1
|
Yagi S, Padhi AK, Vucinic J, Barbe S, Schiex T, Nakagawa R, Simoncini D, Zhang KYJ, Tagami S. Seven Amino Acid Types Suffice to Create the Core Fold of RNA Polymerase. J Am Chem Soc 2021; 143:15998-16006. [PMID: 34559526 DOI: 10.1021/jacs.1c05367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The extant complex proteins must have evolved from ancient short and simple ancestors. The double-ψ β-barrel (DPBB) is one of the oldest protein folds and conserved in various fundamental enzymes, such as the core domain of RNA polymerase. Here, by reverse engineering a modern DPBB domain, we reconstructed its plausible evolutionary pathway started by "interlacing homodimerization" of a half-size peptide, followed by gene duplication and fusion. Furthermore, by simplifying the amino acid repertoire of the peptide, we successfully created the DPBB fold with only seven amino acid types (Ala, Asp, Glu, Gly, Lys, Arg, and Val), which can be coded by only GNN and ARR (R = A or G) codons in the modern translation system. Thus, the DPBB fold could have been materialized by the early translation system and genetic code.
Collapse
Affiliation(s)
- Sota Yagi
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Aditya K Padhi
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Jelena Vucinic
- Université Fédérale de Toulouse, ANITI, INRAE-UR 875, 31000 Toulouse, France.,TBI, Université Fédérale de Toulouse, CNRS, INRAE, INSA, ANITI, 31000 Toulouse, France.,Université Fédérale de Toulouse, ANITI, IRIT-UMR 5505, 31000 Toulouse, France
| | - Sophie Barbe
- TBI, Université Fédérale de Toulouse, CNRS, INRAE, INSA, ANITI, 31000 Toulouse, France
| | - Thomas Schiex
- Université Fédérale de Toulouse, ANITI, INRAE-UR 875, 31000 Toulouse, France
| | - Reiko Nakagawa
- RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - David Simoncini
- Université Fédérale de Toulouse, ANITI, IRIT-UMR 5505, 31000 Toulouse, France
| | - Kam Y J Zhang
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Shunsuke Tagami
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
2
|
Kamel S, Walczak MC, Kaspar F, Westarp S, Neubauer P, Kurreck A. Thermostable adenosine 5'-monophosphate phosphorylase from Thermococcus kodakarensis forms catalytically active inclusion bodies. Sci Rep 2021; 11:16880. [PMID: 34413335 PMCID: PMC8376864 DOI: 10.1038/s41598-021-96073-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 08/04/2021] [Indexed: 11/24/2022] Open
Abstract
Catalytically active inclusion bodies (CatIBs) produced in Escherichia coli are an interesting but currently underexplored strategy for enzyme immobilization. They can be purified easily and used directly as stable and reusable heterogenous catalysts. However, very few examples of CatIBs that are naturally formed during heterologous expression have been reported so far. Previous studies have revealed that the adenosine 5′-monophosphate phosphorylase of Thermococcus kodakarensis (TkAMPpase) forms large soluble multimers with high thermal stability. Herein, we show that heat treatment of soluble protein from crude extract induces aggregation of active protein which phosphorolyse all natural 5′-mononucleotides. Additionally, inclusion bodies formed during the expression in E. coli were found to be similarly active with 2–6 folds higher specific activity compared to these heat-induced aggregates. Interestingly, differences in the substrate preference were observed. These results show that the recombinant thermostable TkAMPpase is one of rare examples of naturally formed CatIBs.
Collapse
Affiliation(s)
- Sarah Kamel
- Chair of Bioprocess Engineering, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Miriam C Walczak
- Chair of Bioprocess Engineering, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.,BioNukleo GmbH, Ackerstraße 76, 13355, Berlin, Germany
| | - Felix Kaspar
- Chair of Bioprocess Engineering, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.,BioNukleo GmbH, Ackerstraße 76, 13355, Berlin, Germany
| | - Sarah Westarp
- Chair of Bioprocess Engineering, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.,BioNukleo GmbH, Ackerstraße 76, 13355, Berlin, Germany
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Anke Kurreck
- Chair of Bioprocess Engineering, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany. .,BioNukleo GmbH, Ackerstraße 76, 13355, Berlin, Germany.
| |
Collapse
|
3
|
An overview of 25 years of research on Thermococcus kodakarensis, a genetically versatile model organism for archaeal research. Folia Microbiol (Praha) 2019; 65:67-78. [PMID: 31286382 DOI: 10.1007/s12223-019-00730-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
Abstract
Almost 25 years have passed since the discovery of a planktonic, heterotrophic, hyperthermophilic archaeon named Thermococcus kodakarensis KOD1, previously known as Pyrococcus sp. KOD1, by Imanaka and coworkers. T. kodakarensis is one of the most studied archaeon in terms of metabolic pathways, available genomic resources, established genetic engineering techniques, reporter constructs, in vitro transcription/translation machinery, and gene expression/gene knockout systems. In addition to all these, ease of growth using various carbon sources makes it a facile archaeal model organism. Here, in this review, an attempt is made to reflect what we have learnt from this hyperthermophilic archaeon.
Collapse
|
4
|
The Prodigal Compound: Return of Ribosyl 1,5-Bisphosphate as an Important Player in Metabolism. Microbiol Mol Biol Rev 2018; 83:83/1/e00040-18. [PMID: 30567937 DOI: 10.1128/mmbr.00040-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ribosyl 1,5-bisphosphate (PRibP) was discovered 65 years ago and was believed to be an important intermediate in ribonucleotide metabolism, a role immediately taken over by its "big brother" phosphoribosyldiphosphate. Only recently has PRibP come back into focus as an important player in the metabolism of ribonucleotides with the discovery of the pentose bisphosphate pathway that comprises, among others, the intermediates PRibP and ribulose 1,5-bisphosphate (cf. ribose 5-phosphate and ribulose 5-phosphate of the pentose phosphate pathway). Enzymes of several pathways produce and utilize PRibP not only in ribonucleotide metabolism but also in the catabolism of phosphonates, i.e., compounds containing a carbon-phosphorus bond. Pathways for PRibP metabolism are found in all three domains of life, most prominently among organisms of the archaeal domain, where they have been identified either experimentally or by bioinformatic analysis within all of the four main taxonomic groups, Euryarchaeota, TACK, DPANN, and Asgard. Advances in molecular genetics of archaea have greatly improved the understanding of the physiology of PRibP metabolism, and reconciliation of molecular enzymology and three-dimensional structure analysis of enzymes producing or utilizing PRibP emphasize the versatility of the compound. Finally, PRibP is also an effector of several metabolic activities in many organisms, including higher organisms such as mammals. In the present review, we describe all aspects of PRibP metabolism, with emphasis on the biochemical, genetic, and physiological aspects of the enzymes that produce or utilize PRibP. The inclusion of high-resolution structures of relevant enzymes that bind PRibP provides evidence for the flexibility and importance of the compound in metabolism.
Collapse
|
5
|
Aono R, Sato T, Imanaka T, Atomi H. A pentose bisphosphate pathway for nucleoside degradation in Archaea. Nat Chem Biol 2015; 11:355-60. [PMID: 25822915 DOI: 10.1038/nchembio.1786] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 02/27/2015] [Indexed: 01/08/2023]
Abstract
Owing to the absence of the pentose phosphate pathway, the degradation pathway for the ribose moieties of nucleosides is unknown in Archaea. Here, in the archaeon Thermococcus kodakarensis, we identified a metabolic network that links the pentose moieties of nucleosides or nucleotides to central carbon metabolism. The network consists of three nucleoside phosphorylases, an ADP-dependent ribose-1-phosphate kinase and two enzymes of a previously identified NMP degradation pathway, ribose-1,5-bisphosphate isomerase and type III ribulose-1,5-bisphosphate carboxylase/oxygenase. Ribose 1,5-bisphosphate and ribulose 1,5-bisphosphate are intermediates of this pathway, which is thus designated the pentose bisphosphate pathway.
Collapse
Affiliation(s)
- Riku Aono
- 1] Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan. [2] Japan Society for the Promotion of Science, Tokyo, Japan
| | - Takaaki Sato
- 1] Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan. [2] Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology, Tokyo, Japan
| | - Tadayuki Imanaka
- 1] Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology, Tokyo, Japan. [2] Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kyoto, Japan
| | - Haruyuki Atomi
- 1] Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan. [2] Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology, Tokyo, Japan
| |
Collapse
|
6
|
Joseph DDA, Jiao W, Kessans SA, Parker EJ. Substrate-mediated control of the conformation of an ancillary domain delivers a competent catalytic site for N-acetylneuraminic acid synthase. Proteins 2014; 82:2054-66. [PMID: 24633984 DOI: 10.1002/prot.24558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/14/2014] [Accepted: 03/04/2014] [Indexed: 12/19/2022]
Abstract
N-Acetylneuraminic acid (NANA) is the most common naturally occurring sialic acid and plays a key role in the pathogenesis of a select number of neuroinvasive bacteria such as Neisseria meningitidis. NANA is synthesized in prokaryotes via a condensation reaction between phosphoenolpyruvate and N-acetylmannosamine. This reaction is catalyzed by a domain swapped, homodimeric enzyme, N-acetylneuraminic acid synthase (NANAS). NANAS comprises two distinct domains; an N-terminal catalytic (β/α)8 barrel linked to a C-terminal antifreeze protein-like (AFPL) domain. We have investigated the role of the AFPL domain by characterizing a truncated variant of NmeNANAS, which was discovered to be soluble yet inactive. Analytical ultracentrifugation and analytical size exclusion were used to probe the quaternary state of the NmeNANAS truncation, and revealed that loss of the AFPL domain destabilizes the dimeric form of the enzyme. The results from this study thereby demonstrate that the AFPL domain plays a critical role for both the catalytic function and quaternary structure stability of NANAS. Small angle X-ray scattering, molecular dynamics simulations, and amino acid substitutions expose a complex hydrogen-bonding relay, which links the roles of the catalytic and AFPL domains across subunit boundaries.
Collapse
Affiliation(s)
- Dmitri D A Joseph
- Biomolecular Interaction Centre and Department of Chemistry, University of Canterbury, Christchurch, New Zealand
| | | | | | | |
Collapse
|