed, identifying ordered domains and modelling their structure. Based on the structural models, a putative function for most of the domains has been predicted. A putative C. elegans Htt-like protein has also been analysed following the same approach. The results obtained support the notion that this protein is a orthologue of human Htt.
Collapse
Affiliation(s)
| | - Fabio Polticelli
- Department of Sciences, Roma Tre University, 00146 Rome, Italy;
- National Institute of Nuclear Physics, Roma Tre Section, 00146 Rome, Italy
| |
Collapse
|
16
|
Gonzalez A, Mannen T, Çağatay T, Fujiwara A, Matsumura H, Niesman AB, Brautigam CA, Chook YM, Yoshizawa T. Mechanism of karyopherin-β2 binding and nuclear import of ALS variants FUS(P525L) and FUS(R495X). Sci Rep 2021; 11:3754. [PMID: 33580145 PMCID: PMC7881136 DOI: 10.1038/s41598-021-83196-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/29/2021] [Indexed: 02/06/2023] Open
Abstract
Mutations in the RNA-binding protein FUS cause familial amyotropic lateral sclerosis (ALS). Several mutations that affect the proline-tyrosine nuclear localization signal (PY-NLS) of FUS cause severe juvenile ALS. FUS also undergoes liquid-liquid phase separation (LLPS) to accumulate in stress granules when cells are stressed. In unstressed cells, wild type FUS resides predominantly in the nucleus as it is imported by the importin Karyopherin-β2 (Kapβ2), which binds with high affinity to the C-terminal PY-NLS of FUS. Here, we analyze the interactions between two ALS-related variants FUS(P525L) and FUS(R495X) with importins, especially Kapβ2, since they are still partially localized to the nucleus despite their defective/missing PY-NLSs. The crystal structure of the Kapβ2·FUS(P525L)PY-NLS complex shows the mutant peptide making fewer contacts at the mutation site, explaining decreased affinity for Kapβ2. Biochemical analysis revealed that the truncated FUS(R495X) protein, although missing the PY-NLS, can still bind Kapβ2 and suppresses LLPS. FUS(R495X) uses its C-terminal tandem arginine-glycine-glycine regions, RGG2 and RGG3, to bind the PY-NLS binding site of Kapβ2 for nuclear localization in cells when arginine methylation is inhibited. These findings suggest the importance of the C-terminal RGG regions in nuclear import and LLPS regulation of ALS variants of FUS that carry defective PY-NLSs.
Collapse
Affiliation(s)
- Abner Gonzalez
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Taro Mannen
- College of Life Sciences, Ritsumeikan University, Shiga, Japan
| | - Tolga Çağatay
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ayano Fujiwara
- College of Life Sciences, Ritsumeikan University, Shiga, Japan
| | | | - Ashley B Niesman
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chad A Brautigam
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | | |
Collapse
|
17
|
Swale C, Da Costa B, Sedano L, Garzoni F, McCarthy AA, Berger I, Bieniossek C, Ruigrok RWH, Delmas B, Crépin T. X-ray Structure of the Human Karyopherin RanBP5, an Essential Factor for Influenza Polymerase Nuclear Trafficking. J Mol Biol 2020; 432:3353-3359. [PMID: 32222384 DOI: 10.1016/j.jmb.2020.03.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/16/2020] [Accepted: 03/22/2020] [Indexed: 12/15/2022]
Abstract
Here, we describe the crystal structures of two distinct isoforms of ligand-free human karyopherin RanBP5 and investigate its global propensity to interact with influenza A virus polymerase. Our results confirm the general architecture and mechanism of the IMB3 karyopherin-β subfamily whilst also highlighting differences with the yeast orthologue Kap121p. Moreover, our results provide insight into the structural flexibility of β-importins in the unbound state. Based on docking of a nuclear localisation sequence, point mutations were designed, which suppress influenza PA-PB1 subcomplex binding to RanBP5 in a binary protein complementation assay.
Collapse
Affiliation(s)
- Christopher Swale
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France; EMBL Grenoble Outstation, 71 Avenue des Martyrs, BP181, F-38042 Grenoble Cedex 9, France
| | - Bruno Da Costa
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Laura Sedano
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Frédéric Garzoni
- EMBL Grenoble Outstation, 71 Avenue des Martyrs, BP181, F-38042 Grenoble Cedex 9, France
| | - Andrew A McCarthy
- EMBL Grenoble Outstation, 71 Avenue des Martyrs, BP181, F-38042 Grenoble Cedex 9, France
| | - Imre Berger
- EMBL Grenoble Outstation, 71 Avenue des Martyrs, BP181, F-38042 Grenoble Cedex 9, France; Max Planck Centre for Minimal Biology, University of Bristol, Clifton BS8 1TD, United Kingdom
| | - Christoph Bieniossek
- Roche Innovation Centre, Basel, Switzerland F. Hoffmann-La Roche AG, Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Rob W H Ruigrok
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Bernard Delmas
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Thibaut Crépin
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France.
| |
Collapse
|
18
|
Blus BJ, Koh J, Krolak A, Seo HS, Coutavas E, Blobel G. Allosteric modulation of nucleoporin assemblies by intrinsically disordered regions. SCIENCE ADVANCES 2019; 5:eaax1836. [PMID: 31807700 PMCID: PMC6881172 DOI: 10.1126/sciadv.aax1836] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/25/2019] [Indexed: 05/12/2023]
Abstract
Intrinsically disordered regions (IDRs) of proteins are implicated in key macromolecular interactions. However, the molecular forces underlying IDR function within multicomponent assemblies remain elusive. By combining thermodynamic and structural data, we have discovered an allostery-based mechanism regulating the soluble core region of the nuclear pore complex (NPC) composed of nucleoporins Nup53, Nic96, and Nup157. We have identified distinct IDRs in Nup53 that are functionally coupled when binding to partner nucleoporins and karyopherins (Kaps) involved in NPC assembly and nucleocytoplasmic transport. We show that the Nup53·Kap121 complex forms an ensemble of structures that destabilize Nup53 hub interactions. Our study provides a molecular framework for understanding how disordered and folded domains communicate within macromolecular complexes.
Collapse
Affiliation(s)
- Bartlomiej Jan Blus
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
- Corresponding author.
| | - Junseock Koh
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Aleksandra Krolak
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Elias Coutavas
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Günter Blobel
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
19
|
Palma M, Riffo EN, Suganuma T, Washburn MP, Workman JL, Pincheira R, Castro AF. Identification of a nuclear localization signal and importin beta members mediating NUAK1 nuclear import inhibited by oxidative stress. J Cell Biochem 2019; 120:16088-16107. [PMID: 31090959 DOI: 10.1002/jcb.28890] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/14/2019] [Accepted: 02/21/2019] [Indexed: 12/21/2022]
Abstract
NUAK1 is a serine/threonine kinase member of the AMPK-α family. NUAK1 regulates several processes in tumorigenesis; however, its regulation and molecular targets are still poorly understood. Bioinformatics analysis predicted that the majority of NUAK1 localizes in the nucleus. However, there are no studies about the regulation of NUAK1 subcellular distribution. Here, we analyzed NUAK1 localization in several human cell lines, mouse embryo fibroblasts, and normal mouse tissues. We found that NUAK1 is located in the nucleus and also in the cytoplasm. Through bioinformatics analysis and studies comparing subcellular localization of wild type and NUAK1 mutants, we identified a conserved bipartite nuclear localization signal at the N-terminal domain of NUAK1. Based on mass spectrometry analysis, we found that NUAK1 interacts with importin-β members including importin-β1 (KPNB1), importin-7 (IPO7), and importin-9 (IPO9). We confirmed that importin-β members are responsible for NUAK1 nuclear import through the inhibition of importin-β by Importazole and the knockdown of either IPO7 or IPO9. In addition, we found that oxidative stress induces NUAK1 cytoplasmic accumulation, indicating that oxidative stress affects NUAK1 nuclear transport. Thus, our study is the first evidence of an active nuclear transport mechanism regulating NUAK1 subcellular localization. These data will lead to investigations of the molecular targets of NUAK1 according to its subcellular distribution, which could be new biomarkers or targets for cancer therapies.
Collapse
Affiliation(s)
- Mario Palma
- Departamento de Bioquímica y Biología Molecular, Laboratorio de Transducción de Señales y Cáncer, Facultad Cs. Biológicas, Universidad de Concepción, Concepción, Chile
| | - Elizabeth N Riffo
- Departamento de Bioquímica y Biología Molecular, Laboratorio de Transducción de Señales y Cáncer, Facultad Cs. Biológicas, Universidad de Concepción, Concepción, Chile
| | - Tamaki Suganuma
- Stowers Institute for Medical Research, Kansas City, Missouri
| | - Michael P Washburn
- Stowers Institute for Medical Research, Kansas City, Missouri
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, Kansas
| | - Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, Missouri
| | - Roxana Pincheira
- Departamento de Bioquímica y Biología Molecular, Laboratorio de Transducción de Señales y Cáncer, Facultad Cs. Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ariel F Castro
- Departamento de Bioquímica y Biología Molecular, Laboratorio de Transducción de Señales y Cáncer, Facultad Cs. Biológicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
20
|
Abstract
The nuclear pore complex (NPC) serves as the sole bidirectional gateway of macromolecules in and out of the nucleus. Owing to its size and complexity (∼1,000 protein subunits, ∼110 MDa in humans), the NPC has remained one of the foremost challenges for structure determination. Structural studies have now provided atomic-resolution crystal structures of most nucleoporins. The acquisition of these structures, combined with biochemical reconstitution experiments, cross-linking mass spectrometry, and cryo-electron tomography, has facilitated the determination of the near-atomic overall architecture of the symmetric core of the human, fungal, and algal NPCs. Here, we discuss the insights gained from these new advances and outstanding issues regarding NPC structure and function. The powerful combination of bottom-up and top-down approaches toward determining the structure of the NPC offers a paradigm for uncovering the architectures of other complex biological machines to near-atomic resolution.
Collapse
Affiliation(s)
- Daniel H Lin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| | - André Hoelz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| |
Collapse
|
21
|
Padavannil A, Sarkar P, Kim SJ, Cagatay T, Jiou J, Brautigam CA, Tomchick DR, Sali A, D'Arcy S, Chook YM. Importin-9 wraps around the H2A-H2B core to act as nuclear importer and histone chaperone. eLife 2019; 8:e43630. [PMID: 30855230 PMCID: PMC6453568 DOI: 10.7554/elife.43630] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/09/2019] [Indexed: 01/29/2023] Open
Abstract
We report the crystal structure of nuclear import receptor Importin-9 bound to its cargo, the histones H2A-H2B. Importin-9 wraps around the core, globular region of H2A-H2B to form an extensive interface. The nature of this interface coupled with quantitative analysis of deletion mutants of H2A-H2B suggests that the NLS-like sequences in the H2A-H2B tails play a minor role in import. Importin-9•H2A-H2B is reminiscent of interactions between histones and histone chaperones in that it precludes H2A-H2B interactions with DNA and H3-H4 as seen in the nucleosome. Like many histone chaperones, which prevent inappropriate non-nucleosomal interactions, Importin-9 also sequesters H2A-H2B from DNA. Importin-9 appears to act as a storage chaperone for H2A-H2B while escorting it to the nucleus. Surprisingly, RanGTP does not dissociate Importin-9•H2A-H2B but assembles into a RanGTP•Importin-9•H2A-H2B complex. The presence of Ran in the complex, however, modulates Imp9-H2A-H2B interactions to facilitate its dissociation by DNA and assembly into a nucleosome.
Collapse
Affiliation(s)
- Abhilash Padavannil
- Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Prithwijit Sarkar
- Department of Biological SciencesUniversity of Texas at DallasRichardsonUnited States
| | - Seung Joong Kim
- Department of PhysicsKorea Advanced Institute of Science and Technology (KAIST)DaejeonKorea
| | - Tolga Cagatay
- Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Jenny Jiou
- Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Chad A Brautigam
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Diana R Tomchick
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative BiosciencesUniversity of California, San FranciscoSan FranciscoUnited States
- Department of Pharmaceutical Chemistry, California Institute for Quantitative BiosciencesUniversity of California, San FranciscoSan FranciscoUnited states
| | - Sheena D'Arcy
- Department of Chemistry and BiochemistryUniversity of Texas at DallasRichardsonUnited States
| | - Yuh Min Chook
- Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
22
|
Yoshizawa T, Ali R, Jiou J, Fung HYJ, Burke KA, Kim SJ, Lin Y, Peeples WB, Saltzberg D, Soniat M, Baumhardt JM, Oldenbourg R, Sali A, Fawzi NL, Rosen MK, Chook YM. Nuclear Import Receptor Inhibits Phase Separation of FUS through Binding to Multiple Sites. Cell 2019; 173:693-705.e22. [PMID: 29677513 DOI: 10.1016/j.cell.2018.03.003] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 11/29/2017] [Accepted: 02/28/2018] [Indexed: 01/04/2023]
Abstract
Liquid-liquid phase separation (LLPS) is believed to underlie formation of biomolecular condensates, cellular compartments that concentrate macromolecules without surrounding membranes. Physical mechanisms that control condensate formation/dissolution are poorly understood. The RNA-binding protein fused in sarcoma (FUS) undergoes LLPS in vitro and associates with condensates in cells. We show that the importin karyopherin-β2/transportin-1 inhibits LLPS of FUS. This activity depends on tight binding of karyopherin-β2 to the C-terminal proline-tyrosine nuclear localization signal (PY-NLS) of FUS. Nuclear magnetic resonance (NMR) analyses reveal weak interactions of karyopherin-β2 with sequence elements and structural domains distributed throughout the entirety of FUS. Biochemical analyses demonstrate that most of these same regions also contribute to LLPS of FUS. The data lead to a model where high-affinity binding of karyopherin-β2 to the FUS PY-NLS tethers the proteins together, allowing multiple, distributed weak intermolecular contacts to disrupt FUS self-association, blocking LLPS. Karyopherin-β2 may act analogously to control condensates in diverse cellular contexts.
Collapse
Affiliation(s)
- Takuya Yoshizawa
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rustam Ali
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jenny Jiou
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ho Yee Joyce Fung
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kathleen A Burke
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Seung Joong Kim
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuan Lin
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute (HHMI) Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - William B Peeples
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute (HHMI) Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Daniel Saltzberg
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael Soniat
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jordan M Baumhardt
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rudolf Oldenbourg
- Marine Biological Laboratories, 7 MBL Street, Woods Hole, MA 02543, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nicolas L Fawzi
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Michael K Rosen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute (HHMI) Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute (HHMI) Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| |
Collapse
|
23
|
Mohl G, Liddle N, Nygaard J, Dorius A, Lyons N, Hodek J, Weber J, Michaelis DJ, Busath DD. Novel influenza inhibitors designed to target PB1 interactions with host importin RanBP5. Antiviral Res 2019; 164:81-90. [PMID: 30742842 DOI: 10.1016/j.antiviral.2019.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/30/2019] [Accepted: 02/03/2019] [Indexed: 11/19/2022]
Abstract
In search of novel targets for influenza inhibitors, a site on PB1 was selected for its high conservation and probable interaction with a host protein, RanBP5, that is key to nuclear import of PB1, where it complexes with PB2, PA, and NP to transcribe viral RNA. Docking with libraries of drug-like compounds led to a selection of five candidates that bound tightly and with a pose likely to inhibit protein binding. These were purchased and tested in vitro, found to be active, and then one was synthetically expanded to explore the structure-activity relationship. The top candidates had a carboxylic acid converted to an ester and electron-withdrawing substituents added to a phenyl group in the original structure. Resistance was slow to develop, but cytotoxicity was moderately high. Nuclear localization of PB1 and in vitro polymerase activity were both strongly inhibited.
Collapse
Affiliation(s)
- Gregory Mohl
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Nathan Liddle
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Joseph Nygaard
- Department of Chemistry and Biochemistry, Brigham Young University, USA
| | - Alexander Dorius
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Nathan Lyons
- Department of Chemistry and Biochemistry, Brigham Young University, USA
| | - Jan Hodek
- Institute of Organic Chemistry and Biochemistry of the CAS, Prague, Czech Republic
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry of the CAS, Prague, Czech Republic
| | - David J Michaelis
- Department of Chemistry and Biochemistry, Brigham Young University, USA.
| | - David D Busath
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
24
|
Yoon J, Kim SJ, An S, Cho S, Leitner A, Jung T, Aebersold R, Hebert H, Cho US, Song JJ. Integrative Structural Investigation on the Architecture of Human Importin4_Histone H3/H4_Asf1a Complex and Its Histone H3 Tail Binding. J Mol Biol 2018; 430:822-841. [DOI: 10.1016/j.jmb.2018.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 11/15/2022]
|
25
|
Cutler AA, Jackson JB, Corbett AH, Pavlath GK. Non-equivalence of nuclear import among nuclei in multinucleated skeletal muscle cells. J Cell Sci 2018; 131:jcs.207670. [PMID: 29361530 DOI: 10.1242/jcs.207670] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 12/21/2017] [Indexed: 01/01/2023] Open
Abstract
Skeletal muscle is primarily composed of large myofibers containing thousands of post-mitotic nuclei distributed throughout a common cytoplasm. Protein production and localization in specialized myofiber regions is crucial for muscle function. Myonuclei differ in transcriptional activity and protein accumulation, but how these differences among nuclei sharing a cytoplasm are achieved is unknown. Regulated nuclear import of proteins is one potential mechanism for regulating transcription spatially and temporally in individual myonuclei. The best-characterized nuclear localization signal (NLS) in proteins is the classical NLS (cNLS), but many other NLS motifs exist. We examined cNLS and non-cNLS reporter protein import using multinucleated muscle cells generated in vitro, revealing that cNLS and non-cNLS nuclear import differs among nuclei in the same cell. Investigation of cNLS nuclear import rates in isolated myofibers ex vivo confirmed differences in nuclear import rates among myonuclei. Analyzing nuclear import throughout myogenesis revealed that cNLS and non-cNLS import varies during differentiation. Taken together, our results suggest that both spatial and temporal regulation of nuclear import pathways are important in muscle cell differentiation and protein regionalization in myofibers.
Collapse
Affiliation(s)
- Alicia A Cutler
- Department of Pharmacology, Emory University, Atlanta, GA 30322, USA.,Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, GA 30322, USA
| | | | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Grace K Pavlath
- Department of Pharmacology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
26
|
Karyopherins in cancer. Curr Opin Cell Biol 2018; 52:30-42. [PMID: 29414591 DOI: 10.1016/j.ceb.2018.01.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/08/2018] [Accepted: 01/14/2018] [Indexed: 12/16/2022]
Abstract
Malfunction of nuclear-cytoplasmic transport contributes to many diseases including cancer. Defective nuclear transport leads to changes in both the physiological levels and temporal-spatial location of tumor suppressors, proto-oncogenes and other macromolecules that in turn affect the tumorigenesis process and drug sensitivity of cancer cells. In addition to their nuclear transport functions in interphase, Karyopherin nuclear transport receptors also have important roles in mitosis and chromosomal integrity. Therefore, alterations in the expressions or regular functions of Karyopherins may have substantial effects on the course and outcome of diseases.
Collapse
|
27
|
Clerman A, Noor Z, Fishelevich R, Lockatell V, Hampton BS, Shah NG, Salcedo MV, Todd NW, Atamas SP, Luzina IG. The full-length interleukin-33 (FLIL33)-importin-5 interaction does not regulate nuclear localization of FLIL33 but controls its intracellular degradation. J Biol Chem 2017; 292:21653-21661. [PMID: 29127199 DOI: 10.1074/jbc.m117.807636] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/31/2017] [Indexed: 12/20/2022] Open
Abstract
Human mature IL-33 is a member of the IL-1 family and a potent regulator of immunity through its pro-T helper cell 2 activity. Its precursor form, full-length interleukin-33 (FLIL33), is an intranuclear protein in many cell types, including fibroblasts, and its intracellular levels can change in response to stimuli. However, the mechanisms controlling the nuclear localization of FLIL33 or its stability in cells are not understood. Here, we identified importin-5 (IPO5), a member of the importin family of nuclear transport proteins, as an intracellular binding partner of FLIL33. By overexpressing various FLIL33 protein segments and variants in primary human lung fibroblasts and HEK293T cells, we show that FLIL33, but not mature interleukin-33, physically interacts with IPO5 and that this interaction localizes to a cluster of charged amino acids (positions 46-56) but not to an adjacent segment (positions 61-67) in the FLIL33 N-terminal region. siRNA-mediated IPO5 knockdown in cell culture did not affect nuclear localization of FLIL33. However, the IPO5 knockdown significantly decreased the intracellular levels of overexpressed FLIL33, reversed by treatment with the 20S proteasome inhibitor bortezomib. Furthermore, FLIL33 variants deficient in IPO5 binding remained intranuclear and exhibited decreased levels, which were also restored by the bortezomib treatment. These results indicate that the interaction between FLIL33 and IPO5 is localized to a specific segment of the FLIL33 protein, is not required for nuclear localization of FLIL33, and protects FLIL33 from proteasome-dependent degradation.
Collapse
Affiliation(s)
| | | | | | | | - Brian S Hampton
- the Center for Vascular and Inflammatory Diseases & Center for Innovative Biomedical Resources, University of Maryland School of Medicine, Baltimore, Maryland 21201 and
| | | | | | - Nevins W Todd
- From the Department of Medicine and.,the Research Service, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201
| | - Sergei P Atamas
- From the Department of Medicine and .,the Research Service, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201
| | - Irina G Luzina
- From the Department of Medicine and.,the Research Service, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201
| |
Collapse
|
28
|
Mirallas O, Ballega E, Samper-Martín B, García-Márquez S, Carballar R, Ricco N, Jiménez J, Clotet J. Intertwined control of the cell cycle and nucleocytoplasmic transport by the cyclin-dependent kinase Pho85 and RanGTPase Gsp1 in Saccharomyces cerevisiae. Microbiol Res 2017; 206:168-176. [PMID: 29146254 DOI: 10.1016/j.micres.2017.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/09/2017] [Accepted: 10/17/2017] [Indexed: 10/18/2022]
Abstract
Deciphering the molecular mechanisms that connect cell cycle progression and nucleocytoplasmic transport is of particular interest: this intertwined relationship, once understood, may provide useful insight on the diseases resulting from the malfunction of these processes. In the present study we report on findings that indicate a biochemical connection between the cell cycle regulator CDK Pho85 and Ran-GTPase Gsp1, an essential nucleocytoplasmic transport component. When Gsp1 cannot be phosphorylated by Pho85, the cell cycle progression is impaired. Accordingly, a nonphosphorylatable version of Gsp1 abnormally localizes to the nucleus, which impairs the nuclear transport of molecules, including key components of cell cycle progression. Furthermore, our results suggest that the physical interaction of Gsp1 and the Kap95 karyopherin, essential to the release of nuclear cargoes, is altered. Altogether, the present findings point to the involvement of a biochemical mechanism in the interlocked regulation of the cell cycle and nuclear transport.
Collapse
Affiliation(s)
- Oriol Mirallas
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Elisabet Ballega
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Bàrbara Samper-Martín
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Sergio García-Márquez
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Reyes Carballar
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Natalia Ricco
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Javier Jiménez
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain.
| | - Josep Clotet
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain.
| |
Collapse
|
29
|
An S, Yoon J, Kim H, Song JJ, Cho US. Structure-based nuclear import mechanism of histones H3 and H4 mediated by Kap123. eLife 2017; 6:30244. [PMID: 29035199 PMCID: PMC5677370 DOI: 10.7554/elife.30244] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/12/2017] [Indexed: 01/03/2023] Open
Abstract
Kap123, a major karyopherin protein of budding yeast, recognizes the nuclear localization signals (NLSs) of cytoplasmic histones H3 and H4 and translocates them into the nucleus during DNA replication. Mechanistic questions include H3- and H4-NLS redundancy toward Kap123 and the role of the conserved diacetylation of cytoplasmic H4 (K5ac and K12ac) in Kap123-mediated histone nuclear translocation. Here, we report crystal structures of full-length Kluyveromyces lactis Kap123 alone and in complex with H3- and H4-NLSs. Structures reveal the unique feature of Kap123 that possesses two discrete lysine-binding pockets for NLS recognition. Structural comparison illustrates that H3- and H4-NLSs share at least one of two lysine-binding pockets, suggesting that H3- and H4-NLSs are mutually exclusive. Additionally, acetylation of key lysine residues at NLS, particularly H4-NLS diacetylation, weakens the interaction with Kap123. These data support that cytoplasmic histone H4 diacetylation weakens the Kap123-H4-NLS interaction thereby facilitating histone Kap123-H3-dependent H3:H4/Asf1 complex nuclear translocation.
Collapse
Affiliation(s)
- Sojin An
- Department of Biological Chemistry, University of Michigan Medical School, Michigan, United States
| | - Jungmin Yoon
- Structural Biology Laboratory of Epigenetics, Department of Biological Sciences, Graduate school of Nanoscience and Technology (World Class University), KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hanseong Kim
- Department of Biological Chemistry, University of Michigan Medical School, Michigan, United States
| | - Ji-Joon Song
- Structural Biology Laboratory of Epigenetics, Department of Biological Sciences, Graduate school of Nanoscience and Technology (World Class University), KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Uhn-Soo Cho
- Department of Biological Chemistry, University of Michigan Medical School, Michigan, United States
| |
Collapse
|
30
|
Brandi V, Di Lella V, Marino M, Ascenzi P, Polticelli F. A comprehensive in silico analysis of huntingtin and its interactome. J Biomol Struct Dyn 2017; 36:3155-3171. [PMID: 28920551 DOI: 10.1080/07391102.2017.1381646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A polyglutamine expansion of the N-terminal region of huntingtin (Htt) causes Huntington's disease, a severe neurodegenerative disorder. Htt huge multidomain structure, the presence of disordered regions, and the lack of sequence homologs of known structure, so far prevented structural studies of Htt, making the study of its structure-function relationships very difficult. In this work, the presence and location of five Htt ordered domains (named from Hunt1 to Hunt5) has been detected and the structure of these domains has been predicted for the first time using a combined threading/ab initio modeling approach. This work has led to the identification of a previously undetected HEAT repeats region in the Hunt3 domain. Furthermore, a putative function has been assigned to four out of the five domains. Hunt1 and Hunt5, displaying structural similarity with the regulatory subunit A of protein phosphatase 2A, are predicted to play a role in regulating the phosphorylation status of cellular proteins. Hunt2 and Hunt3 are predicted to be homologs of two yeast importins and to mediate vescicles transport and protein trafficking. Finally, a comprehensive analysis of the Htt interactome has been carried out and is discussed to provide a global picture of the Htt's structure-function relationships.
Collapse
Affiliation(s)
- Valentina Brandi
- a Department of Sciences , Roma Tre University, Viale Guglielmo Marconi 446 , Roma I-00146 , Italy
| | - Valentina Di Lella
- a Department of Sciences , Roma Tre University, Viale Guglielmo Marconi 446 , Roma I-00146 , Italy
| | - Maria Marino
- a Department of Sciences , Roma Tre University, Viale Guglielmo Marconi 446 , Roma I-00146 , Italy
| | - Paolo Ascenzi
- a Department of Sciences , Roma Tre University, Viale Guglielmo Marconi 446 , Roma I-00146 , Italy.,b Interdepartmental Laboratory for Electron Microscopy , Roma Tre University , Roma I-00146 , Italy
| | - Fabio Polticelli
- a Department of Sciences , Roma Tre University, Viale Guglielmo Marconi 446 , Roma I-00146 , Italy.,c National Institute of Nuclear Physics , Roma Tre University, Roma Tre Section , Roma I-00146 , Italy
| |
Collapse
|
31
|
Kim YH, Han ME, Oh SO. The molecular mechanism for nuclear transport and its application. Anat Cell Biol 2017; 50:77-85. [PMID: 28713609 PMCID: PMC5509903 DOI: 10.5115/acb.2017.50.2.77] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/31/2017] [Indexed: 12/30/2022] Open
Abstract
Transportation between the cytoplasm and the nucleoplasm is critical for many physiological and pathophysiological processes including gene expression, signal transduction, and oncogenesis. So, the molecular mechanism for the transportation needs to be studied not only to understand cell physiological processes but also to develop new diagnostic and therapeutic targets. Recent progress in the research of the nuclear transportation (import and export) via nuclear pore complex and four important factors affecting nuclear transport (nucleoporins, Ran, karyopherins, and nuclear localization signals/nuclear export signals) will be discussed. Moreover, the clinical significance of nuclear transport and its application will be reviewed. This review will provide some critical insight for the molecular design of therapeutics which need to be targeted inside the nucleus.
Collapse
Affiliation(s)
- Yun Hak Kim
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Korea.,BEER, Busan Society of Evidence-Based mEdicine and Research, Busan, Korea.,Gene and Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Yangsan, Korea
| | - Myoung-Eun Han
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Korea.,Gene and Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Yangsan, Korea
| | - Sae-Ock Oh
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Korea.,Gene and Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Yangsan, Korea
| |
Collapse
|
32
|
Kimura M, Morinaka Y, Imai K, Kose S, Horton P, Imamoto N. Extensive cargo identification reveals distinct biological roles of the 12 importin pathways. eLife 2017; 6:e21184. [PMID: 28117667 PMCID: PMC5305215 DOI: 10.7554/elife.21184] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/17/2017] [Indexed: 12/31/2022] Open
Abstract
Vast numbers of proteins are transported into and out of the nuclei by approximately 20 species of importin-β family nucleocytoplasmic transport receptors. However, the significance of the multiple parallel transport pathways that the receptors constitute is poorly understood because only limited numbers of cargo proteins have been reported. Here, we identified cargo proteins specific to the 12 species of human import receptors with a high-throughput method that employs stable isotope labeling with amino acids in cell culture, an in vitro reconstituted transport system, and quantitative mass spectrometry. The identified cargoes illuminated the manner of cargo allocation to the receptors. The redundancies of the receptors vary widely depending on the cargo protein. Cargoes of the same receptor are functionally related to one another, and the predominant protein groups in the cargo cohorts differ among the receptors. Thus, the receptors are linked to distinct biological processes by the nature of their cargoes.
Collapse
Affiliation(s)
| | | | - Kenichiro Imai
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Shingo Kose
- Cellular Dynamics Laboratory, RIKEN, Wako, Japan
| | - Paul Horton
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | | |
Collapse
|
33
|
Hirano H, Kobayashi J, Matsuura Y. Structures of the Karyopherins Kap121p and Kap60p Bound to the Nuclear Pore-Targeting Domain of the SUMO Protease Ulp1p. J Mol Biol 2016; 429:249-260. [PMID: 27939291 DOI: 10.1016/j.jmb.2016.11.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 11/25/2016] [Accepted: 11/29/2016] [Indexed: 01/23/2023]
Abstract
The budding yeast small ubiquitin-like modifier (SUMO) protease Ulp1p catalyzes both the processing of newly synthesized SUMO to its mature form and the deconjugation of SUMO from target proteins, thereby regulating a wide range of cellular processes including cell division, DNA repair, DNA replication, transcription, and mRNA quality control. Ulp1p is localized primarily at the nuclear pore complex (NPC) through interactions involving the karyopherins Kap121p and Kap95p-Kap60p heterodimer and a subset of nuclear pore-associated proteins. The sequestration of Ulp1p at the nuclear periphery is crucial for the proper control of protein desumoylation. To gain insights into the role of the karyopherins in regulating the localization of Ulp1p, we have determined the crystal structures of Kap121p and Kap60p bound to the N-terminal non-catalytic domain of Ulp1p that is necessary and sufficient for NPC targeting. Contrary to a previous proposal that Ulp1p is tethered to the transport channel of the NPC through unconventional interactions with the karyopherins, our structures reveal that Ulp1p has canonical nuclear localization signals (NLSs): (1) an isoleucine-lysine-NLS (residues 51-55) that binds to the NLS-binding site of Kap121p, and (2) a classical bipartite NLS (residues 154-172) that binds to the major and minor NLS-binding sites of Kap60p. Ulp1p also binds Kap95p directly, and the Ulp1p-Kap95p binding is enhanced by the importin-β-binding domain of Kap60p. GTP-bound Gsp1p (the yeast Ran ortholog) and the exportin Cse1p cooperate to release Ulp1p from the karyopherins, indicating that the stable sequestration of Ulp1p to the NPC would require a karyopherin-independent mechanism to anchor Ulp1p at the NPC.
Collapse
Affiliation(s)
- Hidemi Hirano
- Division of Biological Science, Graduate School of Science, Nagoya University, 464-8602, Japan; Structural Biology Research Center, Graduate School of Science, Nagoya University, 464-8602, Japan
| | - Junya Kobayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, 464-8602, Japan
| | - Yoshiyuki Matsuura
- Division of Biological Science, Graduate School of Science, Nagoya University, 464-8602, Japan; Structural Biology Research Center, Graduate School of Science, Nagoya University, 464-8602, Japan.
| |
Collapse
|
34
|
Soniat M, Cağatay T, Chook YM. Recognition Elements in the Histone H3 and H4 Tails for Seven Different Importins. J Biol Chem 2016; 291:21171-21183. [PMID: 27528606 DOI: 10.1074/jbc.m116.730218] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Indexed: 12/12/2022] Open
Abstract
N-terminal tails of histones H3 and H4 are known to bind several different Importins to import the histones into the cell nucleus. However, it is not known what binding elements in the histone tails are recognized by the individual Importins. Biochemical studies of H3 and H4 tails binding to seven Importins, Impβ, Kapβ2, Imp4, Imp5, Imp7, Imp9, and Impα, show the H3 tail binding more tightly than the H4 tail. The H3 tail binds Kapβ2 and Imp5 with KD values of 77 and 57 nm, respectively, and binds the other five Importins more weakly. Mutagenic analysis shows H3 tail residues 11-27 to be the sole binding segment for Impβ, Kapβ2, and Imp4. However, Imp5, Imp7, Imp9, and Impα bind two separate elements in the H3 tail: the segment at residues 11-27 and an isoleucine-lysine nuclear localization signal (IK-NLS) motif at residues 35-40. The H4 tail also uses either one or two basic segments to bind the same set of Importins with a similar trend of relative affinities as the H3 tail, albeit at least 10-fold weaker. Of the many lysine residues in the H3 and H4 tails, only acetylation of the H3 Lys14 substantially decreased binding to several Importins. Lastly, we show that, in addition to the N-terminal tails, the histone fold domains of H3 and H4 and/or the histone chaperone Asf1b are important for Importin-histone recognition.
Collapse
Affiliation(s)
- Michael Soniat
- From the Department of Pharmacology, University of Texas Southwestern, Dallas, Texas 75390
| | - Tolga Cağatay
- From the Department of Pharmacology, University of Texas Southwestern, Dallas, Texas 75390
| | - Yuh Min Chook
- From the Department of Pharmacology, University of Texas Southwestern, Dallas, Texas 75390
| |
Collapse
|
35
|
Importin 8 mediates m7G cap-sensitive nuclear import of the eukaryotic translation initiation factor eIF4E. Proc Natl Acad Sci U S A 2016; 113:5263-8. [PMID: 27114554 DOI: 10.1073/pnas.1524291113] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Regulation of nuclear-cytoplasmic trafficking of oncoproteins is critical for growth homeostasis. Dysregulated trafficking contributes to malignancy, whereas understanding the process can reveal unique therapeutic opportunities. Here, we focus on eukaryotic translation initiation factor 4E (eIF4E), a prooncogenic protein highly elevated in many cancers, including acute myeloid leukemia (AML). Typically, eIF4E is localized to both the nucleus and cytoplasm, where it acts in export and translation of specific methyl 7-guanosine (m(7)G)-capped mRNAs, respectively. Nuclear accumulation of eIF4E in patients who have AML is correlated with increased eIF4E-dependent export of transcripts encoding oncoproteins. The subcellular localization of eIF4E closely correlates with patients' responses. During clinical responses to the m(7)G-cap competitor ribavirin, eIF4E is mainly cytoplasmic. At relapse, eIF4E reaccumulates in the nucleus, leading to elevated eIF4E-dependent mRNA export. We have identified importin 8 as a factor that directly imports eIF4E into the nucleus. We found that importin 8 is highly elevated in untreated patients with AML, leading to eIF4E nuclear accumulation. Importin 8 only imports cap-free eIF4E. Cap-dependent changes to the structure of eIF4E underpin this selectivity. Indeed, m(7)G cap analogs or ribavirin prevents nuclear entry of eIF4E, which mirrors the trafficking phenotypes observed in patients with AML. Our studies also suggest that nuclear entry is important for the prooncogenic activity of eIF4E, at least in this context. These findings position nuclear trafficking of eIF4E as a critical step in its regulation and position the importin 8-eIF4E complex as a novel therapeutic target.
Collapse
|
36
|
Swale C, Monod A, Tengo L, Labaronne A, Garzoni F, Bourhis JM, Cusack S, Schoehn G, Berger I, Ruigrok RWH, Crépin T. Structural characterization of recombinant IAV polymerase reveals a stable complex between viral PA-PB1 heterodimer and host RanBP5. Sci Rep 2016; 6:24727. [PMID: 27095520 PMCID: PMC4837377 DOI: 10.1038/srep24727] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 04/04/2016] [Indexed: 01/19/2023] Open
Abstract
The genome of influenza A virus (IAV) comprises eight RNA segments (vRNA) which are transcribed and replicated by the heterotrimeric IAV RNA-dependent RNA-polymerase (RdRp). RdRp consists of three subunits (PA, PB1 and PB2) and binds both the highly conserved 3′- and 5′-ends of the vRNA segment. The IAV RdRp is an important antiviral target, but its structural mechanism has remained largely elusive to date. By applying a polyprotein strategy, we produced RdRp complexes and define a minimal human IAV RdRp core complex. We show that PA-PB1 forms a stable heterodimeric submodule that can strongly interact with 5′-vRNA. In contrast, 3′-vRNA recognition critically depends on the PB2 N-terminal domain. Moreover, we demonstrate that PA-PB1 forms a stable and stoichiometric complex with host nuclear import factor RanBP5 that can be modelled using SAXS and we show that the PA-PB1-RanPB5 complex is no longer capable of 5′-vRNA binding. Our results provide further evidence for a step-wise assembly of IAV structural components, regulated by nuclear transport mechanisms and host factor binding.
Collapse
Affiliation(s)
- Christopher Swale
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions, UMI 3265 UJF-EMBL-CNRS, 71 avenue des Martyrs, CS 90181, F-38042 Grenoble Cedex 9, France.,CNRS, Unit of Virus Host Cell Interactions, UMI 3265 UJF-EMBL-CNRS, 71 avenue des Martyrs, CS 90181, F-38042 Grenoble Cedex 9, France.,Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Alexandre Monod
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions, UMI 3265 UJF-EMBL-CNRS, 71 avenue des Martyrs, CS 90181, F-38042 Grenoble Cedex 9, France.,CNRS, Unit of Virus Host Cell Interactions, UMI 3265 UJF-EMBL-CNRS, 71 avenue des Martyrs, CS 90181, F-38042 Grenoble Cedex 9, France
| | - Laura Tengo
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions, UMI 3265 UJF-EMBL-CNRS, 71 avenue des Martyrs, CS 90181, F-38042 Grenoble Cedex 9, France.,CNRS, Unit of Virus Host Cell Interactions, UMI 3265 UJF-EMBL-CNRS, 71 avenue des Martyrs, CS 90181, F-38042 Grenoble Cedex 9, France.,Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Alice Labaronne
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions, UMI 3265 UJF-EMBL-CNRS, 71 avenue des Martyrs, CS 90181, F-38042 Grenoble Cedex 9, France.,CNRS, Unit of Virus Host Cell Interactions, UMI 3265 UJF-EMBL-CNRS, 71 avenue des Martyrs, CS 90181, F-38042 Grenoble Cedex 9, France.,Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Frédéric Garzoni
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions, UMI 3265 UJF-EMBL-CNRS, 71 avenue des Martyrs, CS 90181, F-38042 Grenoble Cedex 9, France.,CNRS, Unit of Virus Host Cell Interactions, UMI 3265 UJF-EMBL-CNRS, 71 avenue des Martyrs, CS 90181, F-38042 Grenoble Cedex 9, France.,EMBL Grenoble, 71 avenue des Martyrs, CS 90181, F-38042 Grenoble Cedex 9, France
| | - Jean-Marie Bourhis
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions, UMI 3265 UJF-EMBL-CNRS, 71 avenue des Martyrs, CS 90181, F-38042 Grenoble Cedex 9, France.,CNRS, Unit of Virus Host Cell Interactions, UMI 3265 UJF-EMBL-CNRS, 71 avenue des Martyrs, CS 90181, F-38042 Grenoble Cedex 9, France.,Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Stephen Cusack
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions, UMI 3265 UJF-EMBL-CNRS, 71 avenue des Martyrs, CS 90181, F-38042 Grenoble Cedex 9, France.,CNRS, Unit of Virus Host Cell Interactions, UMI 3265 UJF-EMBL-CNRS, 71 avenue des Martyrs, CS 90181, F-38042 Grenoble Cedex 9, France.,EMBL Grenoble, 71 avenue des Martyrs, CS 90181, F-38042 Grenoble Cedex 9, France
| | - Guy Schoehn
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions, UMI 3265 UJF-EMBL-CNRS, 71 avenue des Martyrs, CS 90181, F-38042 Grenoble Cedex 9, France.,CNRS, Unit of Virus Host Cell Interactions, UMI 3265 UJF-EMBL-CNRS, 71 avenue des Martyrs, CS 90181, F-38042 Grenoble Cedex 9, France.,Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Imre Berger
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions, UMI 3265 UJF-EMBL-CNRS, 71 avenue des Martyrs, CS 90181, F-38042 Grenoble Cedex 9, France.,CNRS, Unit of Virus Host Cell Interactions, UMI 3265 UJF-EMBL-CNRS, 71 avenue des Martyrs, CS 90181, F-38042 Grenoble Cedex 9, France.,EMBL Grenoble, 71 avenue des Martyrs, CS 90181, F-38042 Grenoble Cedex 9, France.,The School of Biochemistry, University of Bristol, Clifton BS8 1TD, United Kingdom
| | - Rob W H Ruigrok
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions, UMI 3265 UJF-EMBL-CNRS, 71 avenue des Martyrs, CS 90181, F-38042 Grenoble Cedex 9, France.,CNRS, Unit of Virus Host Cell Interactions, UMI 3265 UJF-EMBL-CNRS, 71 avenue des Martyrs, CS 90181, F-38042 Grenoble Cedex 9, France.,Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Thibaut Crépin
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions, UMI 3265 UJF-EMBL-CNRS, 71 avenue des Martyrs, CS 90181, F-38042 Grenoble Cedex 9, France.,CNRS, Unit of Virus Host Cell Interactions, UMI 3265 UJF-EMBL-CNRS, 71 avenue des Martyrs, CS 90181, F-38042 Grenoble Cedex 9, France.,Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| |
Collapse
|
37
|
Cairo L, Wozniak R. The Nuclear Transport Factor Kap121 Is Required for Stability of the Dam1 Complex and Mitotic Kinetochore Bi-orientation. Cell Rep 2016; 14:2440-50. [DOI: 10.1016/j.celrep.2016.02.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 11/04/2015] [Accepted: 02/04/2016] [Indexed: 12/30/2022] Open
|
38
|
Abstract
The Karyopherin-β family of proteins mediates nuclear transport of macromolecules. Nuclear versus cytoplasmic localization of proteins is often suggested by the presence of NLSs (nuclear localization signals) or NESs (nuclear export signals). Import-Karyopherin-βs or Importins bind to NLSs in their protein cargos to transport them through nuclear pore complexes into the nucleus. Until recently, only two classes of NLS had been biochemically and structurally characterized: the classical NLS, which is recognized by the Importin-α/β heterodimer and the PY-NLS (proline-tyrosine NLS), which is recognized by Karyopherin-β2 or Transportin-1. Structures of two other Karyopherin-βs, Kap121 and Transportin-SR2, in complex with their respective cargos were reported for the first time recently, revealing two new distinct classes of NLSs. The present paper briefly describes the classical NLS, reviews recent literature on the PY-NLS and provides in-depth reviews of the two newly discovered classes of NLSs that bind Kap121p and Transportin-SR respectively.
Collapse
|
39
|
Kobayashi J, Hirano H, Matsuura Y. Crystal structure of the karyopherin Kap121p bound to the extreme C-terminus of the protein phosphatase Cdc14p. Biochem Biophys Res Commun 2015; 463:309-14. [PMID: 26022122 DOI: 10.1016/j.bbrc.2015.05.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 05/16/2015] [Indexed: 01/21/2023]
Abstract
In Saccharomyces cerevisiae, the protein phosphatase Cdc14p is an antagonist of mitotic cyclin-dependent kinases and is a key regulator of late mitotic events such as chromosome segregation, spindle disassembly and cytokinesis. The activity of Cdc14p is controlled by cell-cycle dependent changes in its association with its competitive inhibitor Net1p (also known as Cfi1p) in the nucleolus. For most of the cell cycle up to metaphase, Cdc14p is sequestered in the nucleolus in an inactive state. During anaphase, Cdc14p is released from Net1p, spreads into the nucleus and cytoplasm, and dephosphorylates key mitotic targets. Although regulated nucleocytoplasmic shuttling of Cdc14p has been suggested to be important for exit from mitosis, the mechanism underlying Cdc14p nuclear trafficking remains poorly understood. Here we show that the C-terminal region (residues 517-551) of Cdc14p can function as a nuclear localization signal (NLS) in vivo and also binds to Kap121p (also known as Pse1p), an essential nuclear import carrier in yeast, in a Gsp1p-GTP-dependent manner in vitro. Moreover we report a crystal structure, at 2.4 Å resolution, of Kap121p bound to the C-terminal region of Cdc14p. The structure and structure-based mutational analyses suggest that either the last five residues at the extreme C-terminus of Cdc14p (residues 547-551; Gly-Ser-Ile-Lys-Lys) or adjacent residues with similar sequence (residues 540-544; Gly-Gly-Ile-Arg-Lys) can bind to the NLS-binding site of Kap121p, with two residues (Ile in the middle and Lys at the end of the five residues) of Cdc14p making key contributions to the binding specificity. Based on comparison with other structures of Kap121p-ligand complexes, we propose "IK-NLS" as an appropriate term to refer to the Kap121p-specific NLS.
Collapse
Affiliation(s)
- Junya Kobayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Japan
| | - Hidemi Hirano
- Division of Biological Science, Graduate School of Science, Nagoya University, Japan; Structural Biology Research Center, Graduate School of Science, Nagoya University, Japan
| | - Yoshiyuki Matsuura
- Division of Biological Science, Graduate School of Science, Nagoya University, Japan; Structural Biology Research Center, Graduate School of Science, Nagoya University, Japan.
| |
Collapse
|
40
|
Schütz S, Fischer U, Altvater M, Nerurkar P, Peña C, Gerber M, Chang Y, Caesar S, Schubert OT, Schlenstedt G, Panse VG. A RanGTP-independent mechanism allows ribosomal protein nuclear import for ribosome assembly. eLife 2014; 3:e03473. [PMID: 25144938 PMCID: PMC4161973 DOI: 10.7554/elife.03473] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Within a single generation time a growing yeast cell imports ∼14 million ribosomal proteins (r-proteins) into the nucleus for ribosome production. After import, it is unclear how these intrinsically unstable and aggregation-prone proteins are targeted to the ribosome assembly site in the nucleolus. Here, we report the discovery of a conserved nuclear carrier Tsr2 that coordinates transfer of the r-protein eS26 to the earliest assembling pre-ribosome, the 90S. In vitro studies revealed that Tsr2 efficiently dissociates importin:eS26 complexes via an atypical RanGTP-independent mechanism that terminates the import process. Subsequently, Tsr2 binds the released eS26, shields it from proteolysis, and ensures its safe delivery to the 90S pre-ribosome. We anticipate similar carriers—termed here escortins—to securely connect the nuclear import machinery with pathways that deposit r-proteins onto developing pre-ribosomal particles. DOI:http://dx.doi.org/10.7554/eLife.03473.001 The production of a protein in a cell starts with a region of DNA being transcribed to produce a molecule of messenger RNA. A large molecular machine called ribosome then reads the information in the messenger RNA molecule to produce a protein. Ribosomes themselves are made of RNA and several different proteins called r-proteins. The construction of a ribosome starts with the assembly of a pre-ribosome inside the cell nucleus, and the ribosome is completed in the cytosol of the cell. A yeast cell will divide about 30 times during its lifetime, and before each division event a single yeast cell needs to import about 14 million r-proteins into its nucleus in order to make about 200,000 ribosomes. However, many details of this process are mysterious. In particular, many r-proteins are known to be unstable: meaning that, left to their own devices, r-proteins are highly likely to aggregate, which would prevent them becoming part of a ribosome. Now, Schütz et al. have figured out how a carrier protein called Tsr2 makes sure that an r-protein called eS26 does indeed become part of a ribosome. The human disorder known as Diamond-Blackfan anemia is caused by a mutation in the gene for eS26. The eS26 proteins are ferried to the cell nucleus on specialized transport vehicles. Schütz et al. have now shown that the Tsr2 carrier protein unloads the r-protein from the transport vehicle in the nucleus, and then binds it. This means that the r-protein does not form an aggregate. Finally, the Tsr2 carrier protein transfers the r-protein to the pre-ribosome. This is the first time that a carrier protein that unloads an r-protein cargo from its transport vehicle, to ensure safe delivery to the pre-ribosome, has been identified. DOI:http://dx.doi.org/10.7554/eLife.03473.002
Collapse
Affiliation(s)
- Sabina Schütz
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland Molecular Life Science Graduate School, University of Zurich, Zurich, Switzerland
| | - Ute Fischer
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Martin Altvater
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland Molecular Life Science Graduate School, University of Zurich, Zurich, Switzerland
| | - Purnima Nerurkar
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland Molecular Life Science Graduate School, University of Zurich, Zurich, Switzerland
| | - Cohue Peña
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Michaela Gerber
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Yiming Chang
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Stefanie Caesar
- Institute of Medical Biochemistry and Molecular Biology, Universität des Saarlandes, Homburg, Germany
| | - Olga T Schubert
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland Systems Biology Graduate School, Zurich, Zurich, Switzerland
| | - Gabriel Schlenstedt
- Institute of Medical Biochemistry and Molecular Biology, Universität des Saarlandes, Homburg, Germany
| | - Vikram G Panse
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
41
|
Kimura M, Imamoto N. Biological significance of the importin-β family-dependent nucleocytoplasmic transport pathways. Traffic 2014; 15:727-48. [PMID: 24766099 DOI: 10.1111/tra.12174] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 12/19/2022]
Abstract
Importin-β family proteins (Imp-βs) are nucleocytoplasmic transport receptors (NTRs) that import and export proteins and RNAs through the nuclear pores. The family consists of 14-20 members depending on the biological species, and each member transports a specific group of cargoes. Thus, the Imp-βs mediate multiple, parallel transport pathways that can be regulated separately. In fact, the spatiotemporally differential expressions and the functional regulations of Imp-βs have been reported. Additionally, the biological significance of each pathway has been characterized by linking the function of a member of Imp-βs to a cellular consequence. Connecting these concepts, the regulation of the transport pathways conceivably induces alterations in the cellular physiological states. However, few studies have linked the regulation of an importin-β family NTR to an induced cellular response and the corresponding cargoes, despite the significance of this linkage in comprehending the biological relevance of the transport pathways. This review of recent reports on the regulation and biological functions of the Imp-βs highlights the significance of the transport pathways in physiological contexts and points out the possibility that the identification of yet unknown specific cargoes will reinforce the importance of transport regulation.
Collapse
Affiliation(s)
- Makoto Kimura
- Cellular Dynamics Laboratory, RIKEN, Hirosawa 2-1, Wako, Saitama, 351-0198, Japan
| | | |
Collapse
|
42
|
Evidence for an evolutionary relationship between the large adaptor nucleoporin Nup192 and karyopherins. Proc Natl Acad Sci U S A 2014; 111:2530-5. [PMID: 24505056 DOI: 10.1073/pnas.1311081111] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nucleocytoplasmic transport is facilitated by nuclear pore complexes (NPCs), which are massive proteinaceous transport channels embedded in the nuclear envelope. Nup192 is a major component of an adaptor nucleoporin subcomplex proposed to link the NPC coat with the central transport channel. Here, we present the structure of the ∼110-kDa N-terminal domain (NTD) of Nup192 at 2.7-Å resolution. The structure reveals an open ring-shaped architecture composed of Huntingtin, EF3, PP2A, and TOR1 (HEAT) and Armadillo (ARM) repeats. A comparison of different conformations indicates that the NTD consists of two rigid halves connected by a flexible hinge. Unexpectedly, the two halves of the ring are structurally related to karyopherin-α (Kap-α) and β-karyopherin family members. Biochemically, we identify a conserved patch that binds an unstructured segment in Nup53 and show that a C-terminal tail region binds to a putative helical fragment in Nic96. The Nup53 segment that binds Nup192 is a classical nuclear localization-like sequence that interacts with Kap-α in a mutually exclusive and mechanistically distinct manner. The disruption of the Nup53 and Nic96 binding sites in vivo yields growth and mRNA export defects, revealing their critical role in proper NPC function. Surprisingly, both interactions are dispensable for NPC localization, suggesting that Nup192 possesses another nucleoporin interaction partner. These data indicate that the structured domains in the adaptor nucleoporin complex are held together by peptide interactions that resemble those found in karyopherin•cargo complexes and support the proposal that the adaptor nucleoporins arose from ancestral karyopherins.
Collapse
|
43
|
Abstract
Regulated protein transport between the cytoplasm and the nucleoplasm occurs through nuclear pore complexes and is critical to the function of numerous biological pathways. Saccharomyces cerevisiae has been used as a model system to probe the underlying mechanisms of nuclear transport and how they regulate various physiological processes. This has been facilitated, in part, by studies that couple the microscopic observation of a fluorescently tagged transport cargo's in vivo localization with numerous genetic and biochemical tools available to yeast researchers. Here, we describe some of these methods as they pertain to studies on regulated nuclear transport.
Collapse
Affiliation(s)
- Christopher Ptak
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Richard W Wozniak
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
44
|
Imamoto N. Cargo Recognition Explains Nuclear Transport Regulation Induced by Nuclear Pore Complex Reorganization. J Mol Biol 2013; 425:1849-1851. [DOI: 10.1016/j.jmb.2013.03.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|