1
|
Fontanini M, Cabiati M, Giacomarra M, Federico G, Del Ry S. Long non-Coding RNAs and Obesity: New Potential Pathogenic Biomarkers. Curr Pharm Des 2022; 28:1592-1605. [DOI: 10.2174/1381612828666220211153304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/17/2022] [Indexed: 11/22/2022]
Abstract
Background:
A portion of the human genome is characterized by long non-coding RNAs (lncRNAs), a class of non-coding RNA longer than 200 nucleotides. Recently, the development of new biomolecular methods, made it possible to delineate the involvement of lncRNAs in the regulation of different biological processes, both physiological and pathological, by acting within the cell with different regulatory mechanisms based on their specific target. To date, obesity is one of the most important health problems spread all over the world, including the child population: the search for new potential early biomarkers could open the doors to novel therapeutic strategies useful to fight the disease early in life and to reduce the risk of obesity-related co-morbidities.
Objective:
This review highlights the lncRNAs involved in obesity, in adipogenesis, and lipid metabolism, particularly in lipogenesis.
Conclusion:
LncRNAs involved in adipogenesis and lipogenesis, being at the cross-road of obesity, should be deeply analysed in this contest, allowing to understand possible causative actions in starting obesity and whether they might be helpful to treat obesity.
Collapse
Affiliation(s)
- Martina Fontanini
- CNR Institute of Clinical Physiology, Biochemistry and Molecular Biology laboratory, Via G. Moruzzi 1, 56124 Pisa Italy
| | - Manuela Cabiati
- CNR Institute of Clinical Physiology, Biochemistry and Molecular Biology laboratory, Via G. Moruzzi 1, 56124 Pisa Italy
| | - Manuel Giacomarra
- CNR Institute of Clinical Physiology, Biochemistry and Molecular Biology laboratory, Via G. Moruzzi 1, 56124 Pisa Italy
| | - Giovanni Federico
- Unit of Pediatric Endocrinology and Diabetes, Dep. Clinical and Experimental Medicine, University of Pisa, Via Roma n. 67 56126 Pisa, Italy
| | - Silvia Del Ry
- CNR Institute of Clinical Physiology, Biochemistry and Molecular Biology laboratory, Via G. Moruzzi 1, 56124 Pisa Italy
| |
Collapse
|
2
|
Sanbonmatsu K. Towards Molecular Mechanism in Long Non-coding RNAs: Linking Structure and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1363:23-32. [DOI: 10.1007/978-3-030-92034-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
Dinh DT, Russell DL. Nuclear Receptors in Ovarian Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:41-58. [DOI: 10.1007/978-3-031-11836-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Steroid receptor RNA activator gene footprint in the progression and drug resistance of colorectal cancer through oxidative phosphorylation pathway. Life Sci 2021; 285:119950. [PMID: 34520769 DOI: 10.1016/j.lfs.2021.119950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND The steroid receptor RNA activator 1 (SRA1) gene is involved in the progression of various cancers via different molecular mechanisms mediated by long non-coding RNA SRA (lncRNA SRA). This study aimed to evaluate the lncRNA SRA effect on the tumor progression of colorectal cancer (CRC). METHODS SRA1 expression was assessed in the cancer genome atlas datasets, CRC cell lines, and tumor specimens. Meta-analysis and gene co-expression network analysis were performed to identify pathways related to SRA1. RNA interference and cell treatment were utilized to examine the role of SRA1 expression in HT-29 and Caco-2 cell lines. Also, the effect of SRA1 expression was investigated on drug resistance, clinical parameters, and mutations in CRC samples. RESULTS The SRA1 transcripts, especially lncRNA SRA, were dysregulated in CRC tissue samples compared with normal tissue samples. Furthermore, SRA1 depletion decreased colony formation and proliferation while induced apoptosis in HT-29 and Caco-2 cells. In silico analyses indicated that SRA1 level was correlated with expression levels of oxidative phosphorylation (OXPHOS) genes. LncRNA SRA expression increased in response to the increased oxidative capacity, and when lncRNA SRA was knocked down, the expression level of OXPHOS pathway genes, including NDUFB5 and ATP5F1B, was changed. Also, KRAS-mutant samples had the highest SRA1 expression level. CONCLUSIONS LncRNA SRA could function as an oncogene through the OXPHOS pathway in CRC, and serve as a potential biomarker for identifying CRC subtype with KRAS mutations. The findings suggest that lncRNA SRA might be a therapeutic target to inhibit cell proliferation in CRC.
Collapse
|
5
|
Sanbonmatsu K. Getting to the bottom of lncRNA mechanism: structure-function relationships. Mamm Genome 2021; 33:343-353. [PMID: 34642784 PMCID: PMC8509902 DOI: 10.1007/s00335-021-09924-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022]
Abstract
While long non-coding RNAs are known to play key roles in disease and development, relatively few structural studies have been performed for this important class of RNAs. Here, we review functional studies of long non-coding RNAs and expose the need for high-resolution 3-D structural studies, discussing the roles of long non-coding RNAs in the cell and how structure–function relationships might be used to elucidate further understanding. We then describe structural studies of other classes of RNAs using chemical probing, nuclear magnetic resonance, small-angle X-ray scattering, X-ray crystallography, and cryogenic electron microscopy (cryo-EM). Next, we review early structural studies of long non-coding RNAs to date and describe the way forward for the structural biology of long non-coding RNAs in terms of cryo-EM.
Collapse
|
6
|
Pham PN, Huličiak M, Biedermannová L, Černý J, Charnavets T, Fuertes G, Herynek Š, Kolářová L, Kolenko P, Pavlíček J, Zahradník J, Mikulecky P, Schneider B. Protein Binder (ProBi) as a New Class of Structurally Robust Non-Antibody Protein Scaffold for Directed Evolution. Viruses 2021; 13:v13020190. [PMID: 33514045 PMCID: PMC7911045 DOI: 10.3390/v13020190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/15/2021] [Accepted: 01/23/2021] [Indexed: 12/13/2022] Open
Abstract
Engineered small non-antibody protein scaffolds are a promising alternative to antibodies and are especially attractive for use in protein therapeutics and diagnostics. The advantages include smaller size and a more robust, single-domain structural framework with a defined binding surface amenable to mutation. This calls for a more systematic approach in designing new scaffolds suitable for use in one or more methods of directed evolution. We hereby describe a process based on an analysis of protein structures from the Protein Data Bank and their experimental examination. The candidate protein scaffolds were subjected to a thorough screening including computational evaluation of the mutability, and experimental determination of their expression yield in E. coli, solubility, and thermostability. In the next step, we examined several variants of the candidate scaffolds including their wild types and alanine mutants. We proved the applicability of this systematic procedure by selecting a monomeric single-domain human protein with a fold different from previously known scaffolds. The newly developed scaffold, called ProBi (Protein Binder), contains two independently mutable surface patches. We demonstrated its functionality by training it as a binder against human interleukin-10, a medically important cytokine. The procedure yielded scaffold-related variants with nanomolar affinity.
Collapse
|
7
|
Squillaro T, Peluso G, Galderisi U, Di Bernardo G. Long non-coding RNAs in regulation of adipogenesis and adipose tissue function. eLife 2020; 9:59053. [PMID: 32730204 PMCID: PMC7392603 DOI: 10.7554/elife.59053] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Complex interaction between genetics, epigenetics, environment, and nutrition affect the physiological activities of adipose tissues and their dysfunctions, which lead to several metabolic diseases including obesity or type 2 diabetes. Here, adipogenesis appears to be a process characterized by an intricate network that involves many transcription factors and long noncoding RNAs (lncRNAs) that regulate gene expression. LncRNAs are being investigated to determine their contribution to adipose tissue development and function. LncRNAs possess multiple cellular functions, and they regulate chromatin remodeling, along with transcriptional and post-transcriptional events; in this way, they affect gene expression. New investigations have demonstrated the pivotal role of these molecules in modulating white and brown/beige adipogenic tissue development and activity. This review aims to provide an update on the role of lncRNAs in adipogenesis and adipose tissue function to promote identification of new drug targets for treating obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Tiziana Squillaro
- Department of Experimental Medicine, Biotechnology, and Molecular Biology Section, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | - Umberto Galderisi
- Department of Experimental Medicine, Biotechnology, and Molecular Biology Section, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giovanni Di Bernardo
- Department of Experimental Medicine, Biotechnology, and Molecular Biology Section, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
8
|
Scheidler CM, Kick LM, Schneider S. Ribosomal Peptides and Small Proteins on the Rise. Chembiochem 2019; 20:1479-1486. [PMID: 30648812 DOI: 10.1002/cbic.201800715] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Indexed: 11/05/2022]
Abstract
Genetically encoded and ribosomally synthesised peptides and small proteins act as important regulators in fundamental cellular processes, including gene expression, development, signalling and metabolism. Moreover, they also play a crucial role in eukaryotic and prokaryotic defence against microorganisms. Extremely diverse in size and structure, they are often subject to extensive post-translational modification. Recent technological advances are now allowing the analysis of the whole cellular transcriptome and proteome, revealing the presence of hundreds of long-overlooked alternative and short open reading frames (short ORFs, or sORFs) in mRNA and supposedly noncoding RNAs. However, in many instances the biological roles of their translational products remain to be elucidated. Here we provide an overview on the intriguing structural and functional diversity of ribosomally synthesised peptides and newly discovered peptides and small proteins.
Collapse
Affiliation(s)
- Christopher M Scheidler
- Center for Integrated Protein Science at the Department of Chemistry, Chair of Biochemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Leonhard M Kick
- Center for Integrated Protein Science at the Department of Chemistry, Chair of Biochemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Sabine Schneider
- Center for Integrated Protein Science at the Department of Chemistry, Chair of Biochemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| |
Collapse
|
9
|
Sheng L, Ye L, Zhang D, Cawthorn WP, Xu B. New Insights Into the Long Non-coding RNA SRA: Physiological Functions and Mechanisms of Action. Front Med (Lausanne) 2018; 5:244. [PMID: 30238005 PMCID: PMC6135885 DOI: 10.3389/fmed.2018.00244] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/10/2018] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs (lncRNA) are emerging as new genetic/epigenetic regulators that can impact almost all physiological functions. Here, we focus on the long non-coding steroid receptor RNA activator (SRA), including new insights into its effects on gene expression, the cell cycle, and differentiation; how these relate to physiology and disease; and the mechanisms underlying these effects. We discuss how SRA acts as an RNA coactivator in nuclear receptor signaling; its effects on steroidogenesis, adipogenesis, and myocyte differentiation; the impact on breast and prostate cancer tumorigenesis; and, finally, its ability to modulate hepatic steatosis through several signaling pathways. Genome-wide analysis reveals that SRA regulates hundreds of target genes in adipocytes and breast cancer cells and binds to thousands of genomic sites in human pluripotent stem cells. Recent studies indicate that SRA acts as a molecular scaffold and forms networks with numerous coregulators and chromatin-modifying regulators in both activating and repressive complexes. We discuss how modifications to SRA's unique stem-loop secondary structure are important for SRA function, and highlight the various SRA isoforms and mutations that have clinical implications. Finally, we discuss the future directions for better understanding the molecular mechanisms of SRA action and how this might lead to new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Liang Sheng
- Department of Pharmacology, School of Basic Medical Science, Nanjing Medical University, Nanjing, China.,Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Nanjing, China
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Dong Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - William P Cawthorn
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Bin Xu
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical Center Ann Arbor, MI, United States
| |
Collapse
|
10
|
Klinge CM. Non-coding RNAs: long non-coding RNAs and microRNAs in endocrine-related cancers. Endocr Relat Cancer 2018; 25:R259-R282. [PMID: 29440232 DOI: 10.1530/erc-17-0548] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/12/2018] [Indexed: 12/11/2022]
Abstract
The human genome is 'pervasively transcribed' leading to a complex array of non-coding RNAs (ncRNAs) that far outnumber coding mRNAs. ncRNAs have regulatory roles in transcription and post-transcriptional processes as well numerous cellular functions that remain to be fully described. Best characterized of the 'expanding universe' of ncRNAs are the ~22 nucleotide microRNAs (miRNAs) that base-pair to target mRNA's 3' untranslated region within the RNA-induced silencing complex (RISC) and block translation and may stimulate mRNA transcript degradation. Long non-coding RNAs (lncRNAs) are classified as >200 nucleotides in length, but range up to several kb and are heterogeneous in genomic origin and function. lncRNAs fold into structures that interact with DNA, RNA and proteins to regulate chromatin dynamics, protein complex assembly, transcription, telomere biology and splicing. Some lncRNAs act as sponges for miRNAs and decoys for proteins. Nuclear-encoded lncRNAs can be taken up by mitochondria and lncRNAs are transcribed from mtDNA. Both miRNAs and lncRNAs are dysregulated in endocrine cancers. This review provides an overview on the current understanding of the regulation and function of selected lncRNAs and miRNAs, and their interaction, in endocrine-related cancers: breast, prostate, endometrial and thyroid.
Collapse
|
11
|
Burenina OY, Oretskaya TS, Kubareva EA. Non-Coding RNAs As Transcriptional Regulators In Eukaryotes. Acta Naturae 2017; 9:13-25. [PMID: 29340213 PMCID: PMC5762824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Indexed: 10/31/2022] Open
Abstract
Non-coding RNAs up to 1,000 nucleotides in length are widespread in eukaryotes and fulfil various regulatory functions, in particular during chromatin remodeling and cell proliferation. These RNAs are not translated into proteins: thus, they are non-coding RNAs (ncRNAs). The present review describes the eukaryotic ncRNAs involved in transcription regulation, first and foremost, targeting RNA polymerase II (RNAP II) and/or its major proteinaceous transcription factors. The current state of knowledge concerning the regulatory functions of SRA and TAR RNA, 7SK and U1 snRNA, GAS5 and DHFR RNA is summarized herein. Special attention is given to murine B1 and B2 RNAs and human Alu RNA, due to their ability to bind the active site of RNAP II. Discovery of bacterial analogs of the eukaryotic small ncRNAs involved in transcription regulation, such as 6S RNAs, suggests that they possess a common evolutionary origin.
Collapse
Affiliation(s)
- O. Y. Burenina
- Skolkovo Institute of Science and Technology, Nobel Str. 3, Moscow, 143026, Russia
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1, bld. 3, Moscow, 119991 , Russia
| | - T. S. Oretskaya
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1, bld. 3, Moscow, 119991 , Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, bld. 40, Moscow, 119991, Russia
| | - E. A. Kubareva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, bld. 40, Moscow, 119991, Russia
| |
Collapse
|
12
|
Lin K, Zhan H, Ma J, Xu K, Wu R, Zhou C, Lin J. Silencing of SRA1 Regulates ER Expression and Attenuates the Growth of Stromal Cells in Ovarian Endometriosis. Reprod Sci 2016; 24:836-843. [PMID: 27694140 DOI: 10.1177/1933719116670036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Estradiol and its nuclear receptors, estrogen receptor (ER) α and ER-β, have important functions in endometriosis, and the transcriptional activity of these receptors is modulated by coactivators and corepressors. The steroid receptor RNA activator 1 (SRA1) produces SRA long noncoding RNA (lncRNA) and SRA protein (SRAP), which regulate ER expression at the RNA and protein levels in some hormone-dependent tumors via an alternative splicing event. However, only a few are reported on their expressions in endometriosis. Here, we observed that low expression levels of SRA lncRNA and ER-α but relatively high expression levels of SRAP and ER-β were detected in ovarian endometriotic tissues versus normal endometrial tissues. Steroid receptor RNA activator 1-small interfering RNA treatment significantly increased ER-α levels but reduced ER-β levels in endometriotic stromal cells (ESCs). Furthermore, the treatment can also attenuate the proliferation and promote early apoptosis in these cells. Our results indicate that the regulation of ER via SRA in ovarian endometriosis may play a significant role in the growth of ESCs.
Collapse
Affiliation(s)
- Kaiqing Lin
- 1 Department of Gynaecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Hong Zhan
- 1 Department of Gynaecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Junyan Ma
- 2 Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Kaihong Xu
- 1 Department of Gynaecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Ruijin Wu
- 1 Department of Gynaecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Caiyun Zhou
- 3 Department of Pathology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Jun Lin
- 1 Department of Gynaecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
13
|
Sampath K, Ephrussi A. CncRNAs: RNAs with both coding and non-coding roles in development. Development 2016; 143:1234-41. [PMID: 27095489 DOI: 10.1242/dev.133298] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
RNAs are known to regulate diverse biological processes, either as protein-encoding molecules or as non-coding RNAs. However, a third class that comprises RNAs endowed with both protein coding and non-coding functions has recently emerged. Such bi-functional 'coding and non-coding RNAs' (cncRNAs) have been shown to play important roles in distinct developmental processes in plants and animals. Here, we discuss key examples of cncRNAs and review their roles, regulation and mechanisms of action during development.
Collapse
Affiliation(s)
- Karuna Sampath
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AJ, UK
| | - Anne Ephrussi
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, Heidelberg 69117, Germany
| |
Collapse
|
14
|
Steroid receptor RNA activator: Biologic function and role in disease. Clin Chim Acta 2016; 459:137-146. [DOI: 10.1016/j.cca.2016.06.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/05/2016] [Accepted: 06/05/2016] [Indexed: 12/25/2022]
|
15
|
Foulds CE, Panigrahi AK, Coarfa C, Lanz RB, O'Malley BW. Long Noncoding RNAs as Targets and Regulators of Nuclear Receptors. Curr Top Microbiol Immunol 2016; 394:143-76. [PMID: 26362934 DOI: 10.1007/82_2015_465] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Intensive research has been directed at the discovery, biogenesis, and expression patterns of long noncoding RNAs , yet their biochemical functions have remained elusive for the most part. Nuclear receptors that interpret signaling mediated by small molecule hormones play a role in regulating the expression of some long noncoding RNAs. More importantly, these RNAs have also been shown to effect hormone-affected gene transcription regulated by the nuclear receptors. In this chapter, we summarize the current knowledge that has been acquired on hormonal signaling inducing expression of long noncoding RNAs and how they then may act in trans or in cis to modulate gene transcription. We highlight a few of these noncoding RNA molecules in terms of how they may impact hormone-driven cancers. Future directions critical for moving this field forward are presented, with a clear emphasis on the need for better biochemical approaches to address the mechanism of action of these exciting RNAs.
Collapse
Affiliation(s)
- Charles E Foulds
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Anil K Panigrahi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Rainer B Lanz
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
16
|
Nitsche A, Stadler PF. Evolutionary clues in lncRNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27436689 DOI: 10.1002/wrna.1376] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/06/2016] [Accepted: 06/09/2016] [Indexed: 12/13/2022]
Abstract
The diversity of long non-coding RNAs (lncRNAs) in the human transcriptome is in stark contrast to the sparse exploration of their functions concomitant with their conservation and evolution. The pervasive transcription of the largely non-coding human genome makes the evolutionary age and conservation patterns of lncRNAs to a topic of interest. Yet it is a fairly unexplored field and not that easy to determine as for protein-coding genes. Although there are a few experimentally studied cases, which are conserved at the sequence level, most lncRNAs exhibit weak or untraceable primary sequence conservation. Recent studies shed light on the interspecies conservation of secondary structures among lncRNA homologs by using diverse computational methods. This highlights the importance of structure on functionality of lncRNAs as opposed to the poor impact of primary sequence changes. Further clues in the evolution of lncRNAs are given by selective constraints on non-coding gene structures (e.g., promoters or splice sites) as well as the conservation of prevalent spatio-temporal expression patterns. However, a rapid evolutionary turnover is observable throughout the heterogeneous group of lncRNAs. This still gives rise to questions about its functional meaning. WIREs RNA 2017, 8:e1376. doi: 10.1002/wrna.1376 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Anne Nitsche
- Bioinformatics Group, Department of Computer Science, University Leipzig, Leipzig, Germany.,Institute de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Cedex, France
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, University Leipzig, Leipzig, Germany.,Interdisciplinary Center for Bioinformatics, University Leipzig, Leipzig, Germany.,Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany.,Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology - IZI, Leipzig, Germany.,Center for Non-Coding RNA in Technology and Health, University of Copenhagen, Frederiksberg, Denmark.,Department of Theoretical Chemistry, University of Vienna, Wien, Austria.,Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
17
|
Jung E, Jang S, Lee J, Kim Y, Shin H, Park HS, Lee Y. Truncated SRA RNA derivatives inhibit estrogen receptor-α-mediated transcription. Mol Biol Rep 2016; 43:1019-25. [PMID: 27406387 DOI: 10.1007/s11033-016-4039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/06/2016] [Indexed: 10/21/2022]
Abstract
The steroid receptor RNA activator (SRA) is a long non-coding RNA (lncRNA) that acts as a putative coactivator for steroid receptor-mediated transcription. A recent study showed that SRA RNA can be structurally dissected into four domains comprising various secondary structures, but the contribution of each domain to the coactivation ability of SRA RNA was previously unknown. Here, we assessed the functional contributions of the various domains of SRA. We examined the effects of each domain on the coactivation of estrogen receptor-α (ERα)-mediated transcription of a luciferase reporter gene in HeLa cells. Then the detailed domain analysis was focused on domain III (D3) not only with the reporter gene in HeLa cells, but also with ERα-responsive genes in MCF7 breast cancer cells. Domain deletion analysis showed that the deletion of any domain decreased the luciferase activity, and that deletion of D3 caused the largest decrease. This D3 deletion effect was not recovered by co-expression of D3 alone; moreover, the expression of D3 fragments (particularly helices H15-H18, which are highly conserved across vertebrates) inhibited luciferase expression in HeLa cells. Moreover, a fragment containing helices H15-H18 reduced ERα-responsive gene expression in MCF7 breast cancer cells. Our findings indicate that D3 inhibited ERα-mediated transcription of a reporter gene in HeLa cells and that helices H15-H18, as a core element responsible for the D3-driven inhibition, reduced expression of ERα-responsive genes in breast cancer cells.
Collapse
Affiliation(s)
- Euihan Jung
- Department of Chemistry, KAIST, Daejeon, 305-701, Korea
| | - Seonghui Jang
- Department of Chemistry, KAIST, Daejeon, 305-701, Korea
| | - Jungmin Lee
- Department of Chemistry, KAIST, Daejeon, 305-701, Korea
| | - Youngmi Kim
- Department of Chemistry, KAIST, Daejeon, 305-701, Korea
| | - Heegwon Shin
- Department of Chemistry, KAIST, Daejeon, 305-701, Korea
| | - Hee-Sung Park
- Department of Chemistry, KAIST, Daejeon, 305-701, Korea
| | - Younghoon Lee
- Department of Chemistry, KAIST, Daejeon, 305-701, Korea.
| |
Collapse
|
18
|
Kotan LD, Cooper C, Darcan Ş, Carr IM, Özen S, Yan Y, Hamedani MK, Gürbüz F, Mengen E, Turan İ, Ulubay A, Akkuş G, Yüksel B, Topaloğlu AK, Leygue E. Idiopathic Hypogonadotropic Hypogonadism Caused by Inactivating Mutations in SRA1. J Clin Res Pediatr Endocrinol 2016; 8:125-34. [PMID: 27086651 PMCID: PMC5096466 DOI: 10.4274/jcrpe.3248] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE What initiates the pubertal process in humans and other mammals is still unknown. We hypothesized that gene(s) taking roles in triggering human puberty may be identified by studying a cohort of idiopathic hypogonadotropic hypogonadism (IHH). METHODS A cohort of IHH cases was studied based on autozygosity mapping coupled with whole exome sequencing. RESULTS Our studies revealed three independent families in which IHH/delayed puberty is associated with inactivating SRA1 variants. SRA1 was the first gene to be identified to function through its protein as well as noncoding functional ribonucleic acid products. These products act as co-regulators of nuclear receptors including sex steroid receptors as well as SF-1 and LRH-1, the master regulators of steroidogenesis. Functional studies with a mutant SRA1 construct showed a reduced co-activation of ligand-dependent activity of the estrogen receptor alpha, as assessed by luciferase reporter assay in HeLa cells. CONCLUSION Our findings strongly suggest that SRA1 gene function is required for initiation of puberty in humans. Furthermore, SRA1 with its alternative products and functionality may provide a potential explanation for the versatility and complexity of the pubertal process.
Collapse
Affiliation(s)
- Leman Damla Kotan
- Çukurova University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology, Adana, Turkey
| | - Charlton Cooper
- University of Manitoba, Manitoba Institute of Cell Biology, Winnipeg, Manitoba, Canada
| | - Şükran Darcan
- Ege University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology, İzmir, Turkey
| | - Ian M. Carr
- University of Leeds, Institute of Biomedical and Clinical Sciences, Section of Genetics, Leeds, United Kingdom
| | - Samim Özen
- Ege University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology, İzmir, Turkey
| | - Yi Yan
- University of Manitoba, Manitoba Institute of Cell Biology, Winnipeg, Manitoba, Canada
| | - Mohammad K. Hamedani
- University of Manitoba, Manitoba Institute of Cell Biology, Winnipeg, Manitoba, Canada
| | - Fatih Gürbüz
- Çukurova University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology, Adana, Turkey
| | - Eda Mengen
- Çukurova University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology, Adana, Turkey
| | - İhsan Turan
- Çukurova University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology, Adana, Turkey
| | - Ayça Ulubay
- Çukurova University Faculty of Medicine, Department of Forensic Medicine, Adana, Turkey
| | - Gamze Akkuş
- Çukurova University Faculty of Medicine, Division of Endocrinology and Metabolism, Adana, Turkey
| | - Bilgin Yüksel
- Çukurova University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology, Adana, Turkey
| | - A. Kemal Topaloğlu
- Çukurova University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology, Adana, Turkey
,* Address for Correspondence: Çukurova University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology, Adana, Turkey Phone: +90 322 338 60 60-3148 E-mail:
| | - Etienne Leygue
- University of Manitoba, Manitoba Institute of Cell Biology, Winnipeg, Manitoba, Canada
| |
Collapse
|
19
|
Obeid JP, Zafar N, El Hokayem J. Steroid Hormone Receptor Coregulators in Endocrine Cancers. IUBMB Life 2016; 68:504-15. [PMID: 27240871 DOI: 10.1002/iub.1517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/11/2016] [Accepted: 05/11/2016] [Indexed: 01/14/2023]
Abstract
Coregulators span a broad and extensive domain in modulating cellular transcriptional activity. Studies have established a dynamic role for such coregulators in various endocrine cancers. Steroid hormone receptors (SHRs) play a pivotal role in such endocrine cancers, and interact abundantly with transcriptional coregulators in altering gene expression. Several families of coregulators have implications in propagating the development, progression and invasion of breast, prostate, and other hormone-responsive cancers. This mini-review aims to discuss different classes of coregulators involved in endocrine cancers and highlight unique information regarding each family with relevance to mechanism, intervention, and novel directions being investigated. © 2016 IUBMB Life, 68(7):504-515, 2016.
Collapse
Affiliation(s)
- Jean-Pierre Obeid
- Department of Biochemistry and Molecular Biology, University of Miami, FL, USA
| | - Nawal Zafar
- Department of Biochemistry and Molecular Biology, University of Miami, FL, USA
| | - Jimmy El Hokayem
- Department of Biochemistry and Molecular Biology, University of Miami, FL, USA
| |
Collapse
|
20
|
Yan Y, Cooper C, Hamedani MK, Guppy B, Xu W, Tsuyuki D, Zhang C, Nugent Z, Blanchard A, Davie JR, McManus K, Murphy LC, Myal Y, Leygue E. The steroid receptor RNA activator protein (SRAP) controls cancer cell migration/motility. FEBS Lett 2015; 589:4010-8. [PMID: 26581859 DOI: 10.1016/j.febslet.2015.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 11/03/2015] [Accepted: 11/05/2015] [Indexed: 11/15/2022]
Abstract
The steroid receptor RNA activator gene (SRA1) produces both a functional RNA (SRA) and a protein (SRAP), whose exact physiological roles remain unknown. To identify cellular processes regulated by SRAP we compared the transcriptome of Hela and MDA-MB-231 cancer cells upon depletion of the SRA/SRAP transcripts or overexpression of the SRAP protein. RNA-seq and Ontology analyses pinpointed cellular movement as potentially regulated by SRAP. Using live cell imaging, we found that SRA/SRAP depletion and SRAP overexpression lead respectively to a decrease and increase in cancer cell motility. Our results highlight for the first time a link existing between SRA1 gene expression and cell motility.
Collapse
Affiliation(s)
- Yi Yan
- Manitoba Institute of Cell Biology, 675 McDermot Ave., R3E0V9 Winnipeg, Manitoba, Canada; Department of Biochemistry and Medical Genetics, University of Manitoba, 770 Bannatyne Avenue, R3E0W3 Winnipeg, Manitoba, Canada
| | - Charlton Cooper
- Manitoba Institute of Cell Biology, 675 McDermot Ave., R3E0V9 Winnipeg, Manitoba, Canada
| | - Mohammad K Hamedani
- Manitoba Institute of Cell Biology, 675 McDermot Ave., R3E0V9 Winnipeg, Manitoba, Canada; Department of Biochemistry and Medical Genetics, University of Manitoba, 770 Bannatyne Avenue, R3E0W3 Winnipeg, Manitoba, Canada
| | - Brent Guppy
- Manitoba Institute of Cell Biology, 675 McDermot Ave., R3E0V9 Winnipeg, Manitoba, Canada; Department of Biochemistry and Medical Genetics, University of Manitoba, 770 Bannatyne Avenue, R3E0W3 Winnipeg, Manitoba, Canada
| | - Wayne Xu
- Manitoba Institute of Cell Biology, 675 McDermot Ave., R3E0V9 Winnipeg, Manitoba, Canada
| | - Deborah Tsuyuki
- Manitoba Institute of Cell Biology, 675 McDermot Ave., R3E0V9 Winnipeg, Manitoba, Canada
| | - Christine Zhang
- Department of Immunology, University of Manitoba, 413 Apotex Center, 750 McDermot Ave., R3E0T5 Winnipeg, Manitoba, Canada
| | - Zoann Nugent
- Manitoba Institute of Cell Biology, 675 McDermot Ave., R3E0V9 Winnipeg, Manitoba, Canada
| | - Anne Blanchard
- Manitoba Institute of Cell Biology, 675 McDermot Ave., R3E0V9 Winnipeg, Manitoba, Canada; Department of Physiology, University of Manitoba, 770 Bannatyne Avenue, R3E0W3 Winnipeg, Manitoba, Canada
| | - James R Davie
- Manitoba Institute of Cell Biology, 675 McDermot Ave., R3E0V9 Winnipeg, Manitoba, Canada; Department of Biochemistry and Medical Genetics, University of Manitoba, 770 Bannatyne Avenue, R3E0W3 Winnipeg, Manitoba, Canada
| | - Kirk McManus
- Manitoba Institute of Cell Biology, 675 McDermot Ave., R3E0V9 Winnipeg, Manitoba, Canada; Department of Biochemistry and Medical Genetics, University of Manitoba, 770 Bannatyne Avenue, R3E0W3 Winnipeg, Manitoba, Canada
| | - Leigh C Murphy
- Manitoba Institute of Cell Biology, 675 McDermot Ave., R3E0V9 Winnipeg, Manitoba, Canada; Department of Biochemistry and Medical Genetics, University of Manitoba, 770 Bannatyne Avenue, R3E0W3 Winnipeg, Manitoba, Canada
| | - Yvonne Myal
- Manitoba Institute of Cell Biology, 675 McDermot Ave., R3E0V9 Winnipeg, Manitoba, Canada; Department of Physiology, University of Manitoba, 770 Bannatyne Avenue, R3E0W3 Winnipeg, Manitoba, Canada
| | - Etienne Leygue
- Manitoba Institute of Cell Biology, 675 McDermot Ave., R3E0V9 Winnipeg, Manitoba, Canada; Department of Biochemistry and Medical Genetics, University of Manitoba, 770 Bannatyne Avenue, R3E0W3 Winnipeg, Manitoba, Canada.
| |
Collapse
|
21
|
Towards structural classification of long non-coding RNAs. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:41-5. [PMID: 26537437 DOI: 10.1016/j.bbagrm.2015.09.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/10/2015] [Accepted: 09/28/2015] [Indexed: 01/16/2023]
Abstract
While long non-coding RNAs play key roles in disease and development, few structural studies have been performed to date for this emerging class of RNAs. Previous structural studies are reviewed, and a pipeline is presented to determine secondary structures of long non-coding RNAs. Similar to riboswitches, experimentally determined secondary structures of long non-coding RNAs for one species, may be used to improve sequence/structure alignments for other species. As riboswitches have been classified according to their secondary structure, a similar scheme could be used to classify long non-coding RNAs. This article is part of a Special Issue titled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.
Collapse
|
22
|
Wang X, Schwartz JC, Cech TR. Nucleic acid-binding specificity of human FUS protein. Nucleic Acids Res 2015; 43:7535-43. [PMID: 26150427 PMCID: PMC4551922 DOI: 10.1093/nar/gkv679] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/19/2015] [Indexed: 12/13/2022] Open
Abstract
FUS, a nuclear RNA-binding protein, plays multiple roles in RNA processing. Five specific FUS-binding RNA sequence/structure motifs have been proposed, but their affinities for FUS have not been directly compared. Here we find that human FUS binds all these sequences with Kd (app) values spanning a 10-fold range. Furthermore, some RNAs that do not contain any of these motifs bind FUS with similar affinity. FUS binds RNA in a length-dependent manner, consistent with a substantial non-specific component to binding. Finally, investigation of FUS binding to different nucleic acids shows that it binds single-stranded DNA with three-fold lower affinity than ssRNA of the same length and sequence, while binding to double-stranded nucleic acids is weaker. We conclude that FUS has quite general nucleic acid-binding activity, with the various proposed RNA motifs being neither necessary for FUS binding nor sufficient to explain its diverse binding partners.
Collapse
Affiliation(s)
- Xueyin Wang
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado, Boulder CO 80309, USA
| | - Jacob C Schwartz
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado, Boulder CO 80309, USA
| | - Thomas R Cech
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado, Boulder CO 80309, USA
| |
Collapse
|
23
|
Sun M, Kraus WL. From discovery to function: the expanding roles of long noncoding RNAs in physiology and disease. Endocr Rev 2015; 36:25-64. [PMID: 25426780 PMCID: PMC4309736 DOI: 10.1210/er.2014-1034] [Citation(s) in RCA: 316] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) are a relatively poorly understood class of RNAs with little or no coding capacity transcribed from a set of incompletely annotated genes. They have received considerable attention in the past few years and are emerging as potentially important players in biological regulation. Here we discuss the evolving understanding of this new class of molecular regulators that has emerged from ongoing research, which continues to expand our databases of annotated lncRNAs and provide new insights into their physical properties, molecular mechanisms of action, and biological functions. We outline the current strategies and approaches that have been employed to identify and characterize lncRNAs, which have been instrumental in revealing their multifaceted roles ranging from cis- to trans-regulation of gene expression and from epigenetic modulation in the nucleus to posttranscriptional control in the cytoplasm. In addition, we highlight the molecular and biological functions of some of the best characterized lncRNAs in physiology and disease, especially those relevant to endocrinology, reproduction, metabolism, immunology, neurobiology, muscle biology, and cancer. Finally, we discuss the tremendous diagnostic and therapeutic potential of lncRNAs in cancer and other diseases.
Collapse
Affiliation(s)
- Miao Sun
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | | |
Collapse
|