1
|
Hassan A, Pinkas M, Yaeshima C, Ishino S, Uchiumi T, Ito K, Demo G. Novel archaeal ribosome dimerization factor facilitating unique 30S-30S dimerization. Nucleic Acids Res 2025; 53:gkae1324. [PMID: 39797736 PMCID: PMC11724365 DOI: 10.1093/nar/gkae1324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/17/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Protein synthesis (translation) consumes a substantial proportion of cellular resources, prompting specialized mechanisms to reduce translation under adverse conditions. Ribosome inactivation often involves ribosome-interacting proteins. In both bacteria and eukaryotes, various ribosome-interacting proteins facilitate ribosome dimerization or hibernation, and/or prevent ribosomal subunits from associating, enabling the organisms to adapt to stress. Despite extensive studies on bacteria and eukaryotes, understanding factor-mediated ribosome dimerization or anti-association in archaea remains elusive. Here, we present cryo-electron microscopy structures of an archaeal 30S dimer complexed with an archaeal ribosome dimerization factor (designated aRDF), from Pyrococcus furiosus, resolved at a resolution of 3.2 Å. The complex features two 30S subunits stabilized by aRDF homodimers in a unique head-to-body architecture, which differs from the disome architecture observed during hibernation in bacteria and eukaryotes. aRDF interacts directly with eS32 ribosomal protein, which is essential for subunit association. The binding mode of aRDF elucidates its anti-association properties, which prevent the assembly of archaeal 70S ribosomes.
Collapse
Affiliation(s)
- Ahmed H Hassan
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Matyas Pinkas
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Chiaki Yaeshima
- Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Niigata 950-2181, Japan
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Toshio Uchiumi
- Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Niigata 950-2181, Japan
| | - Kosuke Ito
- Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Niigata 950-2181, Japan
| | - Gabriel Demo
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| |
Collapse
|
2
|
Gentry RC, Ide NA, Comunale VM, Hartwick EW, Kinz-Thompson CD, Gonzalez RL. The mechanism of mRNA cap recognition. Nature 2025; 637:736-743. [PMID: 39663447 DOI: 10.1038/s41586-024-08304-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 10/29/2024] [Indexed: 12/13/2024]
Abstract
During translation initiation, mRNA molecules must be identified and activated for loading into a ribosome1-3. In this rate-limiting step, the heterotrimeric protein eukaryotic initiation factor eIF4F must recognize and productively interact with the 7-methylguanosine cap at the 5' end of the mRNA and subsequently activate the message1-3. Despite its fundamental, regulatory role in gene expression, the molecular events underlying cap recognition and mRNA activation remain unclear3. Here we generate a single-molecule fluorescence imaging system to examine the dynamics with which eIF4F discriminates productive and non-productive locations on full-length, native mRNA molecules. At the single-molecule level, we observe stochastic sampling of eIF4F along the length of the mRNA and identify allosteric communication between the eIF4F subunits that ultimately drive cap-recognition and subsequent activation of the message. Our experiments uncover functions for each subunit of eIF4F and we conclude by presenting a model for mRNA activation that precisely defines the composition of the activated message. This model provides a general framework for understanding how mRNA molecules may be discriminated from one another and how other RNA-binding proteins may control the efficiency of translation initiation.
Collapse
Affiliation(s)
- Riley C Gentry
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Nicholas A Ide
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | | - Erik W Hartwick
- Department of Chemistry, Columbia University, New York, NY, USA
- BioChemistry Krios Electron Microscopy Facility, Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Colin D Kinz-Thompson
- Department of Chemistry, Columbia University, New York, NY, USA
- Department of Chemistry, Rutgers University-Newark, Newark, NJ, USA
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia University, New York, NY, USA.
| |
Collapse
|
3
|
Gentry RC, Ide NA, Comunale VM, Hartwick EW, Kinz-Thompson CD, Gonzalez RL. The mechanism of mRNA activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.15.567265. [PMID: 38014128 PMCID: PMC10680758 DOI: 10.1101/2023.11.15.567265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
During translation initiation, messenger RNA molecules must be identified and activated for loading into a ribosome. In this rate-limiting step, the heterotrimeric protein eukaryotic initiation factor eIF4F must recognize and productively interact with the 7-methylguanosine cap at the 5' end of the messenger RNA and subsequently activate the message. Despite its fundamental, regulatory role in gene expression, the molecular events underlying cap recognition and messenger RNA activation remain mysterious. Here, we generate a unique, single-molecule fluorescence imaging system to interrogate the dynamics with which eIF4F discriminates productive and non-productive locations on full-length, native messenger RNA molecules. At the single-molecule level, we observe stochastic sampling of eIF4F along the length of the messenger RNA and identify allosteric communication between the eIF4F subunits which ultimately drive cap-recognition and subsequent activation of the message. Our experiments uncover novel functions for each subunit of eIF4F and we conclude by presenting a model for messenger RNA activation which precisely defines the composition of the activated message. This model provides a general framework for understanding how messenger RNA molecules may be discriminated from one another, and how other RNA-binding proteins may control the efficiency of translation initiation.
Collapse
Affiliation(s)
- Riley C Gentry
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Nicholas A Ide
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | | - Erik W Hartwick
- Department of Chemistry, Columbia University, New York, NY, USA
- Current Address: BioChemistry Krios Electron Microscopy Facility, Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Colin D Kinz-Thompson
- Department of Chemistry, Columbia University, New York, NY, USA
- Current Address: Department of Chemistry, Rutgers University-Newark, Newark, NJ 07102
| | | |
Collapse
|
4
|
Ray KK, Kinz-Thompson CD, Fei J, Wang B, Lin Q, Gonzalez RL. Entropic control of the free-energy landscape of an archetypal biomolecular machine. Proc Natl Acad Sci U S A 2023; 120:e2220591120. [PMID: 37186858 PMCID: PMC10214133 DOI: 10.1073/pnas.2220591120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Biomolecular machines are complex macromolecular assemblies that utilize thermal and chemical energy to perform essential, multistep, cellular processes. Despite possessing different architectures and functions, an essential feature of the mechanisms of action of all such machines is that they require dynamic rearrangements of structural components. Surprisingly, biomolecular machines generally possess only a limited set of such motions, suggesting that these dynamics must be repurposed to drive different mechanistic steps. Although ligands that interact with these machines are known to drive such repurposing, the physical and structural mechanisms through which ligands achieve this remain unknown. Using temperature-dependent, single-molecule measurements analyzed with a time-resolution-enhancing algorithm, here, we dissect the free-energy landscape of an archetypal biomolecular machine, the bacterial ribosome, to reveal how its dynamics are repurposed to drive distinct steps during ribosome-catalyzed protein synthesis. Specifically, we show that the free-energy landscape of the ribosome encompasses a network of allosterically coupled structural elements that coordinates the motions of these elements. Moreover, we reveal that ribosomal ligands which participate in disparate steps of the protein synthesis pathway repurpose this network by differentially modulating the structural flexibility of the ribosomal complex (i.e., the entropic component of the free-energy landscape). We propose that such ligand-dependent entropic control of free-energy landscapes has evolved as a general strategy through which ligands may regulate the functions of all biomolecular machines. Such entropic control is therefore an important driver in the evolution of naturally occurring biomolecular machines and a critical consideration for the design of synthetic molecular machines.
Collapse
Affiliation(s)
- Korak Kumar Ray
- Department of Chemistry, Columbia University, New York, NY10027
| | | | - Jingyi Fei
- Department of Chemistry, Columbia University, New York, NY10027
| | - Bin Wang
- Department of Mechanical Engineering, Columbia University, New York, NY10027
| | - Qiao Lin
- Department of Mechanical Engineering, Columbia University, New York, NY10027
| | | |
Collapse
|
5
|
Singh J, Mishra RK, Ayyub SA, Hussain T, Varshney U. The initiation factor 3 (IF3) residues interacting with initiator tRNA elbow modulate the fidelity of translation initiation and growth fitness in Escherichia coli. Nucleic Acids Res 2022; 50:11712-11726. [PMID: 36399509 PMCID: PMC9723500 DOI: 10.1093/nar/gkac1053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/19/2022] Open
Abstract
Initiation factor 3 (IF3) regulates the fidelity of bacterial translation initiation by debarring the use of non-canonical start codons or non-initiator tRNAs and prevents premature docking of the 50S ribosomal subunit to the 30S pre-initiation complex (PIC). The C-terminal domain (CTD) of IF3 can carry out most of the known functions of IF3 and sustain Escherichia coli growth. However, the roles of the N-terminal domain (NTD) have remained unclear. We hypothesized that the interaction between NTD and initiator tRNAfMet (i-tRNA) is essential to coordinate the movement of the two domains during the initiation pathway to ensure fidelity of the process. Here, using atomistic molecular dynamics (MD) simulation, we show that R25A/Q33A/R66A mutations do not impact NTD structure but disrupt its interaction with i-tRNA. These NTD residues modulate the fidelity of translation initiation and are crucial for bacterial growth. Our observations also implicate the role of these interactions in the subunit dissociation activity of CTD of IF3. Overall, the study shows that the interactions between NTD of IF3 and i-tRNA are crucial for coupling the movements of NTD and CTD of IF3 during the initiation pathway and in imparting growth fitness to E. coli.
Collapse
Affiliation(s)
| | | | - Shreya Ahana Ayyub
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Tanweer Hussain
- Correspondence may also be addressed to Tanweer Hussain. Tel: +91 80 22933262;
| | - Umesh Varshney
- To whom correspondence should be addressed. Tel: +91 80 22932686;
| |
Collapse
|
6
|
Ray S, Dandpat SS, Chatterjee S, Walter NG. Precise tuning of bacterial translation initiation by non-equilibrium 5'-UTR unfolding observed in single mRNAs. Nucleic Acids Res 2022; 50:8818-8833. [PMID: 35892287 PMCID: PMC9410914 DOI: 10.1093/nar/gkac635] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/15/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022] Open
Abstract
Noncoding, structured 5′-untranslated regions (5′-UTRs) of bacterial messenger RNAs (mRNAs) can control translation efficiency by forming structures that either recruit or repel the ribosome. Here we exploit a 5′-UTR embedded preQ1-sensing, pseudoknotted translational riboswitch to probe how binding of a small ligand controls recruitment of the bacterial ribosome to the partially overlapping Shine-Dalgarno (SD) sequence. Combining single-molecule fluorescence microscopy with mutational analyses, we find that the stability of 30S ribosomal subunit binding is inversely correlated with the free energy needed to unfold the 5′-UTR during mRNA accommodation into the mRNA binding cleft. Ligand binding to the riboswitch stabilizes the structure to both antagonize 30S recruitment and accelerate 30S dissociation. Proximity of the 5′-UTR and stability of the SD:anti-SD interaction both play important roles in modulating the initial 30S-mRNA interaction. Finally, depletion of small ribosomal subunit protein S1, known to help resolve structured 5′-UTRs, further increases the energetic penalty for mRNA accommodation. The resulting model of rapid standby site exploration followed by gated non-equilibrium unfolding of the 5′-UTR during accommodation provides a mechanistic understanding of how translation efficiency is governed by riboswitches and other dynamic structure motifs embedded upstream of the translation initiation site of bacterial mRNAs.
Collapse
Affiliation(s)
- Sujay Ray
- Single-Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shiba S Dandpat
- Single-Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Surajit Chatterjee
- Single-Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nils G Walter
- Single-Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Gamper H, Li H, Masuda I, Miklos Robkis D, Christian T, Conn AB, Blaha G, Petersson EJ, Gonzalez RL, Hou YM. Insights into genome recoding from the mechanism of a classic +1-frameshifting tRNA. Nat Commun 2021; 12:328. [PMID: 33436566 PMCID: PMC7803779 DOI: 10.1038/s41467-020-20373-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022] Open
Abstract
While genome recoding using quadruplet codons to incorporate non-proteinogenic amino acids is attractive for biotechnology and bioengineering purposes, the mechanism through which such codons are translated is poorly understood. Here we investigate translation of quadruplet codons by a +1-frameshifting tRNA, SufB2, that contains an extra nucleotide in its anticodon loop. Natural post-transcriptional modification of SufB2 in cells prevents it from frameshifting using a quadruplet-pairing mechanism such that it preferentially employs a triplet-slippage mechanism. We show that SufB2 uses triplet anticodon-codon pairing in the 0-frame to initially decode the quadruplet codon, but subsequently shifts to the +1-frame during tRNA-mRNA translocation. SufB2 frameshifting involves perturbation of an essential ribosome conformational change that facilitates tRNA-mRNA movements at a late stage of the translocation reaction. Our results provide a molecular mechanism for SufB2-induced +1 frameshifting and suggest that engineering of a specific ribosome conformational change can improve the efficiency of genome recoding. Genome recoding with quadruplet codons requires a +1-frameshift-suppressor tRNA able to insert an amino acid at quadruplet codons of interest. Here the authors identify the mechanisms resulting in +1 frameshifting and the steps of the elongation cycle in which it occurs.
Collapse
Affiliation(s)
- Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Haixing Li
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Isao Masuda
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - D Miklos Robkis
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Thomas Christian
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Adam B Conn
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Gregor Blaha
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia University, New York, NY, 10027, USA.
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
8
|
Kaledhonkar S, Fu Z, Caban K, Li W, Chen B, Sun M, Gonzalez RL, Frank J. Late steps in bacterial translation initiation visualized using time-resolved cryo-EM. Nature 2019; 570:400-404. [PMID: 31108498 PMCID: PMC7060745 DOI: 10.1038/s41586-019-1249-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 05/08/2019] [Indexed: 12/02/2022]
Abstract
The initiation of bacterial translation involves the tightly regulated joining of the 50S ribosomal subunit to an initiator transfer RNA (fMet-tRNAfMet)-containing 30S ribosomal initiation complex to form a 70S initiation complex, which subsequently matures into a 70S elongation-competent complex. Rapid and accurate formation of the 70S initiation complex is promoted by initiation factors, which must dissociate from the 30S initiation complex before the resulting 70S elongation-competent complex can begin the elongation of translation1. Although comparisons of the structures of the 30S2-5 and 70S4,6-8 initiation complexes have revealed that the ribosome, initiation factors and fMet-tRNAfMet can acquire different conformations in these complexes, the timing of conformational changes during formation of the 70S initiation complex, the structures of any intermediates formed during these rearrangements, and the contributions that these dynamics might make to the mechanism and regulation of initiation remain unknown. Moreover, the absence of a structure of the 70S elongation-competent complex formed via an initiation-factor-catalysed reaction has precluded an understanding of the rearrangements to the ribosome, initiation factors and fMet-tRNAfMet that occur during maturation of a 70S initiation complex into a 70S elongation-competent complex. Here, using time-resolved cryogenic electron microscopy9, we report the near-atomic-resolution view of how a time-ordered series of conformational changes drive and regulate subunit joining, initiation factor dissociation and fMet-tRNAfMet positioning during formation of the 70S elongation-competent complex. Our results demonstrate the power of time-resolved cryogenic electron microscopy to determine how a time-ordered series of conformational changes contribute to the mechanism and regulation of one of the most fundamental processes in biology.
Collapse
MESH Headings
- Cryoelectron Microscopy
- Escherichia coli/chemistry
- Escherichia coli/metabolism
- Escherichia coli/ultrastructure
- Peptide Chain Elongation, Translational
- Peptide Chain Initiation, Translational
- Protein Conformation
- Ribosome Subunits, Large, Bacterial/metabolism
- Ribosome Subunits, Large, Bacterial/ultrastructure
- Ribosome Subunits, Small, Bacterial/metabolism
- Ribosome Subunits, Small, Bacterial/ultrastructure
- Ribosomes/chemistry
- Ribosomes/metabolism
- Ribosomes/ultrastructure
- Time Factors
Collapse
Affiliation(s)
- Sandip Kaledhonkar
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, USA
| | - Ziao Fu
- Integrated Program in Cellular, Molecular and Biophysical Studies, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Kelvin Caban
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Wen Li
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, USA
| | - Bo Chen
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, USA
| | - Ming Sun
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia University, New York, NY, USA.
| | - Joachim Frank
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, USA.
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| |
Collapse
|
9
|
Abstract
This review summarizes our current understanding of translation in prokaryotes, focusing on the mechanistic and structural aspects of each phase of translation: initiation, elongation, termination, and ribosome recycling. The assembly of the initiation complex provides multiple checkpoints for messenger RNA (mRNA) and start-site selection. Correct codon-anticodon interaction during the decoding phase of elongation results in major conformational changes of the small ribosomal subunit and shapes the reaction pathway of guanosine triphosphate (GTP) hydrolysis. The ribosome orchestrates proton transfer during peptide bond formation, but requires the help of elongation factor P (EF-P) when two or more consecutive Pro residues are to be incorporated. Understanding the choreography of transfer RNA (tRNA) and mRNA movements during translocation helps to place the available structures of translocation intermediates onto the time axis of the reaction pathway. The nascent protein begins to fold cotranslationally, in the constrained space of the polypeptide exit tunnel of the ribosome. When a stop codon is reached at the end of the coding sequence, the ribosome, assisted by termination factors, hydrolyzes the ester bond of the peptidyl-tRNA, thereby releasing the nascent protein. Following termination, the ribosome is dissociated into subunits and recycled into another round of initiation. At each step of translation, the ribosome undergoes dynamic fluctuations between different conformation states. The aim of this article is to show the link between ribosome structure, dynamics, and function.
Collapse
Affiliation(s)
- Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen 37077, Germany
| |
Collapse
|
10
|
Wu H, Zhao Y, Du Y, Miao S, Liu J, Li Y, Caiyin Q, Qiao J. Quantitative proteomics of Lactococcus lactis F44 under cross-stress of low pH and lactate. J Dairy Sci 2018; 101:6872-6884. [DOI: 10.3168/jds.2018-14594] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/13/2018] [Indexed: 12/12/2022]
|
11
|
Goyal A, Belardinelli R, Rodnina MV. Non-canonical Binding Site for Bacterial Initiation Factor 3 on the Large Ribosomal Subunit. Cell Rep 2018; 20:3113-3122. [PMID: 28954228 DOI: 10.1016/j.celrep.2017.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/25/2017] [Accepted: 09/03/2017] [Indexed: 01/01/2023] Open
Abstract
Canonical translation initiation in bacteria entails the assembly of the 30S initiation complex (IC), which binds the 50S subunit to form a 70S IC. IF3, a key initiation factor, is recruited to the 30S subunit at an early stage and is displaced from its primary binding site upon subunit joining. We employed four different FRET pairs to monitor IF3 relocation after 50S joining. IF3 moves away from the 30S subunit, IF1 and IF2, but can remain bound to the mature 70S IC. The secondary binding site is located on the 50S subunit in the vicinity of ribosomal protein L33. The interaction between IF3 and the 50S subunit is largely electrostatic with very high rates of IF3 binding and dissociation. The existence of the non-canonical binding site may help explain how IF3 participates in alternative initiation modes performed directly by the 70S ribosomes, such as initiation on leaderless mRNAs or re-initiation.
Collapse
Affiliation(s)
- Akanksha Goyal
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen 37077, Germany
| | - Riccardo Belardinelli
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen 37077, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen 37077, Germany.
| |
Collapse
|
12
|
Lai WJC, Ermolenko DN. Ensemble and single-molecule FRET studies of protein synthesis. Methods 2017; 137:37-48. [PMID: 29247758 DOI: 10.1016/j.ymeth.2017.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/30/2017] [Accepted: 12/11/2017] [Indexed: 11/29/2022] Open
Abstract
Protein synthesis is a complex, multi-step process that involves large conformational changes of the ribosome and protein factors of translation. Over the last decade, Förster resonance energy transfer (FRET) has become instrumental for studying structural rearrangements of the translational apparatus. Here, we discuss the design of ensemble and single-molecule (sm) FRET assays of translation. We describe a number of experimental strategies that can be used to introduce fluorophores into the ribosome, tRNA, mRNA and protein factors of translation. Alternative approaches to tethering of translation components to the microscope slide in smFRET experiments are also reviewed. Finally, we discuss possible challenges in the interpretation of FRET data and ways to address these challenges.
Collapse
Affiliation(s)
- Wan-Jung C Lai
- Department of Biochemistry and Biophysics & Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, United States
| | - Dmitri N Ermolenko
- Department of Biochemistry and Biophysics & Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, United States.
| |
Collapse
|
13
|
Caban K, Pavlov M, Ehrenberg M, Gonzalez RL. A conformational switch in initiation factor 2 controls the fidelity of translation initiation in bacteria. Nat Commun 2017; 8:1475. [PMID: 29133802 PMCID: PMC5684235 DOI: 10.1038/s41467-017-01492-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 09/21/2017] [Indexed: 11/09/2022] Open
Abstract
Initiation factor (IF) 2 controls the fidelity of translation initiation by selectively increasing the rate of 50S ribosomal subunit joining to 30S initiation complexes (ICs) that carry an N-formyl-methionyl-tRNA (fMet-tRNAfMet). Previous studies suggest that rapid 50S subunit joining involves a GTP- and fMet-tRNAfMet-dependent "activation" of IF2, but a lack of data on the structure and conformational dynamics of 30S IC-bound IF2 has precluded a mechanistic understanding of this process. Here, using an IF2-tRNA single-molecule fluorescence resonance energy transfer signal, we directly observe the conformational switch that is associated with IF2 activation within 30S ICs that lack IF3. Based on these results, we propose a model of IF2 activation that reveals how GTP, fMet-tRNAfMet, and specific structural elements of IF2 drive and regulate this conformational switch. Notably, we find that domain III of IF2 plays a pivotal, allosteric, role in IF2 activation, suggesting that this domain can be targeted for the development of novel antibiotics.
Collapse
Affiliation(s)
- Kelvin Caban
- Department of Chemistry, Columbia University, 3000 Broadway, MC3126, New York, NY, 10027, USA
| | - Michael Pavlov
- Department of Cell and Molecular Biology, BMC, Uppsala University, Husargatan 3, Uppsala, 751 24, Sweden
| | - Måns Ehrenberg
- Department of Cell and Molecular Biology, BMC, Uppsala University, Husargatan 3, Uppsala, 751 24, Sweden
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia University, 3000 Broadway, MC3126, New York, NY, 10027, USA.
| |
Collapse
|
14
|
Roy B, Liu Q, Shoji S, Fredrick K. IF2 and unique features of initiator tRNA fMet help establish the translational reading frame. RNA Biol 2017; 15:604-613. [PMID: 28914580 DOI: 10.1080/15476286.2017.1379636] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Translation begins at AUG, GUG, or UUG codons in bacteria. Start codon recognition occurs in the P site, which may help explain this first-position degeneracy. However, the molecular basis of start codon specificity remains unclear. In this study, we measured the codon dependence of 30S•mRNA•tRNAfMet and 30S•mRNA•tRNAMet complex formation. We found that complex stability varies over a large range with initiator tRNAfMet, following the same trend as reported previously for initiation rate in vivo (AUG > GUG, UUG > CUG, AUC, AUA > ACG). With elongator tRNAMet, the codon dependence of binding differs qualitatively, with virtually no discrimination between GUG and CUG. A unique feature of initiator tRNAfMet is a series of three G-C basepairs in the anticodon stem, which are known to be important for efficient initiation in vivo. A mutation targeting the central of these G-C basepairs causes the mRNA binding specificity pattern to change in a way reminiscent of elongator tRNAMet. Unexpectedly, for certain complexes containing fMet-tRNAfMet, we observed mispositioning of mRNA, such that codon 2 is no longer programmed in the A site. This mRNA mispositioning is exacerbated by the anticodon stem mutation and suppressed by IF2. These findings suggest that both IF2 and the unique anticodon stem of fMet-tRNAfMet help constrain mRNA positioning to set the correct reading frame during initiation.
Collapse
Affiliation(s)
- Bappaditya Roy
- a Department of Microbiology and Center for RNA Biology , Ohio State University , Columbus , Ohio , USA
| | - Qi Liu
- a Department of Microbiology and Center for RNA Biology , Ohio State University , Columbus , Ohio , USA
| | - Shinichiro Shoji
- a Department of Microbiology and Center for RNA Biology , Ohio State University , Columbus , Ohio , USA
| | - Kurt Fredrick
- a Department of Microbiology and Center for RNA Biology , Ohio State University , Columbus , Ohio , USA
| |
Collapse
|
15
|
Abstract
The complex genetic programs of eukaryotic cells are often regulated by key transcription factors occupying or clearing out of a large number of genomic locations. Orchestrating the residence times of these factors is therefore important for the well organized functioning of a large network. The classic models of genetic switches sidestep this timing issue by assuming the binding of transcription factors to be governed entirely by thermodynamic protein-DNA affinities. Here we show that relying on passive thermodynamics and random release times can lead to a "time-scale crisis" for master genes that broadcast their signals to a large number of binding sites. We demonstrate that this time-scale crisis for clearance in a large broadcasting network can be resolved by actively regulating residence times through molecular stripping. We illustrate these ideas by studying a model of the stochastic dynamics of the genetic network of the central eukaryotic master regulator NFκB which broadcasts its signals to many downstream genes that regulate immune response, apoptosis, etc.
Collapse
Affiliation(s)
- Davit A Potoyan
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Peter G Wolynes
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
16
|
Translational Control of the SigR-Directed Oxidative Stress Response in Streptomyces via IF3-Mediated Repression of a Noncanonical GTC Start Codon. mBio 2017; 8:mBio.00815-17. [PMID: 28611250 PMCID: PMC5472188 DOI: 10.1128/mbio.00815-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The major oxidative stress response in Streptomyces is controlled by the sigma factor SigR and its cognate antisigma factor RsrA, and SigR activity is tightly controlled through multiple mechanisms at both the transcriptional and posttranslational levels. Here we show that sigR has a highly unusual GTC start codon and that this leads to another level of SigR regulation, in which SigR translation is repressed by translation initiation factor 3 (IF3). Changing the GTC to a canonical start codon causes SigR to be overproduced relative to RsrA, resulting in unregulated and constitutive expression of the SigR regulon. Similarly, introducing IF3* mutations that impair its ability to repress SigR translation has the same effect. Thus, the noncanonical GTC sigR start codon and its repression by IF3 are critical for the correct and proper functioning of the oxidative stress regulatory system. sigR and rsrA are cotranscribed and translationally coupled, and it had therefore been assumed that SigR and RsrA are produced in stoichiometric amounts. Here we show that RsrA can be transcribed and translated independently of SigR, present evidence that RsrA is normally produced in excess of SigR, and describe the factors that determine SigR-RsrA stoichiometry. In all sigma factor-antisigma factor regulatory switches, the relative abundance of the two proteins is critical to the proper functioning of the system. Many sigma-antisigma operons are cotranscribed and translationally coupled, leading to a generic assumption that the sigma and antisigma factors are produced in a fixed 1:1 ratio. In the case of sigR-rsrA, we show instead that the antisigma factor is produced in excess over the sigma factor, providing a buffer to prevent spurious release of sigma activity. This excess arises in part because sigR has an extremely rare noncanonical GTC start codon, and as a result, SigR translation initiation is repressed by IF3. This finding highlights the potential significance of noncanonical start codons, very few of which have been characterized experimentally. It also emphasizes the limitations of predicting start codons using bioinformatic approaches, which rely heavily on the assumption that ATG, GTG, and TTG are the only permissible start codons.
Collapse
|
17
|
Hussain T, Llácer JL, Wimberly BT, Kieft JS, Ramakrishnan V. Large-Scale Movements of IF3 and tRNA during Bacterial Translation Initiation. Cell 2016; 167:133-144.e13. [PMID: 27662086 PMCID: PMC5037330 DOI: 10.1016/j.cell.2016.08.074] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/04/2016] [Accepted: 08/23/2016] [Indexed: 11/19/2022]
Abstract
In bacterial translational initiation, three initiation factors (IFs 1–3) enable the selection of initiator tRNA and the start codon in the P site of the 30S ribosomal subunit. Here, we report 11 single-particle cryo-electron microscopy (cryoEM) reconstructions of the complex of bacterial 30S subunit with initiator tRNA, mRNA, and IFs 1–3, representing different steps along the initiation pathway. IF1 provides key anchoring points for IF2 and IF3, thereby enhancing their activities. IF2 positions a domain in an extended conformation appropriate for capturing the formylmethionyl moiety charged on tRNA. IF3 and tRNA undergo large conformational changes to facilitate the accommodation of the formylmethionyl-tRNA (fMet-tRNAfMet) into the P site for start codon recognition. Structures of the 30S ribosomal subunit with initiation factors, tRNA and mRNA IF3 helps to position the correct start codon in the P site before binding of tRNA Large-scale conformational changes of IF3 and tRNA are observed IF3 movements facilitate the accommodation of initiator tRNA in P site
Collapse
Affiliation(s)
| | - Jose L Llácer
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Brian T Wimberly
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA; RNA BioScience Initiative, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - V Ramakrishnan
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
18
|
Hu Y, Bernal A, Bullard JM, Zhang Y. Solution structure of protein synthesis initiation factor 1 from Pseudomonas aeruginosa. Protein Sci 2016; 25:2290-2296. [PMID: 27636899 DOI: 10.1002/pro.3042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 11/09/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen and a primary cause of nosocomial infection in humans. The rate of antibiotic resistance in P. aeruginosa is increasing worldwide leading to an unmet need for discovery of new chemical compounds distinctly different from present antimicrobials. Protein synthesis is an essential metabolic process and a validated target for the development of new antibiotics. Initiation factor 1 from P. aeruginosa (Pa-IF1) is the smallest of the three initiation factors that act to establish the 30S initiation complex during initiation of protein biosynthesis. Here we report the characterization and solution NMR structure of Pa-IF1. Pa-IF1 consists of a five-stranded β-sheet with an unusual extended β-strand at the C-terminus and one short α-helix arranged in the sequential order β1-β2-β3-α1-β4-β5. The structure adopts a typical β-barrel fold and contains an oligomer-binding motif. A cluster of basic residues (K39, R41, K42, K64, R66, R70, and R72) located on the surface of strands β4 and β5 near the short α-helix may compose the binding interface with the 30S subunit.
Collapse
Affiliation(s)
- Yanmei Hu
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas
| | - Alejandra Bernal
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas
| | - James M Bullard
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas
| | - Yonghong Zhang
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas
| |
Collapse
|
19
|
Rodnina MV. The ribosome in action: Tuning of translational efficiency and protein folding. Protein Sci 2016; 25:1390-406. [PMID: 27198711 DOI: 10.1002/pro.2950] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 12/28/2022]
Abstract
The cellular proteome is shaped by the combined activities of the gene expression and quality control machineries. While transcription plays an undoubtedly important role, in recent years also translation emerged as a key step that defines the composition and quality of the proteome and the functional activity of proteins in the cell. Among the different post-transcriptional control mechanisms, translation initiation and elongation provide multiple checkpoints that can affect translational efficiency. A multitude of specific signals in mRNAs can determine the frequency of translation initiation, choice of the open reading frame, global and local elongation velocities, and the folding of the emerging protein. In addition to specific signatures in the mRNAs, also variations in the global pools of translation components, including ribosomes, tRNAs, mRNAs, and translation factors can alter translational efficiencies. The cellular outcomes of phenomena such as mRNA codon bias are sometimes difficult to understand due to the staggering complexity of covariates that affect codon usage, translation, and protein folding. Here we summarize the experimental evidence on how the ribosome-together with the other components of the translational machinery-can alter translational efficiencies of mRNA at the initiation and elongation stages and how translation velocity affects protein folding. We seek to explain these findings in the context of mechanistic work on the ribosome. The results argue in favour of a new understanding of translation control as a hub that links mRNA homeostasis to production and quality control of proteins in the cell.
Collapse
Affiliation(s)
- Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, 37077, Germany
| |
Collapse
|
20
|
Liu Q, Fredrick K. Intersubunit Bridges of the Bacterial Ribosome. J Mol Biol 2016; 428:2146-64. [PMID: 26880335 DOI: 10.1016/j.jmb.2016.02.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/29/2016] [Accepted: 02/05/2016] [Indexed: 02/02/2023]
Abstract
The ribosome is a large two-subunit ribonucleoprotein machine that translates the genetic code in all cells, synthesizing proteins according to the sequence of the mRNA template. During translation, the primary substrates, transfer RNAs, pass through binding sites formed between the two subunits. Multiple interactions between the ribosomal subunits, termed intersubunit bridges, keep the ribosome intact and at the same time govern dynamics that facilitate the various steps of translation such as transfer RNA-mRNA movement. Here, we review the molecular nature of these intersubunit bridges, how they change conformation during translation, and their functional roles in the process.
Collapse
Affiliation(s)
- Qi Liu
- Ohio State Biochemistry Program, Department of Microbiology, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Kurt Fredrick
- Ohio State Biochemistry Program, Department of Microbiology, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
21
|
Initiation factor 2 stabilizes the ribosome in a semirotated conformation. Proc Natl Acad Sci U S A 2015; 112:15874-9. [PMID: 26668356 DOI: 10.1073/pnas.1520337112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intersubunit rotation and movement of the L1 stalk, a mobile domain of the large ribosomal subunit, have been shown to accompany the elongation cycle of translation. The initiation phase of protein synthesis is crucial for translational control of gene expression; however, in contrast to elongation, little is known about the conformational rearrangements of the ribosome during initiation. Bacterial initiation factors (IFs) 1, 2, and 3 mediate the binding of initiator tRNA and mRNA to the small ribosomal subunit to form the initiation complex, which subsequently associates with the large subunit by a poorly understood mechanism. Here, we use single-molecule FRET to monitor intersubunit rotation and the inward/outward movement of the L1 stalk of the large ribosomal subunit during the subunit-joining step of translation initiation. We show that, on subunit association, the ribosome adopts a distinct conformation in which the ribosomal subunits are in a semirotated orientation and the L1 stalk is positioned in a half-closed state. The formation of the semirotated intermediate requires the presence of an aminoacylated initiator, fMet-tRNA(fMet), and IF2 in the GTP-bound state. GTP hydrolysis by IF2 induces opening of the L1 stalk and the transition to the nonrotated conformation of the ribosome. Our results suggest that positioning subunits in a semirotated orientation facilitates subunit association and support a model in which L1 stalk movement is coupled to intersubunit rotation and/or IF2 binding.
Collapse
|
22
|
Goyal A, Belardinelli R, Maracci C, Milón P, Rodnina MV. Directional transition from initiation to elongation in bacterial translation. Nucleic Acids Res 2015; 43:10700-12. [PMID: 26338773 PMCID: PMC4678851 DOI: 10.1093/nar/gkv869] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/18/2015] [Indexed: 01/21/2023] Open
Abstract
The transition of the 30S initiation complex (IC) to the translating 70S ribosome after 50S subunit joining provides an important checkpoint for mRNA selection during translation in bacteria. Here, we study the timing and control of reactions that occur during 70S IC formation by rapid kinetic techniques, using a toolbox of fluorescence-labeled translation components. We present a kinetic model based on global fitting of time courses obtained with eight different reporters at increasing concentrations of 50S subunits. IF1 and IF3 together affect the kinetics of subunit joining, but do not alter the elemental rates of subsequent steps of 70S IC maturation. After 50S subunit joining, IF2-dependent reactions take place independent of the presence of IF1 or IF3. GTP hydrolysis triggers the efficient dissociation of fMet-tRNA(fMet) from IF2 and promotes the dissociation of IF2 and IF1 from the 70S IC, but does not affect IF3. The presence of non-hydrolyzable GTP analogs shifts the equilibrium towards a stable 70S-mRNA-IF1-IF2-fMet-tRNA(fMet) complex. Our kinetic analysis reveals the molecular choreography of the late stages in translation initiation.
Collapse
Affiliation(s)
- Akanksha Goyal
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Riccardo Belardinelli
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Cristina Maracci
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Pohl Milón
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
23
|
Abstract
Initiation of translation involves the assembly of a ribosome complex with initiator tRNA bound to the peptidyl site and paired to the start codon of the mRNA. In bacteria, this process is kinetically controlled by three initiation factors--IF1, IF2, and IF3. Here, we show that deletion of helix H69 (∆H69) of 23S rRNA allows rapid 50S docking without concomitant IF3 release and virtually eliminates the dependence of subunit joining on start codon identity. Despite this, overall accuracy of start codon selection, based on rates of formation of elongation-competent 70S ribosomes, is largely uncompromised in the absence of H69. Thus, the fidelity function of IF3 stems primarily from its interplay with initiator tRNA rather than its anti-subunit association activity. While retaining fidelity, ∆H69 ribosomes exhibit much slower rates of overall initiation, due to the delay in IF3 release and impedance of an IF3-independent step, presumably initiator tRNA positioning. These findings clarify the roles of H69 and IF3 in the mechanism of translation initiation and explain the dominant lethal phenotype of the ∆H69 mutation.
Collapse
|
24
|
Gualerzi CO, Pon CL. Initiation of mRNA translation in bacteria: structural and dynamic aspects. Cell Mol Life Sci 2015; 72:4341-67. [PMID: 26259514 PMCID: PMC4611024 DOI: 10.1007/s00018-015-2010-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 01/12/2023]
Abstract
Initiation of mRNA translation is a major checkpoint for regulating level and fidelity of protein synthesis. Being rate limiting in protein synthesis, translation initiation also represents the target of many post-transcriptional mechanisms regulating gene expression. The process begins with the formation of an unstable 30S pre-initiation complex (30S pre-IC) containing initiation factors (IFs) IF1, IF2 and IF3, the translation initiation region of an mRNA and initiator fMet-tRNA whose codon and anticodon pair in the P-site following a first-order rearrangement of the 30S pre-IC produces a locked 30S initiation complex (30SIC); this is docked by the 50S subunit to form a 70S complex that, following several conformational changes, positional readjustments of its ligands and ejection of the IFs, becomes a 70S initiation complex productive in initiation dipeptide formation. The first EF-G-dependent translocation marks the beginning of the elongation phase of translation. Here, we review structural, mechanistic and dynamical aspects of this process.
Collapse
MESH Headings
- Bacteria/genetics
- Bacteria/metabolism
- Binding Sites/genetics
- Codon, Initiator/genetics
- Codon, Initiator/metabolism
- Models, Genetic
- Nucleic Acid Conformation
- Peptide Initiation Factors/genetics
- Peptide Initiation Factors/metabolism
- Protein Biosynthesis
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/genetics
- RNA, Transfer, Met/metabolism
- Ribosomes/metabolism
Collapse
Affiliation(s)
| | - Cynthia L Pon
- Laboratory of Genetics, University of Camerino, 62032, Camerino, Italy.
| |
Collapse
|
25
|
Caban K, Gonzalez RL. The emerging role of rectified thermal fluctuations in initiator aa-tRNA- and start codon selection during translation initiation. Biochimie 2015; 114:30-8. [PMID: 25882682 DOI: 10.1016/j.biochi.2015.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 04/02/2015] [Indexed: 11/30/2022]
Abstract
Decades of genetic, biochemical, biophysical, and structural studies suggest that the conformational dynamics of the translation machinery (TM), of which the ribosome is the central component, play a fundamental role in the mechanism and regulation of translation. More recently, single-molecule fluorescence resonance energy transfer (smFRET) studies have provided a unique and powerful approach for directly monitoring the real-time dynamics of the TM. Indeed, smFRET studies of the elongation stage of translation have significantly enriched our understanding of the mechanisms through which stochastic, thermally driven conformational fluctuations of the TM are exploited to drive and regulate the individual steps of translation elongation [1]. Beyond translation elongation, smFRET studies of the conformational dynamics of the initiation stage of translation offer great potential for providing mechanistic information that has thus far remained difficult or impossible to obtain using traditional methods. This is particularly true of the mechanisms through which the accuracy of initiator tRNA- and start codon selection is established during translation initiation. Given that translation initiation is a major checkpoint for regulating the translation of mRNAs, obtaining such mechanistic information holds great promise for our understanding of the translational regulation of gene expression. Here, we provide an overview of the bacterial translation initiation pathway, summarize what is known regarding the biochemical functions of the IFs, and discuss various new and exciting mechanistic insights that have emerged from several recently published smFRET studies of the mechanisms that guide initiator tRNA- and start codon selection during translation initiation. These studies provide a springboard for future investigations of the conformational dynamics of the more complex eukaryotic translation initiation pathway and mechanistic studies of the role of translational regulation of gene expression in human health and disease.
Collapse
Affiliation(s)
- Kelvin Caban
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
26
|
Wang J, Caban K, Gonzalez RL. Ribosomal initiation complex-driven changes in the stability and dynamics of initiation factor 2 regulate the fidelity of translation initiation. J Mol Biol 2015; 427:1819-34. [PMID: 25596426 DOI: 10.1016/j.jmb.2014.12.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 12/12/2014] [Accepted: 12/29/2014] [Indexed: 12/23/2022]
Abstract
Joining of the large, 50S, ribosomal subunit to the small, 30S, ribosomal subunit initiation complex (IC) during bacterial translation initiation is catalyzed by the initiation factor (IF) IF2. Because the rate of subunit joining is coupled to the IF, transfer RNA (tRNA), and mRNA codon compositions of the 30S IC, the subunit joining reaction functions as a kinetic checkpoint that regulates the fidelity of translation initiation. Recent structural studies suggest that the conformational dynamics of the IF2·tRNA sub-complex forming on the intersubunit surface of the 30S IC may play a significant role in the mechanisms that couple the rate of subunit joining to the IF, tRNA, and codon compositions of the 30S IC. To test this hypothesis, we have developed a single-molecule fluorescence resonance energy transfer signal between IF2 and tRNA that has enabled us to monitor the conformational dynamics of the IF2·tRNA sub-complex across a series of 30S ICs. Our results demonstrate that 30S ICs undergoing rapid subunit joining display a high affinity for IF2 and an IF2·tRNA sub-complex that primarily samples a single conformation. In contrast, 30S ICs that undergo slower subunit joining exhibit a decreased affinity for IF2 and/or a change in the conformational dynamics of the IF2·tRNA sub-complex. These results strongly suggest that 30S IC-driven changes in the stability of IF2 and the conformational dynamics of the IF2·tRNA sub-complex regulate the efficiency and fidelity of subunit joining during translation initiation.
Collapse
Affiliation(s)
- Jiangning Wang
- Department of Chemistry, Columbia University, 3000 Broadway, MC3126, New York, NY 10027, USA
| | - Kelvin Caban
- Department of Chemistry, Columbia University, 3000 Broadway, MC3126, New York, NY 10027, USA
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia University, 3000 Broadway, MC3126, New York, NY 10027, USA.
| |
Collapse
|