1
|
Rojano-Nisimura AM, Miller LG, Anantharaman A, Middleton AT, Kibret E, Jung SH, Russell R, Contreras LM. A high-throughput search for intracellular factors that affect RNA folding identifies E. coli proteins PepA and YagL as RNA chaperones that promote RNA remodelling. RNA Biol 2024; 21:13-30. [PMID: 39576267 PMCID: PMC11587861 DOI: 10.1080/15476286.2024.2429956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024] Open
Abstract
General RNA chaperones are RNA-binding proteins (RBPs) that interact transiently and non-specifically with RNA substrates and assist in their folding into their native state. In bacteria, these chaperones impact both coding and non-coding RNAs and are particularly important for large, structured RNAs which are prone to becoming kinetically trapped in misfolded states. Currently, due to the limited number of well-characterized examples and the lack of a consensus structural or sequence motif, it is difficult to identify general RNA chaperones in bacteria. Here, we adapted a previously published in vivo RNA regional accessibility probing assay to screen genome wide for intracellular factors in E. coli affecting RNA folding, among which we aimed to uncover novel RNA chaperones. Through this method, we identified eight proteins whose deletion gives changes in regional accessibility within the exogenously expressed Tetrahymena group I intron ribozyme. Furthermore, we purified and measured in vitro properties of two of these proteins, YagL and PepA, which were especially attractive as general chaperone candidates. We showed that both proteins bind RNA and that YagL accelerates native refolding of the ribozyme from a long-lived misfolded state. Further dissection of YagL showed that a putative helix-turn-helix (HTH) domain is responsible for most of its RNA-binding activity, but only the full protein shows chaperone activity. Altogether, this work expands the current repertoire of known general RNA chaperones in bacteria.
Collapse
Affiliation(s)
| | - Lucas G. Miller
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Aparna Anantharaman
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Aaron T. Middleton
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Elroi Kibret
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Sung H. Jung
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Rick Russell
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Lydia M. Contreras
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
2
|
Abstract
Taking advantage of single-particle cryogenic electron microscopy (cryo-EM) to analyze highly heterogeneous or flexible samples, we obtained long-awaited three-dimensional (3D) structures of the misfolded Tetrahymena ribozyme. These structures provide clear evidence for a previously proposed topological isomer model, in which the stereochemically impossible crossing of two core RNA strands prevents rapid rearrangement of the misfolded state to the native state. Topological isomers may be widespread in misfolding of complex RNA, and these cryo-EM structures set a foundation for dissecting their detailed kinetic mechanisms and functional consequences in a paradigmatic model system. The Tetrahymena group I intron has been a key system in the understanding of RNA folding and misfolding. The molecule folds into a long-lived misfolded intermediate (M) in vitro, which has been known to form extensive native-like secondary and tertiary structures but is separated by an unknown kinetic barrier from the native state (N). Here, we used cryogenic electron microscopy (cryo-EM) to resolve misfolded structures of the Tetrahymena L-21 ScaI ribozyme. Maps of three M substates (M1, M2, M3) and one N state were achieved from a single specimen with overall resolutions of 3.5 Å, 3.8 Å, 4.0 Å, and 3.0 Å, respectively. Comparisons of the structures reveal that all the M substates are highly similar to N, except for rotation of a core helix P7 that harbors the ribozyme’s guanosine binding site and the crossing of the strands J7/3 and J8/7 that connect P7 to the other elements in the ribozyme core. This topological difference between the M substates and N state explains the failure of 5′-splice site substrate docking in M, supports a topological isomer model for the slow refolding of M to N due to a trapped strand crossing, and suggests pathways for M-to-N refolding.
Collapse
|
3
|
Bonilla SL, Vicens Q, Kieft JS. Cryo-EM reveals an entangled kinetic trap in the folding of a catalytic RNA. SCIENCE ADVANCES 2022; 8:eabq4144. [PMID: 36026457 PMCID: PMC9417180 DOI: 10.1126/sciadv.abq4144] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/13/2022] [Indexed: 05/25/2023]
Abstract
Functional RNAs fold through complex pathways that can contain misfolded "kinetic traps." A complete model of RNA folding requires understanding the formation of these misfolded states, but they are difficult to characterize because of their transient and potentially conformationally dynamic nature. We used cryo-electron microscopy (cryo-EM) to visualize a long-lived misfolded state in the folding pathway of the Tetrahymena thermophila group I intron, a paradigmatic RNA structure-function model system. The structure revealed how this state forms native-like secondary structure and tertiary contacts but contains two incorrectly crossed strands, consistent with a previous model. This incorrect topology mispositions a critical catalytic domain and cannot be resolved locally as extensive refolding is required. This work provides a structural framework for interpreting decades of biochemical and functional studies and demonstrates the power of cryo-EM for the exploration of RNA folding pathways.
Collapse
Affiliation(s)
- Steve L. Bonilla
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO 80045, USA
| | - Quentin Vicens
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO 80045, USA
| | - Jeffrey S. Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO 80045, USA
- RNA BioScience Initiative, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Jarmoskaite I, Helmers AE, Russell R. Measurement of ATP utilization in RNA unwinding and RNA chaperone activities by DEAD-box helicase proteins. Methods Enzymol 2022; 673:53-76. [PMID: 35965018 PMCID: PMC10040262 DOI: 10.1016/bs.mie.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RNA helicase proteins perform coupled reactions in which cycles of ATP binding and hydrolysis are used to drive local unwinding of double-stranded RNA (dsRNA). For some helicases in the ubiquitous DEAD-box family, these local unwinding events are integral to folding transitions in structured RNAs, and thus these helicases function as RNA chaperones. An important measure of the efficiency of the helicase-catalyzed reaction is the ATP utilization value, which represents the average number of ATP molecules hydrolyzed during RNA unwinding or a chaperone-assisted RNA structural rearrangement. Here we outline procedures that can be used to measure the ATP utilization value in RNA unwinding or folding transitions. As an example of an RNA folding transition, we focus on the refolding of the Tetrahymena thermophila group I intron ribozyme from a long-lived misfolded structure to its native structure, and we outline strategies for adapting this assay to other RNA folding transitions. For a simple dsRNA unwinding event, the ATP utilization value provides a measure of the coupling between the ATPase and RNA unwinding activities, and for a complex RNA structural transition it can give insight into the scope of the rearrangement and the efficiency with which the helicase uses the energy from ATPase cycles to promote the rearrangement.
Collapse
Affiliation(s)
- Inga Jarmoskaite
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - Anna E Helmers
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - Rick Russell
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
5
|
Su Z, Zhang K, Kappel K, Li S, Palo MZ, Pintilie GD, Rangan R, Luo B, Wei Y, Das R, Chiu W. Cryo-EM structures of full-length Tetrahymena ribozyme at 3.1 Å resolution. Nature 2021; 596:603-607. [PMID: 34381213 PMCID: PMC8405103 DOI: 10.1038/s41586-021-03803-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
Single-particle cryogenic electron microscopy (cryo-EM) has become a standard technique for determining protein structures at atomic resolution1-3. However, cryo-EM studies of protein-free RNA are in their early days. The Tetrahymena thermophila group I self-splicing intron was the first ribozyme to be discovered and has been a prominent model system for the study of RNA catalysis and structure-function relationships4, but its full structure remains unknown. Here we report cryo-EM structures of the full-length Tetrahymena ribozyme in substrate-free and bound states at a resolution of 3.1 Å. Newly resolved peripheral regions form two coaxially stacked helices; these are interconnected by two kissing loop pseudoknots that wrap around the catalytic core and include two previously unforeseen (to our knowledge) tertiary interactions. The global architecture is nearly identical in both states; only the internal guide sequence and guanosine binding site undergo a large conformational change and a localized shift, respectively, upon binding of RNA substrates. These results provide a long-sought structural view of a paradigmatic RNA enzyme and signal a new era for the cryo-EM-based study of structure-function relationships in ribozymes.
Collapse
Affiliation(s)
- Zhaoming Su
- The State Key Laboratory of Biotherapy and Cancer Center, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA, USA.
| | - Kaiming Zhang
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA, USA
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Kalli Kappel
- Biophysics Program, Stanford University, Stanford, CA, USA
| | - Shanshan Li
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA, USA
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Michael Z Palo
- Biophysics Program, Stanford University, Stanford, CA, USA
| | - Grigore D Pintilie
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA, USA
| | - Ramya Rangan
- Biophysics Program, Stanford University, Stanford, CA, USA
| | - Bingnan Luo
- The State Key Laboratory of Biotherapy and Cancer Center, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuquan Wei
- The State Key Laboratory of Biotherapy and Cancer Center, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Rhiju Das
- Biophysics Program, Stanford University, Stanford, CA, USA.
- Department of Biochemistry and Department of Physics, Stanford University, Stanford, CA, USA.
| | - Wah Chiu
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA, USA.
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
| |
Collapse
|
6
|
Duran EC, Walter NG. Sisyphus observed: Unraveling the high ATP usage of an RNA chaperone. J Biol Chem 2021; 296:100265. [PMID: 33837746 PMCID: PMC7948966 DOI: 10.1016/j.jbc.2021.100265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
DEAD-box proteins are nonprocessive RNA helicases that can function as RNA chaperones by coupling ATP binding and hydrolysis to structural reorganization of RNA. Here, Jarmoskaite et al. quantify the ATP utilization of an RNA chaperone during refolding of a misfolded ribozyme substrate. Strikingly, 100 ATP hydrolysis events are needed per successfully refolded ribozyme, suggesting that each round of unfolding requires ten ATP molecules, since 90% of substrate unfolding cycles only lead back to the kinetically favored misfolded state. This near-Sisyphean effort reveals a potentially conserved model for RNA reorganization by RNA chaperones.
Collapse
Affiliation(s)
- Elizabeth C Duran
- Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Nils G Walter
- Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
7
|
Jarmoskaite I, Tijerina P, Russell R. ATP utilization by a DEAD-box protein during refolding of a misfolded group I intron ribozyme. J Biol Chem 2020; 296:100132. [PMID: 33262215 PMCID: PMC7948464 DOI: 10.1074/jbc.ra120.015029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/17/2020] [Accepted: 12/01/2020] [Indexed: 12/31/2022] Open
Abstract
DEAD-box helicase proteins perform ATP-dependent rearrangements of structured RNAs throughout RNA biology. Short RNA helices are unwound in a single ATPase cycle, but the ATP requirement for more complex RNA structural rearrangements is unknown. Here we measure the amount of ATP used for native refolding of a misfolded group I intron ribozyme by CYT-19, a Neurospora crassa DEAD-box protein that functions as a general chaperone for mitochondrial group I introns. By comparing the rates of ATP hydrolysis and ribozyme refolding, we find that several hundred ATP molecules are hydrolyzed during refolding of each ribozyme molecule. After subtracting nonproductive ATP hydrolysis that occurs in the absence of ribozyme refolding, we find that approximately 100 ATPs are hydrolyzed per refolded RNA as a consequence of interactions specific to the misfolded ribozyme. This value is insensitive to changes in ATP and CYT-19 concentration and decreases with decreasing ribozyme stability. Because of earlier findings that ∼90% of global ribozyme unfolding cycles lead back to the kinetically preferred misfolded conformation and are not observed, we estimate that each global unfolding cycle consumes ∼10 ATPs. Our results indicate that CYT-19 functions as a general RNA chaperone by using a stochastic, energy-intensive mechanism to promote RNA unfolding and refolding, suggesting an evolutionary convergence with protein chaperones.
Collapse
Affiliation(s)
- Inga Jarmoskaite
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Pilar Tijerina
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Rick Russell
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA.
| |
Collapse
|
8
|
Single-nucleotide control of tRNA folding cooperativity under near-cellular conditions. Proc Natl Acad Sci U S A 2019; 116:23075-23082. [PMID: 31666318 DOI: 10.1073/pnas.1913418116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
RNA folding is often studied by renaturing full-length RNA in vitro and tracking folding transitions. However, the intracellular transcript folds as it emerges from the RNA polymerase. Here, we investigate the folding pathways and stability of numerous late-transcriptional intermediates of yeast and Escherichia coli transfer RNAs (tRNAs). Transfer RNA is a highly regulated functional RNA that undergoes multiple steps of posttranscriptional processing and is found in very different lengths during its lifetime in the cell. The precursor transcript is extended on both the 5' and 3' ends of the cloverleaf core, and these extensions get trimmed before addition of the 3'-CCA and aminoacylation. We studied the thermodynamics and structures of the precursor tRNA and of late-transcriptional intermediates of the cloverleaf structure. We examined RNA folding at both the secondary and tertiary structural levels using multiple biochemical and biophysical approaches. Our findings suggest that perhaps nature has selected for a single-base addition to control folding to the functional 3D structure. In near-cellular conditions, yeast tRNAPhe and E. coli tRNAAla transcripts fold in a single, cooperative transition only when nearly all of the nucleotides in the cloverleaf are transcribed by indirectly enhancing folding cooperativity. Furthermore, native extensions on the 5' and 3' ends do not interfere with cooperative core folding. This highly controlled cooperative folding has implications for recognition of tRNA by processing and modification enzymes and quality control of tRNA in cells.
Collapse
|
9
|
Abstract
The past decades have witnessed tremendous developments in our understanding of RNA biology. At the core of these advances have been studies aimed at discerning RNA structure and at understanding the forces that influence the RNA folding process. It is easy to take the present state of understanding for granted, but there is much to be learned by considering the path to our current understanding, which has been tortuous, with the birth and death of models, the adaptation of experimental tools originally developed for characterization of protein structure and catalysis, and the development of novel tools for probing RNA. In this review we tour the stages of RNA folding studies, considering them as "epochs" that can be generalized across scientific disciplines. These epochs span from the discovery of catalytic RNA, through biophysical insights into the putative primordial RNA World, to characterization of structured RNAs, the building and testing of models, and, finally, to the development of models with the potential to yield generalizable predictive and quantitative models for RNA conformational, thermodynamic, and kinetic behavior. We hope that this accounting will aid others as they navigate the many fascinating questions about RNA and its roles in biology, in the past, present, and future.
Collapse
Affiliation(s)
- Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, California 94305
- Department of Chemical Engineering, Stanford University, Stanford, California 94305
- Department of Chemistry, Stanford University, Stanford, California 94305
- Stanford ChEM-H (Chemistry, Engineering, and Medicine for Human Health), Stanford, California 94305
| | - Steve Bonilla
- Department of Biochemistry, Stanford University, Stanford, California 94305
- Department of Chemical Engineering, Stanford University, Stanford, California 94305
| | - Namita Bisaria
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| |
Collapse
|
10
|
Distinct RNA-unwinding mechanisms of DEAD-box and DEAH-box RNA helicase proteins in remodeling structured RNAs and RNPs. Biochem Soc Trans 2017; 45:1313-1321. [PMID: 29150525 DOI: 10.1042/bst20170095] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/16/2017] [Accepted: 10/23/2017] [Indexed: 01/03/2023]
Abstract
Structured RNAs and RNA-protein complexes (RNPs) fold through complex pathways that are replete with misfolded traps, and many RNAs and RNPs undergo extensive conformational changes during their functional cycles. These folding steps and conformational transitions are frequently promoted by RNA chaperone proteins, notably by superfamily 2 (SF2) RNA helicase proteins. The two largest families of SF2 helicases, DEAD-box and DEAH-box proteins, share evolutionarily conserved helicase cores, but unwind RNA helices through distinct mechanisms. Recent studies have advanced our understanding of how their distinct mechanisms enable DEAD-box proteins to disrupt RNA base pairs on the surfaces of structured RNAs and RNPs, while some DEAH-box proteins are adept at disrupting base pairs in the interior of RNPs. Proteins from these families use these mechanisms to chaperone folding and promote rearrangements of structured RNAs and RNPs, including the spliceosome, and may use related mechanisms to maintain cellular messenger RNAs in unfolded or partially unfolded conformations.
Collapse
|
11
|
Vazquez-Anderson J, Mihailovic MK, Baldridge KC, Reyes KG, Haning K, Cho SH, Amador P, Powell WB, Contreras LM. Optimization of a novel biophysical model using large scale in vivo antisense hybridization data displays improved prediction capabilities of structurally accessible RNA regions. Nucleic Acids Res 2017; 45:5523-5538. [PMID: 28334800 PMCID: PMC5435917 DOI: 10.1093/nar/gkx115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 02/14/2017] [Indexed: 11/17/2022] Open
Abstract
Current approaches to design efficient antisense RNAs (asRNAs) rely primarily on a thermodynamic understanding of RNA–RNA interactions. However, these approaches depend on structure predictions and have limited accuracy, arguably due to overlooking important cellular environment factors. In this work, we develop a biophysical model to describe asRNA–RNA hybridization that incorporates in vivo factors using large-scale experimental hybridization data for three model RNAs: a group I intron, CsrB and a tRNA. A unique element of our model is the estimation of the availability of the target region to interact with a given asRNA using a differential entropic consideration of suboptimal structures. We showcase the utility of this model by evaluating its prediction capabilities in four additional RNAs: a group II intron, Spinach II, 2-MS2 binding domain and glgC 5΄ UTR. Additionally, we demonstrate the applicability of this approach to other bacterial species by predicting sRNA–mRNA binding regions in two newly discovered, though uncharacterized, regulatory RNAs.
Collapse
Affiliation(s)
- Jorge Vazquez-Anderson
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX 78712, USA
| | - Mia K Mihailovic
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX 78712, USA
| | - Kevin C Baldridge
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX 78712, USA
| | - Kristofer G Reyes
- Department of Operations Research and Financial Engineering, Princeton University, Sherrerd Hall, Charlton St., Princeton, NJ 08544, USA
| | - Katie Haning
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX 78712, USA
| | - Seung Hee Cho
- Institute for Cellular & Molecular Biology, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, USA
| | - Paul Amador
- Institute for Cellular & Molecular Biology, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, USA
| | - Warren B Powell
- Department of Operations Research and Financial Engineering, Princeton University, Sherrerd Hall, Charlton St., Princeton, NJ 08544, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX 78712, USA
| |
Collapse
|
12
|
Leamy KA, Yennawar NH, Bevilacqua PC. Cooperative RNA Folding under Cellular Conditions Arises From Both Tertiary Structure Stabilization and Secondary Structure Destabilization. Biochemistry 2017; 56:3422-3433. [PMID: 28657303 DOI: 10.1021/acs.biochem.7b00325] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RNA folding has been studied extensively in vitro, typically under dilute solution conditions and abiologically high salt concentrations of 1 M Na+ or 10 mM Mg2+. The cellular environment is very different, with 20-40% crowding and only 10-40 mM Na+, 140 mM K+, and 0.5-2.0 mM Mg2+. As such, RNA structures and functions can be radically altered under cellular conditions. We previously reported that tRNAphe secondary and tertiary structures unfold together in a cooperative two-state fashion under crowded in vivo-like ionic conditions, but in a noncooperative multistate fashion under dilute in vitro ionic conditions unless in nonphysiologically high concentrations of Mg2+. The mechanistic basis behind these effects remains unclear, however. To address the mechanism that drives RNA folding cooperativity, we probe effects of cellular conditions on structures and stabilities of individual secondary structure fragments comprising the full-length RNA. We elucidate effects of a diverse set of crowders on tRNA secondary structural fragments and full-length tRNA at three levels: at the nucleotide level by temperature-dependent in-line probing, at the tertiary structure level by small-angle X-ray scattering, and at the global level by thermal denaturation. We conclude that cooperative RNA folding is induced by two overlapping mechanisms: increased stability and compaction of tertiary structure through effects of Mg2+, and decreased stability of certain secondary structure elements through the effects of molecular crowders. These findings reveal that despite having very different chemical makeups RNA and protein can both have weak secondary structures in vivo leading to cooperative folding.
Collapse
Affiliation(s)
- Kathleen A Leamy
- Department of Chemistry, ‡Center for RNA Molecular Biology, §Huck Institutes of the Life Sciences, and ⊥Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Neela H Yennawar
- Department of Chemistry, ‡Center for RNA Molecular Biology, §Huck Institutes of the Life Sciences, and ⊥Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Philip C Bevilacqua
- Department of Chemistry, ‡Center for RNA Molecular Biology, §Huck Institutes of the Life Sciences, and ⊥Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| |
Collapse
|
13
|
Bell DR, Cheng SY, Salazar H, Ren P. Capturing RNA Folding Free Energy with Coarse-Grained Molecular Dynamics Simulations. Sci Rep 2017; 7:45812. [PMID: 28393861 PMCID: PMC5385882 DOI: 10.1038/srep45812] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 03/06/2017] [Indexed: 01/25/2023] Open
Abstract
We introduce a coarse-grained RNA model for molecular dynamics simulations, RACER (RnA CoarsE-gRained). RACER achieves accurate native structure prediction for a number of RNAs (average RMSD of 2.93 Å) and the sequence-specific variation of free energy is in excellent agreement with experimentally measured stabilities (R2 = 0.93). Using RACER, we identified hydrogen-bonding (or base pairing), base stacking, and electrostatic interactions as essential driving forces for RNA folding. Also, we found that separating pairing vs. stacking interactions allowed RACER to distinguish folded vs. unfolded states. In RACER, base pairing and stacking interactions each provide an approximate stability of 3-4 kcal/mol for an A-form helix. RACER was developed based on PDB structural statistics and experimental thermodynamic data. In contrast with previous work, RACER implements a novel effective vdW potential energy function, which led us to re-parameterize hydrogen bond and electrostatic potential energy functions. Further, RACER is validated and optimized using a simulated annealing protocol to generate potential energy vs. RMSD landscapes. Finally, RACER is tested using extensive equilibrium pulling simulations (0.86 ms total) on eleven RNA sequences (hairpins and duplexes).
Collapse
Affiliation(s)
- David R. Bell
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Sara Y. Cheng
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, United States
| | - Heber Salazar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Pengyu Ren
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
14
|
Welty R, Hall KB. Nucleobases Undergo Dynamic Rearrangements during RNA Tertiary Folding. J Mol Biol 2016; 428:4490-4502. [PMID: 27693721 DOI: 10.1016/j.jmb.2016.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/31/2016] [Accepted: 09/15/2016] [Indexed: 02/07/2023]
Abstract
The tertiary structure of the GTPase center (GAC) of 23S ribosomal RNA (rRNA) as seen in cocrystals is extremely compact. It is stabilized by long-range hydrogen bonds and nucleobase stacking and by a triloop that forms within its three-way junction. Its folding pathway from secondary structure to tertiary structure has not been previously observed, but it was shown to require Mg2+ ions in equilibrium experiments. The fluorescent nucleotide 2-aminopurine was substituted at selected sites within the 60-nt GAC. Fluorescence intensity changes upon addition of MgCl2 were monitored over a time-course from 1ms to 100s as the RNA folds. The folding pathway is revealed here to be hierarchical through several intermediates. Observation of the nucleobases during folding provides a new perspective on the process and the pathway, revealing the dynamics of nucleobase conformational exchange during the folding transitions.
Collapse
Affiliation(s)
- Robb Welty
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Kathleen B Hall
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
15
|
Kinetic and thermodynamic framework for P4-P6 RNA reveals tertiary motif modularity and modulation of the folding preferred pathway. Proc Natl Acad Sci U S A 2016; 113:E4956-65. [PMID: 27493222 DOI: 10.1073/pnas.1525082113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The past decade has seen a wealth of 3D structural information about complex structured RNAs and identification of functional intermediates. Nevertheless, developing a complete and predictive understanding of the folding and function of these RNAs in biology will require connection of individual rate and equilibrium constants to structural changes that occur in individual folding steps and further relating these steps to the properties and behavior of isolated, simplified systems. To accomplish these goals we used the considerable structural knowledge of the folded, unfolded, and intermediate states of P4-P6 RNA. We enumerated structural states and possible folding transitions and determined rate and equilibrium constants for the transitions between these states using single-molecule FRET with a series of mutant P4-P6 variants. Comparisons with simplified constructs containing an isolated tertiary contact suggest that a given tertiary interaction has a stereotyped rate for breaking that may help identify structural transitions within complex RNAs and simplify the prediction of folding kinetics and thermodynamics for structured RNAs from their parts. The preferred folding pathway involves initial formation of the proximal tertiary contact. However, this preference was only ∼10 fold and could be reversed by a single point mutation, indicating that a model akin to a protein-folding contact order model will not suffice to describe RNA folding. Instead, our results suggest a strong analogy with a modified RNA diffusion-collision model in which tertiary elements within preformed secondary structures collide, with the success of these collisions dependent on whether the tertiary elements are in their rare binding-competent conformations.
Collapse
|
16
|
Abstract
Deciphering the folding pathways and predicting the structures of complex three-dimensional biomolecules is central to elucidating biological function. RNA is single-stranded, which gives it the freedom to fold into complex secondary and tertiary structures. These structures endow RNA with the ability to perform complex chemistries and functions ranging from enzymatic activity to gene regulation. Given that RNA is involved in many essential cellular processes, it is critical to understand how it folds and functions in vivo. Within the last few years, methods have been developed to probe RNA structures in vivo and genome-wide. These studies reveal that RNA often adopts very different structures in vivo and in vitro, and provide profound insights into RNA biology. Nonetheless, both in vitro and in vivo approaches have limitations: studies in the complex and uncontrolled cellular environment make it difficult to obtain insight into RNA folding pathways and thermodynamics, and studies in vitro often lack direct cellular relevance, leaving a gap in our knowledge of RNA folding in vivo. This gap is being bridged by biophysical and mechanistic studies of RNA structure and function under conditions that mimic the cellular environment. To date, most artificial cytoplasms have used various polymers as molecular crowding agents and a series of small molecules as cosolutes. Studies under such in vivo-like conditions are yielding fresh insights, such as cooperative folding of functional RNAs and increased activity of ribozymes. These observations are accounted for in part by molecular crowding effects and interactions with other molecules. In this review, we report milestones in RNA folding in vitro and in vivo and discuss ongoing experimental and computational efforts to bridge the gap between these two conditions in order to understand how RNA folds in the cell.
Collapse
|
17
|
Sowa SW, Vazquez-Anderson J, Clark CA, De La Peña R, Dunn K, Fung EK, Khoury MJ, Contreras LM. Exploiting post-transcriptional regulation to probe RNA structures in vivo via fluorescence. Nucleic Acids Res 2014; 43:e13. [PMID: 25416800 PMCID: PMC4333371 DOI: 10.1093/nar/gku1191] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
While RNA structures have been extensively characterized in vitro, very few techniques exist to probe RNA structures inside cells. Here, we have exploited mechanisms of post-transcriptional regulation to synthesize fluorescence-based probes that assay RNA structures in vivo. Our probing system involves the co-expression of two constructs: (i) a target RNA and (ii) a reporter containing a probe complementary to a region in the target RNA attached to an RBS-sequestering hairpin and fused to a sequence encoding the green fluorescent protein (GFP). When a region of the target RNA is accessible, the area can interact with its complementary probe, resulting in fluorescence. By using this system, we observed varied patterns of structural accessibility along the length of the Tetrahymena group I intron. We performed in vivo DMS footprinting which, along with previous footprinting studies, helped to explain our probing results. Additionally, this novel approach represents a valuable tool to differentiate between RNA variants and to detect structural changes caused by subtle mutations. Our results capture some differences from traditional footprinting assays that could suggest that probing in vivo via oligonucleotide hybridization facilitates the detection of folding intermediates. Importantly, our data indicate that intracellular oligonucleotide probing can be a powerful complement to existing RNA structural probing methods.
Collapse
Affiliation(s)
- Steven W Sowa
- Microbiology Graduate Program, University of Texas at Austin, 100 E. 24th Street, A6500, Austin, TX 78712, USA
| | - Jorge Vazquez-Anderson
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX 78712, USA
| | - Chelsea A Clark
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX 78712, USA
| | - Ricardo De La Peña
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX 78712, USA
| | - Kaitlin Dunn
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX 78712, USA
| | - Emily K Fung
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX 78712, USA
| | - Mark J Khoury
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX 78712, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX 78712, USA
| |
Collapse
|
18
|
DEAD-box protein CYT-19 is activated by exposed helices in a group I intron RNA. Proc Natl Acad Sci U S A 2014; 111:E2928-36. [PMID: 25002474 DOI: 10.1073/pnas.1404307111] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DEAD-box proteins are nonprocessive RNA helicases and can function as RNA chaperones, but the mechanisms of their chaperone activity remain incompletely understood. The Neurospora crassa DEAD-box protein CYT-19 is a mitochondrial RNA chaperone that promotes group I intron splicing and has been shown to resolve misfolded group I intron structures, allowing them to refold. Building on previous results, here we use a series of tertiary contact mutants of the Tetrahymena group I intron ribozyme to demonstrate that the efficiency of CYT-19-mediated unfolding of the ribozyme is tightly linked to global RNA tertiary stability. Efficient unfolding of destabilized ribozyme variants is accompanied by increased ATPase activity of CYT-19, suggesting that destabilized ribozymes provide more productive interaction opportunities. The strongest ATPase stimulation occurs with a ribozyme that lacks all five tertiary contacts and does not form a compact structure, and small-angle X-ray scattering indicates that ATPase activity tracks with ribozyme compactness. Further, deletion of three helices that are prominently exposed in the folded structure decreases the ATPase stimulation by the folded ribozyme. Together, these results lead to a model in which CYT-19, and likely related DEAD-box proteins, rearranges complex RNA structures by preferentially interacting with and unwinding exposed RNA secondary structure. Importantly, this mechanism could bias DEAD-box proteins to act on misfolded RNAs and ribonucleoproteins, which are likely to be less compact and more dynamic than their native counterparts.
Collapse
|
19
|
Mitchell D, Russell R. Folding pathways of the Tetrahymena ribozyme. J Mol Biol 2014; 426:2300-12. [PMID: 24747051 DOI: 10.1016/j.jmb.2014.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 01/01/2023]
Abstract
Like many structured RNAs, the Tetrahymena group I intron ribozyme folds through multiple pathways and intermediates. Under standard conditions in vitro, a small fraction reaches the native state (N) with kobs ≈ 0.6 min(-1), while the remainder forms a long-lived misfolded conformation (M) thought to differ in topology. These alternative outcomes reflect a pathway that branches late in folding, after disruption of a trapped intermediate (Itrap). Here we use catalytic activity to probe the folding transitions from Itrap to the native and misfolded states. We show that mutations predicted to weaken the core helix P3 do not increase the rate of folding from Itrap but they increase the fraction that reaches the native state rather than forming the misfolded state. Thus, P3 is disrupted during folding to the native state but not to the misfolded state, and P3 disruption occurs after the rate-limiting step. Interestingly, P3-strengthening mutants also increase native folding. Additional experiments show that these mutants are rapidly committed to folding to the native state, although they reach the native state with approximately the same rate constant as the wild-type ribozyme (~1 min(-1)). Thus, the P3-strengthening mutants populate a distinct pathway that includes at least one intermediate but avoids the M state, most likely because P3 and the correct topology are formed early. Our results highlight multiple pathways in RNA folding and illustrate how kinetic competitions between rapid events can have long-lasting effects because the "choice" is enforced by energy barriers that grow larger as folding progresses.
Collapse
Affiliation(s)
- David Mitchell
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Rick Russell
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|