1
|
Antevska A, Hess KA, Long CC, Walker EJ, Jang JH, DeSoto RJ, Lazar Cantrell KL, Buchanan LE, Do TD. Deciphering the Molecular Dance: Exploring the Dynamic Interplay Between Mouse Insulin B9-23 Peptides and their Variants. Biochemistry 2024; 63:2245-2256. [PMID: 39222658 DOI: 10.1021/acs.biochem.4c00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Type 1 diabetes results from the autoimmune destruction of pancreatic insulin-producing β-cells, primarily targeted by autoreactive T cells that recognize insulin B9-23 peptides as antigens. Using drift tube ion mobility spectrometry-mass spectrometry, transmission electron microscopy, and two-dimensional infrared spectroscopy, we characterized mouse insulin 1 B9-23 (Ins1 B9-23), insulin 2 B9-23 (Ins2 B9-23), along with two of their mutants, Ins2 B9-23 Y16A and Ins2 B9-23 C19S. Our findings indicate that Ins1 B9-23 and the Ins2 Y16A mutant exhibit rapid fibril formation, whereas Ins2 B9-23 and the Ins2 C19S mutant show slower fibrillization and a structural rearrangement from globular protofibrils to fibrillar aggregates. These differences in aggregation behaviors also manifest in interactions with (-)epigallocatechin gallate (EGCG), a canonical amyloid inhibitor. EGCG effectively disrupts the fibrils formed by Ins1 B9-23 and the Y16A mutant. However, it proves ineffective in preventing fibril formation of Ins2 B9-23 and the C19S mutant. These results establish a strong correlation between the aggregation behaviors of these peptides and their divergent effects on anti-islet autoimmunity.
Collapse
Affiliation(s)
- Aleksandra Antevska
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Kayla A Hess
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Connor C Long
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Ethan J Walker
- Department of Chemistry, Westmont College, Santa Barbara, California 93108, United States
| | - Joshua H Jang
- Department of Chemistry, Westmont College, Santa Barbara, California 93108, United States
| | - Riellie J DeSoto
- Department of Chemistry, Westmont College, Santa Barbara, California 93108, United States
| | | | - Lauren E Buchanan
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Thanh D Do
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
2
|
Dai Z, Ben-Younis A, Vlachaki A, Raleigh D, Thalassinos K. Understanding the structural dynamics of human islet amyloid polypeptide: Advancements in and applications of ion-mobility mass spectrometry. Biophys Chem 2024; 312:107285. [PMID: 38941872 PMCID: PMC11260546 DOI: 10.1016/j.bpc.2024.107285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/30/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Human islet amyloid polypeptide (hIAPP) forms amyloid deposits that contribute to β-cell death in pancreatic islets and are considered a hallmark of Type II diabetes Mellitus (T2DM). Evidence suggests that the early oligomers of hIAPP formed during the aggregation process are the primary pathological agent in islet amyloid induced β-cell death. The self-assembly mechanism of hIAPP, however, remains elusive, largely due to limitations in conventional biophysical techniques for probing the distribution or capturing detailed structures of the early, structurally dynamic oligomers. The advent of Ion-mobility Mass Spectrometry (IM-MS) has enabled the characterisation of hIAPP early oligomers in the gas phase, paving the way towards a deeper understanding of the oligomerisation mechanism and the correlation of structural information with the cytotoxicity of the oligomers. The sensitivity and the rapid structural characterisation provided by IM-MS also show promise in screening hIAPP inhibitors, categorising their modes of inhibition through "spectral fingerprints". This review delves into the application of IM-MS to the dissection of the complex steps of hIAPP oligomerisation, examining the inhibitory influence of metal ions, and exploring the characterisation of hetero-oligomerisation with different hIAPP variants. We highlight the potential of IM-MS as a tool for the high-throughput screening of hIAPP inhibitors, and for providing insights into their modes of action. Finally, we discuss advances afforded by recent advancements in tandem IM-MS and the combination of gas phase spectroscopy with IM-MS, which promise to deliver a more sensitive and higher-resolution structural portrait of hIAPP oligomers. Such information may help facilitate a new era of targeted therapeutic strategies for islet amyloidosis in T2DM.
Collapse
Affiliation(s)
- Zijie Dai
- Institute of Structural and Molecular Biology, Division of Bioscience, University College London, London WC1E 6BT, UK
| | - Aisha Ben-Younis
- Institute of Structural and Molecular Biology, Division of Bioscience, University College London, London WC1E 6BT, UK
| | - Anna Vlachaki
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - Daniel Raleigh
- Institute of Structural and Molecular Biology, Division of Bioscience, University College London, London WC1E 6BT, UK; Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States.
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Bioscience, University College London, London WC1E 6BT, UK; Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, UK.
| |
Collapse
|
3
|
Panda C, Kumar S, Gupta S, Pandey LM. Structural, kinetic, and thermodynamic aspects of insulin aggregation. Phys Chem Chem Phys 2023; 25:24195-24213. [PMID: 37674360 DOI: 10.1039/d3cp03103a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Given the significance of protein aggregation in proteinopathies and the development of therapeutic protein pharmaceuticals, revamped interest in assessing and modelling the aggregation kinetics has been observed. Quantitative analysis of aggregation includes data of gradual monomeric depletion followed by the formation of subvisible particles. Kinetic and thermodynamic studies are essential to gain key insights into the aggregation process. Despite being the medical marvel in the world of diabetes, insulin suffers from the challenge of aggregation. Physicochemical stresses are experienced by insulin during industrial formulation, storage, delivery, and transport, considerably impacting product quality, efficacy, and effectiveness. The present review briefly describes the pathways, mathematical kinetic models, and thermodynamics of protein misfolding and aggregation. With a specific focus on insulin, further discussions include the structural heterogeneity and modifications of the intermediates incurred during insulin fibrillation. Finally, different model equations to fit the kinetic data of insulin fibrillation are discussed. We believe that this review will shed light on the conditions that induce structural changes in insulin during the lag phase of fibrillation and will motivate scientists to devise strategies to block the initialization of the aggregation cascade. Subsequent abrogation of insulin fibrillation during bioprocessing will ensure stable and globally accessible insulin for efficient management of diabetes.
Collapse
Affiliation(s)
- Chinmaya Panda
- Bio-interface & Environmental Engineering Lab Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Sachin Kumar
- Viral Immunology Lab Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Sharad Gupta
- Neurodegeneration and Peptide Engineering Research Lab Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Gujarat, 382355, India
| | - Lalit M Pandey
- Bio-interface & Environmental Engineering Lab Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
4
|
Lipiński WP, Zehnder J, Abbas M, Güntert P, Spruijt E, Wiegand T. Fibrils Emerging from Droplets: Molecular Guiding Principles behind Phase Transitions of a Short Peptide-Based Condensate Studied by Solid-State NMR. Chemistry 2023; 29:e202301159. [PMID: 37310801 DOI: 10.1002/chem.202301159] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/15/2023]
Abstract
Biochemical reactions occurring in highly crowded cellular environments require different means of control to ensure productivity and specificity. Compartmentalization of reagents by liquid-liquid phase separation is one of these means. However, extremely high local protein concentrations of up to 400 mg/ml can result in pathological aggregation into fibrillar amyloid structures, a phenomenon that has been linked to various neurodegenerative diseases. Despite its relevance, the process of liquid-to-solid transition inside condensates is still not well understood at the molecular level. We thus herein use small peptide derivatives that can undergo both liquid-liquid and subsequent liquid-to-solid phase transition as model systems to study both processes. Using solid-state nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM), we compare the structure of condensed states of leucine, tryptophan and phenylalanine containing derivatives, distinguishing between liquid-like condensates, amorphous aggregates and fibrils, respectively. A structural model for the fibrils formed by the phenylalanine derivative was obtained by an NMR-based structure calculation. The fibrils are stabilised by hydrogen bonds and side-chain π-π interactions, which are likely much less pronounced or absent in the liquid and amorphous state. Such noncovalent interactions are equally important for the liquid-to-solid transition of proteins, particularly those related to neurodegenerative diseases.
Collapse
Affiliation(s)
- Wojciech P Lipiński
- Radboud University, Institute of Molecules and Materials (IMM), Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Johannes Zehnder
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Manzar Abbas
- Radboud University, Institute of Molecules and Materials (IMM), Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Peter Güntert
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
- Institute of Biophysical Chemistry Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji-shi, 192-0397, Tokyo, Japan
| | - Evan Spruijt
- Radboud University, Institute of Molecules and Materials (IMM), Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Thomas Wiegand
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim an der Ruhr, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| |
Collapse
|
5
|
Karmakar S, Sankhla A, Katiyar V. Reversible and biocompatible AuNP-decorated [Zn2+]:[Insulin] condensed assembly for potential therapeutic applications. Eur J Pharm Sci 2022; 173:106168. [DOI: 10.1016/j.ejps.2022.106168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/02/2022] [Accepted: 03/15/2022] [Indexed: 11/03/2022]
|
6
|
Pradhan T, Annamalai K, Sarkar R, Hegenbart U, Schönland S, Fändrich M, Reif B. Solid state NMR assignments of a human λ-III immunoglobulin light chain amyloid fibril. BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:9-16. [PMID: 32946005 PMCID: PMC7973639 DOI: 10.1007/s12104-020-09975-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/11/2020] [Indexed: 05/09/2023]
Abstract
The aggregation of antibody light chains is linked to systemic light chain (AL) amyloidosis, a disease where amyloid deposits frequently affect the heart and the kidney. We here investigate fibrils from the λ-III FOR005 light chain (LC), which is derived from an AL-patient with severe cardiac involvement. In FOR005, five residues are mutated with respect to its closest germline gene segment IGLV3-19 and IGLJ3. All mutations are located close to the complementarity determining regions (CDRs). The sequence segments responsible for the fibril formation are not yet known. We use fibrils extracted from the heart of this particular amyloidosis patient as seeds to prepare fibrils for solid-state NMR. We show that the seeds induce the formation of a specific fibril structure from the biochemically produced protein. We have assigned the fibril core region of the FOR005-derived fibrils and characterized the secondary structure propensity of the observed amino acids. As the primary structure of the aggregated patient protein is different for every AL patient, it is important to study, analyze and report a greater number of light chain sequences associated with AL amyloidosis.
Collapse
Affiliation(s)
- Tejaswini Pradhan
- Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit Und Umwelt, Institute of Structural Biology, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- Department of Chemistry, Munich Center for Integrated Protein Science (CIPS-M), Technische Universität München (TUM), Lichtenbergstr. 4, 85747, Garching, Germany
| | - Karthikeyan Annamalai
- Institute of Protein Biochemistry, Ulm University, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Riddhiman Sarkar
- Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit Und Umwelt, Institute of Structural Biology, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- Department of Chemistry, Munich Center for Integrated Protein Science (CIPS-M), Technische Universität München (TUM), Lichtenbergstr. 4, 85747, Garching, Germany
| | - Ute Hegenbart
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Stefan Schönland
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Bernd Reif
- Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit Und Umwelt, Institute of Structural Biology, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.
- Department of Chemistry, Munich Center for Integrated Protein Science (CIPS-M), Technische Universität München (TUM), Lichtenbergstr. 4, 85747, Garching, Germany.
| |
Collapse
|
7
|
Roeters SJ, Sawall M, Eskildsen CE, Panman MR, Tordai G, Koeman M, Neymeyr K, Jansen J, Smilde AK, Woutersen S. Unraveling VEALYL Amyloid Formation Using Advanced Vibrational Spectroscopy and Microscopy. Biophys J 2020; 119:87-98. [PMID: 32562617 DOI: 10.1016/j.bpj.2020.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 04/23/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022] Open
Abstract
Intermediate species are hypothesized to play an important role in the toxicity of amyloid formation, a process associated with many diseases. This process can be monitored with conventional and two-dimensional infrared spectroscopy, vibrational circular dichroism, and optical and electron microscopy. Here, we present how combining these techniques provides insight into the aggregation of the hexapeptide VEALYL (Val-Glu-Ala-Leu-Tyr-Leu), the B-chain residue 12-17 segment of insulin that forms amyloid fibrils (intermolecularly hydrogen-bonded β-sheets) when the pH is lowered below 4. Under such circumstances, the aggregation commences after approximately an hour and continues to develop over a period of weeks. Singular value decompositions of one-dimensional and two-dimensional infrared spectroscopy spectra indicate that intermediate species are formed during the aggregation process. Multivariate curve resolution analyses of the one and two-dimensional infrared spectroscopy data show that the intermediates are more fibrillar and deprotonated than the monomers, whereas they are less ordered than the final fibrillar structure that is slowly formed from the intermediates. A comparison between the vibrational circular dichroism spectra and the scanning transmission electron microscopy and optical microscope images shows that the formation of mature fibrils of VEALYL correlates with the appearance of spherulites that are on the order of several micrometers, which give rise to a "giant" vibrational circular dichroism effect.
Collapse
Affiliation(s)
- Steven J Roeters
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, the Netherlands.
| | - Mathias Sawall
- Institut für Mathematik, Universität Rostock, Rostock, Germany
| | - Carl E Eskildsen
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Matthijs R Panman
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Gergely Tordai
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Mike Koeman
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Klaus Neymeyr
- Institut für Mathematik, Universität Rostock, Rostock, Germany; Leibniz-Institut für Katalyse, Rostock, Germany
| | - Jeroen Jansen
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Age K Smilde
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Sander Woutersen
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Yu TG, Kim HS, Choi Y. B-SIDER: Computational Algorithm for the Design of Complementary β-Sheet Sequences. J Chem Inf Model 2019; 59:4504-4511. [PMID: 31512871 DOI: 10.1021/acs.jcim.9b00548] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The β-sheet is an element of protein secondary structure, and intra-/intermolecular β-sheet interactions play pivotal roles in biological regulatory processes including scaffolding, transporting, and oligomerization. In nature, a β-sheet formation is tightly regulated because dysregulated β-stacking often leads to severe diseases such as Alzheimer's, Parkinson's, systemic amyloidosis, or diabetes. Thus, the identification of intrinsic β-sheet-forming propensities can provide valuable insight into protein designs for the development of novel therapeutics. However, structure-based design methods may not be generally applicable to such amyloidogenic peptides mainly owing to high structural plasticity and complexity. Therefore, an alternative design strategy based on complementary sequence information is of significant importance. Herein, we developed a database search method called β-Stacking Interaction DEsign for Reciprocity (B-SIDER) for the design of complementary β-strands. This method makes use of the structural database information and generates target-specific score matrices. The discriminatory power of the B-SIDER score function was tested on representative amyloidogenic peptide substructures against a sequence-based score matrix (PASTA 2.0) and two popular ab initio protein design score functions (Rosetta and FoldX). B-SIDER is able to distinguish wild-type amyloidogenic β-strands as favored interactions in a more consistent manner than other methods. B-SIDER was prospectively applied to the design of complementary β-strands for a splitGFP scaffold. Three variants were identified to have stronger interactions than the original sequence selected through a directed evolution, emitting higher fluorescence intensities. Our results indicate that B-SIDER can be applicable to the design of other β-strands, assisting in the development of therapeutics against disease-related amyloidogenic peptides.
Collapse
Affiliation(s)
- Tae-Geun Yu
- Department of Biological Sciences , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
| | - Hak-Sung Kim
- Department of Biological Sciences , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
| | - Yoonjoo Choi
- Department of Biological Sciences , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
| |
Collapse
|
9
|
Wang Z, Lu HP. Single-Molecule Spectroscopy Study of Crowding-Induced Protein Spontaneous Denature and Crowding-Perturbed Unfolding–Folding Conformational Fluctuation Dynamics. J Phys Chem B 2018; 122:6724-6732. [DOI: 10.1021/acs.jpcb.8b03119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Zijiang Wang
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - H. Peter Lu
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| |
Collapse
|
10
|
Patel S, Sasidhar YU, Chary KVR. Mechanism of Initiation, Association, and Formation of Amyloid Fibrils Modeled with the N-Terminal Peptide Fragment, IKYLEFIS, of Myoglobin G-Helix. J Phys Chem B 2017; 121:7536-7549. [PMID: 28707888 DOI: 10.1021/acs.jpcb.7b02205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Some peptides and proteins undergo self-aggregation under certain conditions, leading to amyloid fibrils formation, which is related to many disease conditions. It is important to understand such amyloid fibrils formation to provide mechanistic detail that governs the process. A predominantly α-helical myoglobin has been reported recently to readily form amyloid fibrils at a higher temperature, similar to its G-helix segment. Here, we have investigated the mechanism of amyloid fibrils formation by performing multiple long molecular dynamics simulations (27 μs) on the N-terminal segment of the G-helix of myoglobin. These simulations resulted in the formation of a single-layered tetrameric β-sheet with mixed parallel and antiparallel β-strands and this is the most common event irrespective of many different starting structures. Formation of the single-layered tetrameric β-sheet takes place following three distinctive pathways. The process of fibril initiation is dependent on temperature. Further, this study provides mechanistic insights into the formation of multilayered fibrilar structure, which could be applicable to a wider variety of peptides or proteins to understand the amyloidogenesis.
Collapse
Affiliation(s)
- Sunita Patel
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences , Hyderabad 500075, India.,UM-DAE Centre for Excellence in Basic Sciences , Mumbai University Campus, Mumbai 400098, India
| | - Yellamraju U Sasidhar
- Department of Chemistry, Indian Institute of Technology Bombay , Mumbai 400076, India
| | - Kandala V R Chary
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences , Hyderabad 500075, India.,Tata Institute of Fundamental Research , Mumbai 400005, India
| |
Collapse
|
11
|
Chinisaz M, Ebrahim-Habibi A, Dehpour AR, Yaghmaei P, Parivar K, Moosavi-Movahedi AA. Structure and function of anhydride-modified forms of human insulin: In silico, in vitro and in vivo studies. Eur J Pharm Sci 2017; 96:342-350. [DOI: 10.1016/j.ejps.2016.09.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 01/20/2023]
|
12
|
Singh J, Srivastava A, Sharma P, Pradhan P, Kundu B. DNA intercalators as amyloid assembly modulators: mechanistic insights. RSC Adv 2017. [DOI: 10.1039/c6ra26313e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
DNA intercalators modulate amyloid assembly of proteins through specific hetero-aromatic interactions diverting them to form amorphous aggregates.
Collapse
Affiliation(s)
- Jasdeep Singh
- Kusuma School of Biological Sciences
- Indian Institute of Technology Delhi
- New Delhi
- India
| | - Ankit Srivastava
- Kusuma School of Biological Sciences
- Indian Institute of Technology Delhi
- New Delhi
- India
| | - Pankaj Sharma
- Kusuma School of Biological Sciences
- Indian Institute of Technology Delhi
- New Delhi
- India
| | - Prashant Pradhan
- Kusuma School of Biological Sciences
- Indian Institute of Technology Delhi
- New Delhi
- India
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences
- Indian Institute of Technology Delhi
- New Delhi
- India
| |
Collapse
|
13
|
Ratha BN, Ghosh A, Brender JR, Gayen N, Ilyas H, Neeraja C, Das KP, Mandal AK, Bhunia A. Inhibition of Insulin Amyloid Fibrillation by a Novel Amphipathic Heptapeptide: MECHANISTIC DETAILS STUDIED BY SPECTROSCOPY IN COMBINATION WITH MICROSCOPY. J Biol Chem 2016; 291:23545-23556. [PMID: 27679488 PMCID: PMC5095409 DOI: 10.1074/jbc.m116.742460] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/24/2016] [Indexed: 02/02/2023] Open
Abstract
The aggregation of insulin into amyloid fibers has been a limiting factor in the development of fast acting insulin analogues, creating a demand for excipients that limit aggregation. Despite the potential demand, inhibitors specifically targeting insulin have been few in number. Here we report a non-toxic and serum stable-designed heptapeptide, KR7 (KPWWPRR-NH2), that differs significantly from the primarily hydrophobic sequences that have been previously used to interfere with insulin amyloid fibrillation. Thioflavin T fluorescence assays, circular dichroism spectroscopy, and one-dimensional proton NMR experiments suggest KR7 primarily targets the fiber elongation step with little effect on the early oligomerization steps in the lag time period. From confocal fluorescence and atomic force microscopy experiments, the net result appears to be the arrest of aggregation in an early, non-fibrillar aggregation stage. This mechanism is noticeably different from previous peptide-based inhibitors, which have primarily shifted the lag time with little effect on later stages of aggregation. As insulin is an important model system for understanding protein aggregation, the new peptide may be an important tool for understanding peptide-based inhibition of amyloid formation.
Collapse
Affiliation(s)
| | | | - Jeffrey R Brender
- Radiation Biology Branch, National Institutes of Health, Bethesda, Maryland 20814
| | - Nilanjan Gayen
- Department of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | | | - Chilukoti Neeraja
- TIFR Centre for Interdisciplinary Sciences (TCIS), Narsingi, Hyderabad 500075, India, and
| | - Kali P Das
- Department of Chemistry, 93/1 APC Road, Bose Institute, Kolkata 700009, India
| | - Atin K Mandal
- Department of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | | |
Collapse
|
14
|
Seo J, Hoffmann W, Warnke S, Huang X, Gewinner S, Schöllkopf W, Bowers MT, von Helden G, Pagel K. An infrared spectroscopy approach to follow β-sheet formation in peptide amyloid assemblies. Nat Chem 2016; 9:39-44. [PMID: 27995915 DOI: 10.1038/nchem.2615] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 08/10/2016] [Indexed: 12/18/2022]
Abstract
Amyloidogenic peptides and proteins play a crucial role in a variety of neurodegenerative disorders such as Alzheimer's and Parkinson's disease. These proteins undergo a spontaneous transition from a soluble, often partially folded form, into insoluble amyloid fibrils that are rich in β-sheets. Increasing evidence suggests that highly dynamic, polydisperse folding intermediates, which occur during fibril formation, are the toxic species in the amyloid-related diseases. Traditional condensed-phase methods are of limited use for characterizing these states because they typically only provide ensemble averages rather than information about individual oligomers. Here we report the first direct secondary-structure analysis of individual amyloid intermediates using a combination of ion mobility spectrometry-mass spectrometry and gas-phase infrared spectroscopy. Our data reveal that oligomers of the fibril-forming peptide segments VEALYL and YVEALL, which consist of 4-9 peptide strands, can contain a significant amount of β-sheet. In addition, our data show that the more-extended variants of each oligomer generally exhibit increased β-sheet content.
Collapse
Affiliation(s)
- Jongcheol Seo
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - Waldemar Hoffmann
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Stephan Warnke
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - Xing Huang
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - Sandy Gewinner
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - Wieland Schöllkopf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - Michael T Bowers
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Gert von Helden
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - Kevin Pagel
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, Berlin 14195, Germany
| |
Collapse
|
15
|
Matthes D, Gapsys V, Brennecke JT, de Groot BL. An Atomistic View of Amyloidogenic Self-assembly: Structure and Dynamics of Heterogeneous Conformational States in the Pre-nucleation Phase. Sci Rep 2016; 6:33156. [PMID: 27616019 PMCID: PMC5018807 DOI: 10.1038/srep33156] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/22/2016] [Indexed: 01/01/2023] Open
Abstract
The formation of well-defined filamentous amyloid structures involves a polydisperse collection of oligomeric states for which relatively little is known in terms of structural organization. Here we use extensive, unbiased explicit solvent molecular dynamics (MD) simulations to investigate the structural and dynamical features of oligomeric aggregates formed by a number of highly amyloidogenic peptides at atomistic resolution on the μs time scale. A consensus approach has been adopted to analyse the simulations in multiple force fields, yielding an in-depth characterization of pre-fibrillar oligomers and their global and local structure properties. A collision cross section analysis revealed structurally heterogeneous aggregate ensembles for the individual oligomeric states that lack a single defined quaternary structure during the pre-nucleation phase. To gain insight into the conformational space sampled in early aggregates, we probed their substructure and found emerging β-sheet subunit layers and a multitude of ordered intermolecular β-structure motifs with growing aggregate size. Among those, anti-parallel out-of-register β-strands compatible with toxic β-barrel oligomers were particularly prevalent already in smaller aggregates and formed prior to ordered fibrillar structure elements. Notably, also distinct fibril-like conformations emerged in the oligomeric state and underscore the notion that pre-nucleated oligomers serve as a critical intermediate step on-pathway to fibrils.
Collapse
Affiliation(s)
- Dirk Matthes
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Vytautas Gapsys
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Julian T Brennecke
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
16
|
Espargaró A, Busquets MA, Estelrich J, Sabate R. Amyloids in solid-state nuclear magnetic resonance: potential causes of the usually low resolution. Int J Nanomedicine 2015; 10:6975-83. [PMID: 26635473 PMCID: PMC4646584 DOI: 10.2147/ijn.s89385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Amyloids are non-crystalline and insoluble, which imply that the classical structural biology tools, ie, X-ray crystallography and solution nuclear magnetic resonance (NMR), are not suitable for their analysis. In the last years, solid-state NMR (ssNMR) has emerged as an alternative tool to decrypt the structural signatures of amyloid fibrils, providing major contributions to our understanding of molecular structures of amyloids such as β-amyloid peptide associated with Alzheimer’s disease or fungal prions, among others. Despite this, the wide majority of amyloid fibrils display low resolution by ssNMR. Usually, this low resolution has been attributed to a high disorder or polymorphism of the fibrils, suggesting the existence of diverse elementary β-sheet structures. Here, we propose that a single β-sheet structure could be responsible for the broadening of the line widths in the ssNMR spectra. Although the fibrils and fibers consist of a single elementary structure, the angle of twist of each individual fibril in the mature fiber depends on the number of individual fibrils as well as the fibril arrangement in the final mature fiber. Thus, a wide range of angles of twist could be observed in the same amyloid sample. These twist variations involve changes in amino acid alignments that could be enough to limit the ssNMR resolution.
Collapse
Affiliation(s)
- Alba Espargaró
- Department of Physical Chemistry, School of Pharmacy, Institute of Nanoscience and Nanotechnology (IN UB), University of Barcelona, Barcelona, Spain
| | - Maria Antònia Busquets
- Department of Physical Chemistry, School of Pharmacy, Institute of Nanoscience and Nanotechnology (IN UB), University of Barcelona, Barcelona, Spain
| | - Joan Estelrich
- Department of Physical Chemistry, School of Pharmacy, Institute of Nanoscience and Nanotechnology (IN UB), University of Barcelona, Barcelona, Spain
| | - Raimon Sabate
- Department of Physical Chemistry, School of Pharmacy, Institute of Nanoscience and Nanotechnology (IN UB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Luiken JA, Bolhuis PG. Primary Nucleation Kinetics of Short Fibril-Forming Amyloidogenic Peptides. J Phys Chem B 2015; 119:12568-79. [DOI: 10.1021/acs.jpcb.5b05799] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jurriaan A. Luiken
- van ’t
Hoff Institute
for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, Netherlands
| | - Peter G. Bolhuis
- van ’t
Hoff Institute
for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, Netherlands
| |
Collapse
|
18
|
Chouchane K, Vendrely C, Amari M, Moreaux K, Bruckert F, Weidenhaupt M. Dual Effect of (LK)nL Peptides on the Onset of Insulin Amyloid Fiber Formation at Hydrophobic Surfaces. J Phys Chem B 2015; 119:10543-53. [PMID: 26234630 DOI: 10.1021/acs.jpcb.5b07365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Soluble proteins are constantly in contact with material or cellular surfaces, which can trigger their aggregation and therefore have a serious impact on the development of stable therapeutic proteins. In contact with hydrophobic material surfaces, human insulin aggregates readily into amyloid fibers. The kinetics of this aggregation can be accelerated by small peptides, forming stable beta-sheets on hydrophobic surfaces. Using a series of (LK)nL peptides with varying length, we show that these peptides, at low, substoichiometric concentrations, have a positive, cooperative effect on insulin aggregation. This effect is based on a cooperative adsorption of (LK)nL peptides at hydrophobic surfaces, where they form complexes that help the formation of aggregation nuclei. At higher concentrations, they interfere with the formation of an aggregative nucleus. These effects are strictly dependent on the their adsorption on hydrophobic material surfaces and highlight the importance of the impact of materials on protein stability. (LK)nL peptides prove to be valuable tools to investigate the mechanism of HI aggregation nuclei formation on hydrophobic surfaces.
Collapse
Affiliation(s)
| | - Charlotte Vendrely
- ‡Cergy Pontoise University, ERRMECe, I-MAT FD4122, F-95302 Cergy Pontoise, France
| | | | | | | | | |
Collapse
|
19
|
Carballo-Pacheco M, Ismail AE, Strodel B. Oligomer Formation of Toxic and Functional Amyloid Peptides Studied with Atomistic Simulations. J Phys Chem B 2015; 119:9696-705. [PMID: 26130191 DOI: 10.1021/acs.jpcb.5b04822] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Amyloids are associated with diseases, including Alzheimer's, as well as functional roles such as storage of peptide hormones. It is still unclear what differences exist between aberrant and functional amyloids. However, it is known that soluble oligomers formed during amyloid aggregation are more toxic than the final fibrils. Here, we perform molecular dynamics simulations to study the aggregation of the amyloid-β peptide Aβ25-35, associated with Alzheimer's disease, and two functional amyloid-forming tachykinin peptides: kassinin and neuromedin K. Although the three peptides have similar primary sequences, tachykinin peptides, in contrast to Aβ25-35, form nontoxic amyloids. Our simulations reveal that the charge of the C-terminus is essential to controlling the aggregation process. In particular, when the kassinin C-terminus is not amidated, the aggregation kinetics decreases considerably. In addition, we observe that the monomeric peptides in extended conformations aggregate faster than those in collapsed hairpin-like conformations.
Collapse
Affiliation(s)
- Martín Carballo-Pacheco
- †AICES Graduate School and Aachener Verfahrenstechnik: Molecular Simulations and Transformations, RWTH Aachen University, Schinkelstraße 2, 52062 Aachen, Germany.,‡Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Ahmed E Ismail
- †AICES Graduate School and Aachener Verfahrenstechnik: Molecular Simulations and Transformations, RWTH Aachen University, Schinkelstraße 2, 52062 Aachen, Germany
| | - Birgit Strodel
- ‡Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,¶Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
20
|
Pastor N, Amero C. Information flow and protein dynamics: the interplay between nuclear magnetic resonance spectroscopy and molecular dynamics simulations. FRONTIERS IN PLANT SCIENCE 2015; 6:306. [PMID: 25999971 PMCID: PMC4419604 DOI: 10.3389/fpls.2015.00306] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/17/2015] [Indexed: 06/04/2023]
Abstract
Proteins participate in information pathways in cells, both as links in the chain of signals, and as the ultimate effectors. Upon ligand binding, proteins undergo conformation and motion changes, which can be sensed by the following link in the chain of information. Nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations represent powerful tools for examining the time-dependent function of biological molecules. The recent advances in NMR and the availability of faster computers have opened the door to more detailed analyses of structure, dynamics, and interactions. Here we briefly describe the recent applications that allow NMR spectroscopy and MD simulations to offer unique insight into the basic motions that underlie information transfer within and between cells.
Collapse
Affiliation(s)
- Nina Pastor
- Laboratorio de Dinámica de Proteínas y Ácidos Nucleicos, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Carlos Amero
- Laboratorio de Bioquímica y Resonancia Magnética Nuclear, Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| |
Collapse
|
21
|
Kheirbakhsh R, Chinisaz M, Khodayari S, Amanpour S, Dehpour AR, Muhammadnejad A, Larijani B, Ebrahim-Habibi A. Injection of insulin amyloid fibrils in the hippocampus of male Wistar rats: report on memory impairment and formation of amyloid plaques. Neurol Sci 2015; 36:1411-6. [PMID: 25787810 DOI: 10.1007/s10072-015-2169-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 03/09/2015] [Indexed: 10/23/2022]
Abstract
Amyloid fibrils result from a particular type of protein aggregation, and have been linked with various disorders, including neurodegenerative ones. In the case of Alzheimer's disease, amyloid beta (abeta) fibrils are detected in patients' brain, in the amyloid plaques. These fibrils can be produced in vitro, and their injection into animals' brains generates an animal model of Alzheimer's disease. Based on the structural similarity of amyloid fibrils that are formed from different proteins, we hypothesized that injecting insulin amyloid fibrils into rats' brains could result in amyloid plaque formation. Fourteen male Wistar rats were divided into control and experimental groups (n = 7). The experimental group was bilaterally injected with insulin amyloid in the hippocampus. Seven days after injection, a shuttle box test was performed and the experimental group's memory was found to be impaired. Histological investigation of these rats' brain showed the formation of amyloid plaques in the hippocampus. A limited test has provided preliminary evidence for the stability of these plaques up to 35 days. Further complementary studies are required to fully validate the proposed procedure, which is simple and relatively low cost, and could be suggested as an alternative to models generated with abeta fibrils.
Collapse
Affiliation(s)
- Raheleh Kheirbakhsh
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Shariati Hospital, North Kargar Avenue, 1411413137, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Haque MA, Zaidi S, Ubaid-ullah S, Prakash A, Hassan MI, Islam A, Batra JK, Ahmad F. In vitro and in silico studies of urea-induced denaturation of yeast iso-1-cytochromecand its deletants at pH 6.0 and 25 °C. J Biomol Struct Dyn 2014; 33:1493-502. [DOI: 10.1080/07391102.2014.958760] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|