1
|
Adhada ST, Sarma SP. Slow Conformational Exchange between Partially Folded and Near-Native States of Ubiquitin: Evidence for a Multistate Folding Model. Biochemistry 2024; 63:2565-2579. [PMID: 39351677 DOI: 10.1021/acs.biochem.4c00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
The mechanism by which small proteins fold, i.e., via intermediates or via a two-state mechanism, is a subject of intense investigation. Intermediate states in the folding pathways of these proteins are sparsely populated due to transient lifetimes under normal conditions rendering them transparent to a majority of the biophysical methods employed for structural, thermodynamic, and kinetic characterization, which attributes are essential for understanding the cooperative folding/unfolding of such proteins. Dynamic NMR spectroscopy has enabled the characterization of folding intermediates of ubiquitin that exist in equilibrium under conditions of low pH and denaturants. At low pH, an unlocked state defined as N' is in fast exchange with an invisible state, U″, as observed by CEST NMR. Addition of urea to ubiquitin at pH 2 creates two new states F' and U', which are in slow exchange (kF'→U' = 0.14 and kU'→F' = 0.28 s-1) as indicated by longitudinal ZZ-magnetization exchange spectroscopy. High-resolution solution NMR structures of F' show it to be in an "unlocked" conformation with measurable changes in rotational diffusion, translational diffusion, and rotational correlational times. U' is characterized by the presence of just the highly conserved N-terminal β1-β2 hairpin. The folding of ubiquitin is cooperative and is nucleated by the formation of an N-terminal β-hairpin followed by significant hydrophobic collapse of the protein core resulting in the formation of bulk of the secondary structural elements stabilized by extensive tertiary contacts. U' and F' may thus be described as early and late folding intermediates in the ubiquitin folding pathway.
Collapse
Affiliation(s)
- Sri Teja Adhada
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Siddhartha P Sarma
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
2
|
Grosskopf JD, Sidabras JW, Altenbach C, Anderson JR, Mett RR, Strangeway RA, Hyde JS, Hubbell WL, Lerch MT. A pressure-jump EPR system to monitor millisecond conformational exchange rates of spin-labeled proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.593074. [PMID: 38766191 PMCID: PMC11100676 DOI: 10.1101/2024.05.07.593074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Site-directed spin labeling electron paramagnetic resonance (SDSL-EPR) using nitroxide spin labels is a well-established technology for mapping site-specific secondary and tertiary structure and for monitoring conformational changes in proteins of any degree of complexity, including membrane proteins, with high sensitivity. SDSL-EPR also provides information on protein dynamics in the time scale of ps-µs using continuous wave lineshape analysis and spin lattice relaxation time methods. However, the functionally important time domain of µs-ms, corresponding to large-scale protein motions, is inaccessible to those methods. To extend SDSL-EPR to the longer time domain, the perturbation method of pressure-jump relaxation is implemented. Here, we describe a complete high-pressure EPR system at Q-band for both static pressure and millisecond-timescale pressure-jump measurements on spin-labeled proteins. The instrument enables pressure jumps both up and down from any holding pressure, ranging from atmospheric pressure to the maximum pressure capacity of the system components (~3500 bar). To demonstrate the utility of the system, we characterize a local folding-unfolding equilibrium of T4 lysozyme. The results illustrate the ability of the system to measure thermodynamic and kinetic parameters of protein conformational exchange on the millisecond timescale.
Collapse
Affiliation(s)
- Julian D Grosskopf
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jason W Sidabras
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Christian Altenbach
- Department of Chemistry and Biochemistry and Stein Eye Institute, University of California, Los Angeles, CA 90095, USA
| | - Jim R Anderson
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Richard R Mett
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Robert A Strangeway
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - James S Hyde
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Wayne L Hubbell
- Department of Chemistry and Biochemistry and Stein Eye Institute, University of California, Los Angeles, CA 90095, USA
| | - Michael T Lerch
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
3
|
Gupta MN, Uversky VN. Pre-Molten, Wet, and Dry Molten Globules en Route to the Functional State of Proteins. Int J Mol Sci 2023; 24:ijms24032424. [PMID: 36768742 PMCID: PMC9916686 DOI: 10.3390/ijms24032424] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Transitions between the unfolded and native states of the ordered globular proteins are accompanied by the accumulation of several intermediates, such as pre-molten globules, wet molten globules, and dry molten globules. Structurally equivalent conformations can serve as native functional states of intrinsically disordered proteins. This overview captures the characteristics and importance of these molten globules in both structured and intrinsically disordered proteins. It also discusses examples of engineered molten globules. The formation of these intermediates under conditions of macromolecular crowding and their interactions with nanomaterials are also reviewed.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-813-494-5816
| |
Collapse
|
4
|
Acharya N, Jha SK. Dry Molten Globule-Like Intermediates in Protein Folding, Function, and Disease. J Phys Chem B 2022; 126:8614-8622. [PMID: 36286394 DOI: 10.1021/acs.jpcb.2c04991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The performance of a protein depends on its correct folding to the final functional native form. Hence, understanding the process of protein folding has remained an important field of research for the scientific community for the past five decades. Two important intermediate states, namely, wet molten globule (WMG) and dry molten globule (DMG), have emerged as critical milestones during protein folding-unfolding reactions. While much has been discussed about WMGs as a common unfolding intermediate, the evidence for DMGs has remained elusive owing to their near-native features, which makes them difficult to probe using global structural probes. This Review puts together the available literature and new evidence on DMGs to give a broader perspective on the universality of DMGs and discuss their significance in protein folding, function, and disease.
Collapse
Affiliation(s)
- Nirbhik Acharya
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Jha
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
The native state conformational heterogeneity in the energy landscape of protein folding. Biophys Chem 2022; 283:106761. [DOI: 10.1016/j.bpc.2022.106761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 11/18/2022]
|
6
|
Rose GD. Protein folding - seeing is deceiving. Protein Sci 2021; 30:1606-1616. [PMID: 33938055 PMCID: PMC8284583 DOI: 10.1002/pro.4096] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/24/2021] [Accepted: 04/30/2021] [Indexed: 11/13/2022]
Abstract
This Perspective is intended to raise questions about the conventional interpretation of protein folding. According to the conventional interpretation, developed over many decades, a protein population can visit a vast number of conformations under unfolding conditions, but a single dominant native population emerges under folding conditions. Accordingly, folding comes with a substantial loss of conformational entropy. How is this price paid? The conventional answer is that favorable interactions between and among the side chains can compensate for entropy loss, and moreover, these interactions are responsible for the structural particulars of the native conformation. Challenging this interpretation, the Perspective introduces a proposal that high energy (i.e., unfavorable) excluding interactions winnow the accessible population substantially under physical-chemical conditions that favor folding. Both steric clash and unsatisfied hydrogen bond donors and acceptors are classified as excluding interactions, so called because conformers with such disfavored interactions will be largely excluded from the thermodynamic population. Both excluding interactions and solvent factors that induce compactness are somewhat nonspecific, yet together they promote substantial chain organization. Moreover, proteins are built on a backbone scaffold consisting of α-helices and strands of β-sheet, where the number of hydrogen bond donors and acceptors is exactly balanced. These repetitive secondary structural elements are the only two conformers that can be both completely hydrogen-bond satisfied and extended indefinitely without encountering a steric clash. Consequently, the number of fundamental folds is limited to no more than ~10,000 for a protein domain. Once excluding interactions are taken into account, the issue of "frustration" is largely eliminated and the Levinthal paradox is resolved. Putting the "bottom line" at the top: it is likely that hydrogen-bond satisfaction represents a largely under-appreciated parameter in protein folding models.
Collapse
Affiliation(s)
- George D. Rose
- T.C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
7
|
Hung CL, Kuo YH, Lee SW, Chiang YW. Protein Stability Depends Critically on the Surface Hydrogen-Bonding Network: A Case Study of Bid Protein. J Phys Chem B 2021; 125:8373-8382. [PMID: 34314184 DOI: 10.1021/acs.jpcb.1c03245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding how proteins retain structural stability is not only of fundamental importance in biophysics but also critical to industrial production of antibodies and vaccines. Protein stability is known to depend mainly on two effects: internal hydrophobicity and H-bonding between the protein surface and solvent. A challenging task is to identify their individual contributions to a protein. Here, we investigate the structural stability of the apoptotic Bid protein in solutions containing various concentrations of guanidinium hydrochloride and urea using a combination of recently developed methods including the QTY (glutamine, threonine, and tyrosine) code and electron spin resonance-based peak-height analysis. We show that when the internal hydrophobicity of Bid is broken down using the QTY code, the surface H-bonding alone is sufficient to retain the structural stability intact. When the surface H-bonding is disrupted, Bid becomes sensitive to the temperature-dependent internal hydrophobicity such that it exhibits a reversible cold unfolding above water's freezing point. Using the combined approach, we show that the free-energy contributions of the two effects can be more reliably obtained. The surface H bonds are more important than the other effect in determining the structural stability of Bid protein.
Collapse
Affiliation(s)
- Chien-Lun Hung
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yun-Hsuan Kuo
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Su Wei Lee
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
8
|
Mishra P, Jha SK. Slow Motion Protein Dance Visualized Using Red-Edge Excitation Shift of a Buried Fluorophore. J Phys Chem B 2019; 123:1256-1264. [PMID: 30640479 DOI: 10.1021/acs.jpcb.8b11151] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It has been extremely challenging to detect protein structures with a dynamic core, such as dry molten globules, that remain in equilibrium with the tightly packed native (N) state and that are important for a myriad of entropy-driven protein functions. Here, we detect the higher entropy conformations of a human serum protein, using red-edge excitation shift experiments. We covalently introduced a fluorophore inside the protein core and observed that in a subset of native population, the side chains of the polar and buried residues have different spatial arrangements than the mean population and that they solvate the fluorophore on a timescale much slower than the nanosecond timescale of fluorescence. Our results provide direct evidence for the dense fluidity of protein core and show that alternate side-chain packing arrangements exist in the core that might be important for multiple binding functions of this protein.
Collapse
Affiliation(s)
- Prajna Mishra
- Physical and Materials Chemistry Division, Academy of Scientific and Innovative Research (AcSIR) , CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road , Pune 411008 , Maharashtra , India
| | - Santosh Kumar Jha
- Physical and Materials Chemistry Division, Academy of Scientific and Innovative Research (AcSIR) , CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road , Pune 411008 , Maharashtra , India
| |
Collapse
|
9
|
Roche J, Royer CA. Lessons from pressure denaturation of proteins. J R Soc Interface 2018; 15:rsif.2018.0244. [PMID: 30282759 DOI: 10.1098/rsif.2018.0244] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/13/2018] [Indexed: 12/26/2022] Open
Abstract
Although it is now relatively well understood how sequence defines and impacts global protein stability in specific structural contexts, the question of how sequence modulates the configurational landscape of proteins remains to be defined. Protein configurational equilibria are generally characterized by using various chemical denaturants or by changing temperature or pH. Another thermodynamic parameter which is less often used in such studies is high hydrostatic pressure. This review discusses the basis for pressure effects on protein structure and stability, and describes how the unique mechanisms of pressure-induced unfolding can provide unique insights into protein conformational landscapes.
Collapse
Affiliation(s)
- Julien Roche
- Department of Biochemistry, Biophysics and Molecular Biology Iowa State University, Ames, IA 50011, USA
| | - Catherine A Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
10
|
Pedrote MM, de Oliveira GAP, Felix AL, Mota MF, Marques MDA, Soares IN, Iqbal A, Norberto DR, Gomes AMO, Gratton E, Cino EA, Silva JL. Aggregation-primed molten globule conformers of the p53 core domain provide potential tools for studying p53C aggregation in cancer. J Biol Chem 2018; 293:11374-11387. [PMID: 29853637 PMCID: PMC6065177 DOI: 10.1074/jbc.ra118.003285] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/10/2018] [Indexed: 12/16/2022] Open
Abstract
The functionality of the tumor suppressor p53 is altered in more than 50% of human cancers, and many individuals with cancer exhibit amyloid-like buildups of aggregated p53. An understanding of what triggers the pathogenic amyloid conversion of p53 is required for the further development of cancer therapies. Here, perturbation of the p53 core domain (p53C) with subdenaturing concentrations of guanidine hydrochloride and high hydrostatic pressure revealed native-like molten globule (MG) states, a subset of which were highly prone to amyloidogenic aggregation. We found that MG conformers of p53C, probably representing population-weighted averages of multiple states, have different volumetric properties, as determined by pressure perturbation and size-exclusion chromatography. We also found that they bind the fluorescent dye 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS) and have a native-like tertiary structure that occludes the single Trp residue in p53. Fluorescence experiments revealed conformational changes of the single Trp and Tyr residues before p53 unfolding and the presence of MG conformers, some of which were highly prone to aggregation. p53C exhibited marginal unfolding cooperativity, which could be modulated from unfolding to aggregation pathways with chemical or physical forces. We conclude that trapping amyloid precursor states in solution is a promising approach for understanding p53 aggregation in cancer. Our findings support the use of single-Trp fluorescence as a probe for evaluating p53 stability, effects of mutations, and the efficacy of therapeutics designed to stabilize p53.
Collapse
Affiliation(s)
- Murilo M Pedrote
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil
| | - Guilherme A P de Oliveira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908.
| | - Adriani L Felix
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil
| | - Michelle F Mota
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil
| | - Mayra de A Marques
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil
| | - Iaci N Soares
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil
| | - Anwar Iqbal
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil
| | - Douglas R Norberto
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil
| | - Andre M O Gomes
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Biomedical Engineering Department, University of California, Irvine, California 92697-2717
| | - Elio A Cino
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Jerson L Silva
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil.
| |
Collapse
|
11
|
Holehouse AS, Pappu RV. Collapse Transitions of Proteins and the Interplay Among Backbone, Sidechain, and Solvent Interactions. Annu Rev Biophys 2018; 47:19-39. [PMID: 29345991 PMCID: PMC10740066 DOI: 10.1146/annurev-biophys-070317-032838] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Proteins can collapse into compact globules or form expanded, solvent-accessible, coil-like conformations. Additionally, they can fold into well-defined three-dimensional structures or remain partially or entirely disordered. Recent discoveries have shown that the tendency for proteins to collapse or remain expanded is not intrinsically coupled to their ability to fold. These observations suggest that proteins do not have to form compact globules in aqueous solutions. They can be intrinsically disordered, collapsed, or expanded, and even form well-folded, elongated structures. This ability to decouple collapse from folding is determined by the sequence details of proteins. In this review, we highlight insights gleaned from studies over the past decade. Using a polymer physics framework, we explain how the interplay among sidechains, backbone units, and solvent determines the driving forces for collapsed versus expanded states in aqueous solvents.
Collapse
Affiliation(s)
- Alex S Holehouse
- Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in Saint Louis, Saint Louis, Missouri 63130, USA; ,
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in Saint Louis, Saint Louis, Missouri 63130, USA; ,
| |
Collapse
|
12
|
Yue Z, Shen J. pH-Dependent cooperativity and existence of a dry molten globule in the folding of a miniprotein BBL. Phys Chem Chem Phys 2018; 20:3523-3530. [PMID: 29336449 DOI: 10.1039/c7cp08296g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Solution pH plays an important role in protein dynamics, stability, and folding; however, detailed mechanisms remain poorly understood. Here we use continuous constant pH molecular dynamics in explicit solvent with pH replica exchange to describe the pH profile of the folding cooperativity of a miniprotein BBL, which has drawn intense debate in the past. Our data reconciled the two opposing hypotheses (downhill vs. two-state) and uncovered a sparsely populated unfolding intermediate. As pH is lowered from 7 to 5, the folding barrier vanishes. As pH continues to decrease, the unfolding barrier lowers and denaturation is triggered by the protonation of Asp162, consistent with experimental evidence. Interestingly, unfolding proceeded via an intermediate, with intact secondary structure and a compact, unlocked hydrophobic core shielded from solvent, lending support to the recent hypothesis of a universal dry molten globule in protein folding. Our work demonstrates that constant pH molecular dynamics is a unique tool for testing this and other hypotheses to advance the knowledge in protein dynamics, stability, and folding.
Collapse
Affiliation(s)
- Zhi Yue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201-1075, USA.
| | | |
Collapse
|
13
|
Chen G, Miao M, Jiang B, Jin J, Campanella OH, Feng B. Effects of high hydrostatic pressure on Rhizopus chinensis lipase: II. Intermediate states during unfolding. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2017.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
14
|
de Oliveira GA, Silva JL. The push-and-pull hypothesis in protein unfolding, misfolding and aggregation. Biophys Chem 2017; 231:20-26. [DOI: 10.1016/j.bpc.2017.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 01/17/2023]
|
15
|
Mishra P, Jha SK. An Alternatively Packed Dry Molten Globule-like Intermediate in the Native State Ensemble of a Multidomain Protein. J Phys Chem B 2017; 121:9336-9347. [DOI: 10.1021/acs.jpcb.7b07032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Prajna Mishra
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Santosh Kumar Jha
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| |
Collapse
|
16
|
Alderson TR, Charlier C, Torchia DA, Anfinrud P, Bax A. Monitoring Hydrogen Exchange During Protein Folding by Fast Pressure Jump NMR Spectroscopy. J Am Chem Soc 2017; 139:11036-11039. [PMID: 28766333 DOI: 10.1021/jacs.7b06676] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A method is introduced that permits direct observation of the rates at which backbone amide hydrogens become protected from solvent exchange after rapidly dropping the hydrostatic pressure inside the NMR sample cell from denaturing (2.5 kbar) to native (1 bar) conditions. The method is demonstrated for a pressure-sensitized ubiquitin variant that contains two Val to Ala mutations. Increased protection against hydrogen exchange with solvent is monitored as a function of time during the folding process. Results for 53 backbone amides show narrow clustering with protection occurring with a time constant of ca. 85 ms, but slower protection is observed around a reverse turn near the C-terminus of the protein. Remarkably, the native NMR spectrum returns with this slower time constant of ca. 150 ms, indicating that the almost fully folded protein retains molten globule characteristics with severe NMR line broadening until the final hydrogen bonds are formed. Prior to crossing the transition state barrier, hydrogen exchange protection factors are close to unity, but with slightly elevated values in the β1-β2 hairpin, previously shown to be already lowly populated in the urea-denatured state.
Collapse
Affiliation(s)
- T Reid Alderson
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health , Bethesda, Maryland 20892-0520, United States
| | - Cyril Charlier
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health , Bethesda, Maryland 20892-0520, United States
| | - Dennis A Torchia
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health , Bethesda, Maryland 20892-0520, United States
| | - Philip Anfinrud
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health , Bethesda, Maryland 20892-0520, United States
| | - Ad Bax
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health , Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
17
|
Watson MD, Peran I, Zou J, Bilsel O, Raleigh DP. Selenomethionine Quenching of Tryptophan Fluorescence Provides a Simple Probe of Protein Structure. Biochemistry 2017; 56:1085-1094. [DOI: 10.1021/acs.biochem.6b01000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Matthew D. Watson
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Ivan Peran
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Junjie Zou
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
- Laufer
Center for Physical and
Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, United States
| | - Osman Bilsel
- Department of Biochemistry and
Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Daniel P. Raleigh
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
- Laufer
Center for Physical and
Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, United States
- Graduate Program in Biochemistry & Structural Biology, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
18
|
Kitazawa S, Fossat MJ, McCallum SA, Garcia AE, Royer CA. NMR and Computation Reveal a Pressure-Sensitive Folded Conformation of Trp-Cage. J Phys Chem B 2017; 121:1258-1267. [DOI: 10.1021/acs.jpcb.6b11810] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Soichiro Kitazawa
- Biological
Sciences, Rensselaer Polytechnic Institute, Troy, New York
| | - Martin J. Fossat
- Biological
Sciences, Rensselaer Polytechnic Institute, Troy, New York
- Laboratoire Charles
Coulomb UMR 5221 CNRS-UM, Montpellier, France
| | - Scott A. McCallum
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Angel E. Garcia
- Department
of Physics, Rensselaer Polytechnic Institute, Troy, New York
| | | |
Collapse
|
19
|
Acharya N, Mishra P, Jha SK. A dry molten globule-like intermediate during the base-induced unfolding of a multidomain protein. Phys Chem Chem Phys 2017; 19:30207-30216. [DOI: 10.1039/c7cp06614g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An early intermediate during the base-induced unfolding of a multidomain protein resembles a dry molten globule state in which the structure is expanded without core hydration.
Collapse
Affiliation(s)
- Nirbhik Acharya
- Physical and Materials Chemistry Division
- CSIR-National Chemical Laboratory
- Pune 411008
- India
| | - Prajna Mishra
- Physical and Materials Chemistry Division
- CSIR-National Chemical Laboratory
- Pune 411008
- India
| | - Santosh Kumar Jha
- Physical and Materials Chemistry Division
- CSIR-National Chemical Laboratory
- Pune 411008
- India
| |
Collapse
|
20
|
Peran I, Watson MD, Bilsel O, Raleigh DP. Selenomethionine, p-cyanophenylalanine pairs provide a convenient, sensitive, non-perturbing fluorescent probe of local helical structure. Chem Commun (Camb) 2016; 52:2055-8. [PMID: 26686928 DOI: 10.1039/c5cc08232c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The use of selenomethionine (MSe)-p-cyanophenylalanine (FCN) pairs to probe protein structure is demonstrated. MSe quenches FCN fluorescence via electron transfer. Both residues can be incorporated recombinantly or by peptide synthesis. Time-resolved and steady-state fluorescence measurements demonstrate that MSe-FCN pairs provide specific local probes of helical structure.
Collapse
Affiliation(s)
- Ivan Peran
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794-3400, USA.
| | - Matthew D Watson
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794-3400, USA.
| | - Osman Bilsel
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, USA
| | - Daniel P Raleigh
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794-3400, USA. and Graduate Program in Biochemistry & Structural Biology, Stony Brook University, Stony Brook, New York, 11794-3400, USA
| |
Collapse
|
21
|
Acharya N, Mishra P, Jha SK. Evidence for Dry Molten Globule-Like Domains in the pH-Induced Equilibrium Folding Intermediate of a Multidomain Protein. J Phys Chem Lett 2016; 7:173-179. [PMID: 26700266 DOI: 10.1021/acs.jpclett.5b02545] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The role of van der Waals (vdW) packing interactions compared to the hydrophobic effect in stabilizing the functional structure of proteins is poorly understood. Here we show, using fluorescence resonance energy transfer, dynamic fluorescence quenching, red-edge excitation shift, and near- and far-UV circular dichroism, that the pH-induced structural perturbation of a multidomain protein leads to the formation of a state in which two out of the three domains have characteristics of dry molten globules, that is, the domains are expanded compared to the native protein with disrupted packing interactions but have dry cores. We quantitatively estimate the energetic contribution of vdW interactions and show that they play an important role in the stability of the native state and cooperativity of its structural transition, in addition to the hydrophobic effect. Our results also indicate that during the pH-induced unfolding, side-chain unlocking and hydrophobic solvation occur in two distinct steps and not in a concerted manner, as commonly believed.
Collapse
Affiliation(s)
- Nirbhik Acharya
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Prajna Mishra
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Santosh Kumar Jha
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
22
|
Quintyn RS, Zhou M, Yan J, Wysocki VH. Surface-Induced Dissociation Mass Spectra as a Tool for Distinguishing Different Structural Forms of Gas-Phase Multimeric Protein Complexes. Anal Chem 2015; 87:11879-86. [PMID: 26499904 DOI: 10.1021/acs.analchem.5b03441] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Royston S. Quintyn
- Department of Chemistry and
Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Mowei Zhou
- Department of Chemistry and
Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Jing Yan
- Department of Chemistry and
Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Vicki H. Wysocki
- Department of Chemistry and
Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
23
|
Valipour M, Maghami P, Habibi-Rezaei M, Sadeghpour M, Khademian MA, Mosavi K, Sheibani N, Moosavi-Movahedi AA. Interaction of insulin with methyl tert-butyl ether promotes molten globule-like state and production of reactive oxygen species. Int J Biol Macromol 2015; 80:610-4. [PMID: 26193678 DOI: 10.1016/j.ijbiomac.2015.07.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/14/2015] [Accepted: 07/15/2015] [Indexed: 11/25/2022]
Abstract
Interaction of methyl tert-butyl ether (MTBE) with proteins is a new look at its potential adverse biological effects. When MTBE is released to the environment it enters the blood stream through inhalation, and could affect the properties of various proteins. Here we investigated the interaction of MTBE with insulin and its effect on insulin structural changes. Our results showed that insulin formed a molten globule (MG)-like structure in the presence of 8 μM MTBE under physiological pH. The insulin structural changes were studied using spectroscopy methods, viscosity calculation, dynamic light scattering and differential scanning calorimetry. To delineate the mechanisms involved in MTBE-protein interactions, the formation of reactive oxygen specious (ROS) and formation of protein aggregates were measured. The chemiluminscence experiments revealed an increase in ROS production in the presence of MTBE especially in the MG-like state. These results were further confirmed by the aggregation tests, which indicated more aggregation of insulin at 40 μM MTBE compared with 8 μM. Thus, the formation of initial aggregates and exposure of the hydrophobic patches upon formation of the MG-like state in the presence of MTBE drives protein oxidation and ROS generation.
Collapse
Affiliation(s)
- Masoumeh Valipour
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Center of Excellence in Biothermodynamics, University of Tehran, Tehran, Iran
| | - Parvaneh Maghami
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Mostafa Sadeghpour
- Office of Health, Safety and Environment (HSE) Oil Ministry, Tehran, Iran
| | | | - Khadijeh Mosavi
- Office of Health, Safety and Environment (HSE) Oil Ministry, Bandar Mahshahr, Iran
| | - Nader Sheibani
- Departments of Ophthalmology and Visual Sciences and Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Ali Akbar Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Center of Excellence in Biothermodynamics, University of Tehran, Tehran, Iran.
| |
Collapse
|