1
|
Ali M, Khramushin A, Yadav VK, Schueler-Furman O, Ivarsson Y. Elucidation of Short Linear Motif-Based Interactions of the FERM Domains of Ezrin, Radixin, Moesin, and Merlin. Biochemistry 2023. [PMID: 37224425 DOI: 10.1021/acs.biochem.3c00096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The ERM (ezrin, radixin, and moesin) family of proteins and the related protein merlin participate in scaffolding and signaling events at the cell cortex. The proteins share an N-terminal FERM [band four-point-one (4.1) ERM] domain composed of three subdomains (F1, F2, and F3) with binding sites for short linear peptide motifs. By screening the FERM domains of the ERMs and merlin against a phage library that displays peptides representing the intrinsically disordered regions of the human proteome, we identified a large number of novel ligands. We determined the affinities for the ERM and merlin FERM domains interacting with 18 peptides and validated interactions with full-length proteins through pull-down experiments. The majority of the peptides contained an apparent Yx[FILV] motif; others show alternative motifs. We defined distinct binding sites for two types of similar but distinct binding motifs (YxV and FYDF) using a combination of Rosetta FlexPepDock computational peptide docking protocols and mutational analysis. We provide a detailed molecular understanding of how the two types of peptides with distinct motifs bind to different sites on the moesin FERM phosphotyrosine binding-like subdomain and uncover interdependencies between the different types of ligands. The study expands the motif-based interactomes of the ERMs and merlin and suggests that the FERM domain acts as a switchable interaction hub.
Collapse
Affiliation(s)
- Muhammad Ali
- Department of Chemistry - BMC, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| | - Alisa Khramushin
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Vikash K Yadav
- Department of Chemistry - BMC, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| |
Collapse
|
2
|
Wang H, Zhao J, Yang J, Wan S, Fu Y, Wang X, Zhou T, Zhang Z, Shen J. PICT1 is critical for regulating the Rps27a-Mdm2-p53 pathway by microtubule polymerization inhibitor against cervical cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119084. [PMID: 34166715 DOI: 10.1016/j.bbamcr.2021.119084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/28/2021] [Accepted: 06/17/2021] [Indexed: 01/05/2023]
Abstract
In our previous study, it showed that P-3F, a podophyllotoxin derivative, causes the increased level of p53 expression by enhancing p53 stability, resulting from blockage of the Mdm2-p53 feedback loop via nucleolus-to-nucleoplasm translocation of Rps27a in human cervical cancer HeLa cell line. However, the mechanism of regulating Rps27a localization remains to be studied. In the current study, it has been demonstrated that the level of protein interacting with carboxyl terminus 1 (PICT1), originally identified as a tumor suppressor, was decreased in a concentration-dependent manner in response to P-3F, leading to inhibition of human cervical cancer cell lines proliferation. Also remarkably, reduction of serine phosphorylation of STMN1 at position 16 induced by P-3F was required in the downregulation of PICT1, in which p53 activity was likely to be directly involved. Note as well that, PICT1 also played an important role in p53 stability enhancement by inhibiting Mdm2-mediated p53 ubiquitination due to Rps27a translocation from the nucleolus to the nucleoplasm to interact with Mdm2 following treatment with P-3F. Collectively, these findings indicated that P-3F, a microtubule polymerization inhibitor, promotes the decreased level of PICT1 expression, which is critical for regulating the Rps27a-Mdm2-p53 pathway against cervical cancer.
Collapse
Affiliation(s)
- Huai Wang
- School of Public Health, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Junjie Zhao
- School of Public Health, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Jian Yang
- School of Public Health, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Shukun Wan
- School of Public Health, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Yihong Fu
- School of Public Health, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Xinlu Wang
- School of Public Health, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Tong Zhou
- School of Public Health, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Zhongwei Zhang
- School of Public Health, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Jiaomei Shen
- Department of Gynecology, Wuhan Fifth Hospital, 122 Xian Zheng Street, Wuhan, Hubei 430050, PR China.
| |
Collapse
|
3
|
Chen H, Duo Y, Hu B, Wang Z, Zhang F, Tsai H, Zhang J, Zhou L, Wang L, Wang X, Huang L. PICT-1 triggers a pro-death autophagy through inhibiting rRNA transcription and AKT/mTOR/p70S6K signaling pathway. Oncotarget 2018; 7:78747-78763. [PMID: 27729611 PMCID: PMC5346674 DOI: 10.18632/oncotarget.12288] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/16/2016] [Indexed: 01/05/2023] Open
Abstract
PICT-1 was originally identified as a tumor suppressor. Here, we found that PICT-1 overexpression triggered pro-death autophagy without nucleolar disruption or p53 accumulation in U251 and MCF7 cells. Truncated PICT-1 fragments 181-346 and 1-346, which partly or totally lack nucleolar localization, showed weaker autophagy-inducing effects than full-length PICT-1 and a well-defined nucleolar mutant (181-479). Furthermore, PICT-1 partly localizes to the nucleolar fibrillar center (FC) and directly binds to ribosomal DNA (rDNA) gene loci, where it interacts with upstream binding factor (UBF). Overexpression of PICT-1 or the 181-479 mutant, but not the 1-346 or 181-346 mutants, markedly inhibited the phosphorylation of UBF and the recruitment of rRNA polymerase I (Pol I) to the rDNA promoter in response to serum stimulation, thereby suppressing rRNA transcription, suggesting that rRNA transcription inhibition might be an important contributor to PICT-1-induced autophagy. This is supported by the finding that CX-5461, a specific Pol I inhibitor, also induced autophagy. In addition, both CX-5461 and PICT-1, but not the 1-346 or 181-346 mutants, significantly suppressed the activation of the Akt/mTOR/p70S6K signaling pathway. Our data show that PICT-1 triggers pro-death autophagy through inhibition of rRNA transcription and the inactivation of AKT/mTOR/p70S6K pathway, independent of nucleolar disruption and p53 activation.
Collapse
Affiliation(s)
- Hongbo Chen
- The Shenzhen Key Lab of Gene and Antibody Therapy, Center for Biotechnology & Biomedicine, Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yanhong Duo
- Key Laboratory of Plant Cell Activities and Stress Adaptation, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Bo Hu
- Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Zhiwei Wang
- Department of Laboratory Medicine, The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou 511447, China
| | - Fang Zhang
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology & Biomedicine, Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Hsiangi Tsai
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology & Biomedicine, Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianping Zhang
- Department of Quality Inspection, Shenzhen Weiguang Biological Products Co., Ltd, Shenzhen 518107, China
| | - Lanzhen Zhou
- Department of Quality Inspection, Shenzhen Weiguang Biological Products Co., Ltd, Shenzhen 518107, China
| | - Lijun Wang
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology & Biomedicine, Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Xinyu Wang
- Key Laboratory of Plant Cell Activities and Stress Adaptation, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Laiqiang Huang
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology & Biomedicine, Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Chen H, Han L, Tsai H, Wang Z, Wu Y, Duo Y, Cao W, Chen L, Tan Z, Xu N, Huang X, Zhuang J, Huang L. PICT-1 is a key nucleolar sensor in DNA damage response signaling that regulates apoptosis through the RPL11-MDM2-p53 pathway. Oncotarget 2018; 7:83241-83257. [PMID: 27829214 PMCID: PMC5347766 DOI: 10.18632/oncotarget.13082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/19/2016] [Indexed: 12/12/2022] Open
Abstract
PICT-1 is an essential ribosome biogenesis factor whose loss induces p53 accumulation and apoptosis. Here, we show that DNA damage changes PICT-1 localization and decreases PICT-1 protein levels via the proteasome pathway. Two important phosphatidylinositol 3-kinase-like kinases (PIKKs), ataxia-telangiectasia mutated (ATM) and the Ku70 subunit of DNA-dependent protein kinase (DNA-PK), co-localize and interact with PICT-1 in the nucleolus. Computational prediction of phosphorylation sites and detection using an anti-phospho-substrate antibody suggest that PICT-1 might be a substrate of PIKKs. PICT-1 S233 and T289 were identified as the key phosphorylation sites in this pathway, as mutating both to alanine abolished UVB-induced increase of PICT-1 phosporylation. Inhibition of PIKKs or ATM (with wortmannin and KU55933, respectively) prevented the agglomeration and degradation of PICT-1, suggesting that ATM is a key regulator of PICT-1. PICT-1(S233A, T289A) demonstrated marked resistance to DNA damage-induced agglomeration and loss of PICT-1. Phosphomimetic PICT-1 (S233D, T289D) showed a different nuclear distribution and was more rapidly degraded after DNA damage than wild-type PICT-1. Furthermore, both phosphorylation and degradation of PICT-1 released RPL11 from the nucleolus to the nucleoplasm, increased binding of RPL11 to MDM2, and promoted p53 accumulation and apoptosis in an ATM-dependent manner after DNA damage. These data indicate that PICT-1 is a major nucleolar sensor of the DNA damage repair response and an important upstream regulator of p53 via the RPL11-MDM2-p53 pathway.
Collapse
Affiliation(s)
- Hongbo Chen
- The Shenzhen Key Lab of Gene and Antibody Therapy, Center for Biotechnology & Biomedicine, Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China.,Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Liqiao Han
- Department of Laboratory Science, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China.,The Shenzhen Key Lab of Gene and Antibody Therapy, Center for Biotechnology & Biomedicine, Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Hsiangi Tsai
- The Shenzhen Key Lab of Gene and Antibody Therapy, Center for Biotechnology & Biomedicine, Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhiwei Wang
- Department of Laboratory Medicine, The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou 511447, China
| | - Yanping Wu
- The Shenzhen Key Lab of Gene and Antibody Therapy, Center for Biotechnology & Biomedicine, Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yanhong Duo
- The Shenzhen Key Lab of Gene and Antibody Therapy, Center for Biotechnology & Biomedicine, Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Wei Cao
- The Shenzhen Key Lab of Gene and Antibody Therapy, Center for Biotechnology & Biomedicine, Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lijun Chen
- Technology Center of Guangxi Entry-Exit Inspection and Quarantine Bureau, Nanning 530021, China
| | - Zhirong Tan
- Department of Laboratory Science, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Ning Xu
- Department of Laboratory Science, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Xianzhang Huang
- Department of Laboratory Science, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Junhua Zhuang
- Department of Laboratory Science, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Laiqiang Huang
- The Shenzhen Key Lab of Gene and Antibody Therapy, Center for Biotechnology & Biomedicine, Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Yoshimoto M, Tokuda A, Nishiwaki K, Sengoku K, Yaginuma Y. The protein interacting with carboxyl terminus-1 codon 389 polymorphism impairs protein interacting with carboxyl terminus-1 function and is a risk factor for uterine cervical cancer. Mol Carcinog 2016; 56:1484-1492. [PMID: 27996172 DOI: 10.1002/mc.22608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/15/2016] [Indexed: 11/11/2022]
Abstract
PICT-1 is a nucleolar protein with various tumor suppressor functions. Recently, PICT-1 expression was reported to be dramatically reduced in several cancers. To investigate the role of PICT-1 in uterine cervical carcinogenesis, we examined its gene mutations, protein expression, cellular localization, and effect on p53 stabilization. PCR-SSCP analysis of the entire coding region of PICT-1 showed that a polymorphism at codon 389 may increase the risk of uterine cervical cancers, and also identified a novel missense mutation. Expression of wild-type PICT-1 inhibited the degradation of p53 in the presence or absence of HPV 18 E6 viral protein in vitro, while the expression of codon 389 polymorphic PICT-1 had a diminished inhibitory effect on p53 degradation. Moreover, we observed that PICT-1 degradation was induced both independently and cooperatively by E6 and E7 proteins from high-risk HPVs, but only marginal degradation was observed with proteins from low-risk HPV. Immunohistochemical staining of tumor samples revealed that lower levels of PICT-1 were observed in samples from CIN III and cervical cancer tissues, compared to normal cervical epithelium and CIN I, II tissues (P < 0.05). The reduction of PICT-1 may therefore be an early event in uterine cervical tumorigenesis. Our results indicated that PICT-1 counteracts HPV-induced p53 degradation and that aberrant PICT-1 function may contribute towards inactivating p53. Therefore, PICT-1 may play a critical role during the pathogenesis of uterine cervical cancers.
Collapse
Affiliation(s)
- Masafumi Yoshimoto
- Faculty of Life Sciences, Department of Oncology, Graduate School of Health Sciences, Kumamoto University, Kumamoto, Japan
| | - Aoi Tokuda
- Faculty of Life Sciences, Department of Oncology, Graduate School of Health Sciences, Kumamoto University, Kumamoto, Japan
| | - Kunihiko Nishiwaki
- Department of Obstetrics & Gynecology, Asahikawa Medical University, Asahikawa, Japan
| | - Kazuo Sengoku
- Department of Obstetrics & Gynecology, Asahikawa Medical University, Asahikawa, Japan
| | - Yuji Yaginuma
- Faculty of Life Sciences, Department of Oncology, Graduate School of Health Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
6
|
The nucleolar protein GLTSCR2 is required for efficient viral replication. Sci Rep 2016; 6:36226. [PMID: 27824081 PMCID: PMC5099953 DOI: 10.1038/srep36226] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/11/2016] [Indexed: 12/12/2022] Open
Abstract
Glioma tumor suppressor candidate region gene 2 protein (GLTSCR2) is a nucleolar protein. In the investigation of the role of GLTSCR2 that played in the cellular innate immune response to viral infection, we found GLTSCR2 supported viral replication of rhabdovirus, paramyxovirus, and coronavirus in cells. Viral infection induced translocation of GLTSCR2 from nucleus to cytoplasm that enabled GLTSCR2 to attenuate type I interferon IFN-β and support viral replication. Cytoplasmic GLTSCR2 was able to interact with retinoic acid-inducible gene I (RIG-I) and the ubiquitin-specific protease 15 (USP15), and the triple interaction induced USP15 activity to remove K63-linked ubiquitination of RIG-I, leading to attenuation of RIG-I and IFN-β. Blocking cytoplasmic translocation of GLTSCR2, by deletion of its nuclear export sequence (NES), abrogated its ability to attenuate IFN-β and support viral replication. GLTSCR2-mediated attenuation of RIG-I and IFN-β led to alleviation of host cell innate immune response to viral infection. Our findings suggested that GLTSCR2 contributed to efficient viral replication, and GLTSCR2 should be considered as a potential target for therapeutic control of viral infection.
Collapse
|
7
|
Lee S, Cho YE, Kim YJ, Park JH. c-Jun N-terminal kinase regulates the nucleoplasmic translocation and stability of nucleolar GLTSCR2 protein. Biochem Biophys Res Commun 2016; 472:95-100. [DOI: 10.1016/j.bbrc.2016.02.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/17/2016] [Indexed: 10/22/2022]
|
8
|
Garcia-Cordero JL, Maerkl SJ. Mechanically Induced Trapping of Molecular Interactions and Its Applications. ACTA ACUST UNITED AC 2015; 21:356-67. [PMID: 25805850 DOI: 10.1177/2211068215578586] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Indexed: 12/21/2022]
Abstract
Measuring binding affinities and association/dissociation rates of molecular interactions is important for a quantitative understanding of cellular mechanisms. Many low-throughput methods have been developed throughout the years to obtain these parameters. Acquiring data with higher accuracy and throughput is, however, necessary to characterize complex biological networks. Here, we provide an overview of a high-throughput microfluidic method based on mechanically induced trapping of molecular interactions (MITOMI). MITOMI can be used to obtain affinity constants and kinetic rates of hundreds of protein-ligand interactions in parallel. It has been used in dozens of studies to measure binding affinities of transcription factors, map protein interaction networks, identify pharmacological inhibitors, and perform high-throughput, low-cost molecular diagnostics. This article covers the technological aspects of MITOMI and its applications.
Collapse
Affiliation(s)
| | - Sebastian J Maerkl
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
9
|
Uversky VN. Unreported intrinsic disorder in proteins: Building connections to the literature on IDPs. INTRINSICALLY DISORDERED PROTEINS 2014; 2:e970499. [PMID: 28232880 PMCID: PMC5314882 DOI: 10.4161/21690693.2014.970499] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 09/08/2014] [Indexed: 02/07/2023]
Abstract
This review opens a new series entitled “Unreported intrinsic disorder in proteins.” The goal of this series is to bring attention of researchers to an interesting phenomenon of missed (or overlooked, or ignored, or unreported) disorder. This series serves as a companion to “Digested Disorder” which provides a quarterly review of papers on intrinsically disordered proteins (IDPs) found by standard literature searches. The need for this alternative series results from the observation that there are numerous publications that describe IDPs (or hybrid proteins with ordered and disordered regions) yet fail to recognize many of the key discoveries and publications in the IDP field. By ignoring the body of work on IDPs, such publications often fail to relate their findings to prior discoveries or fail to explore the obvious implications of their work. Thus, the goal of this series is not only to review these very interesting and important papers, but also to point out how each paper relates to the IDP field and show how common tools in the IDP field can readily take the findings in new directions or provide a broader context for the reported findings.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute; Morsani College of Medicine; University of South Florida; Tampa, FL USA; Institute for Biological Instrumentation; Russian Academy of Sciences; Pushchino, Russia; Biology Department; Faculty of Science; King Abdulaziz University; Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|