1
|
Xi S, Ban X, Kong H, Li C, Gu Z, Li Z. Conserved residues at the family and subfamily levels determine enzyme activity and substrate binding in glycoside hydrolase family 13. Int J Biol Macromol 2023; 253:126980. [PMID: 37729992 DOI: 10.1016/j.ijbiomac.2023.126980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/24/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023]
Abstract
Site-directed mutagenesis is a valuable strategy for modifying enzymes, but the lack of understanding of conserved residues regulating glycosidase function hinders enzyme design. We analyzed 1662 enzyme sequences to identify conserved amino acids in maltohexaose-forming amylase at both family and subfamily levels. Several conserved residues at the family level (G37, P45, R52, Y57, D101, V103, H106, G230, R232, D234, E264, H330, D331, and G360) were found, mutations of which resulted in reduced enzyme activity or inactivation. At the subfamily level, several conserved residues (L65, E67, F68, D111, E114, R126, R147, F154, W156, F161, G163, D165, W218H, V342, W345, and F346) were identified, which primarily facilitate substrate binding in the enzyme's active site, as shown by molecular dynamics and kinetic assays. Our findings provide critical insights into conserved residues essential for catalysis and can inform targeted enzyme design in protein engineering.
Collapse
Affiliation(s)
- Shixia Xi
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Haocun Kong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Caiming Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, People's Republic of China.
| |
Collapse
|
2
|
Naik B, Kumar V, Goyal SK, Dutt Tripathi A, Mishra S, Joakim Saris PE, Kumar A, Rizwanuddin S, Kumar V, Rustagi S. Pullulanase: unleashing the power of enzyme with a promising future in the food industry. Front Bioeng Biotechnol 2023; 11:1139611. [PMID: 37449089 PMCID: PMC10337586 DOI: 10.3389/fbioe.2023.1139611] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Pullulanases are the most important industrial group of enzymes in family 13 glycosyl hydrolases. They hydrolyze either α-1,6 and α-1,4 or both glycosidic bonds in pullulan as well as other carbohydrates to produce glucose, maltose, and maltotriose syrups, which have important uses in food and other related sectors. However, very less reports are available on pullulanase production from native strains because of low yield issues. In line with the increasing demands for pullulanase, it has become important to search for novel pullulanase-producing microorganisms with high yields. Moreover, high production costs and low yield are major limitations in the industrial production of pullulanase enzymes. The production cost of pullulanase by using the solid-state fermentation (SSF) process can be minimized by selecting agro-industrial waste. This review summarizes the types, sources, production strategies, and potential applications of pullulanase in different food and other related industries. Researchers should focus on fungal strains producing pullulanase for better yield and low production costs by using agro-waste. It will prove a better enzyme in different food processing industries and will surely reduce the cost of products.
Collapse
Affiliation(s)
- Bindu Naik
- Department of Food Science and Technology, Graphic Era (Deemed to be University), Uttarakhand, India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - S. K. Goyal
- Department of Agricultural Engineering, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Abhishek Dutt Tripathi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Sadhna Mishra
- Faculty of Agricultural Sciences, GLA University, Mathura, India
| | - Per Erik Joakim Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Akhilesh Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Sheikh Rizwanuddin
- Department of Food Science and Technology, Graphic Era (Deemed to be University), Uttarakhand, India
| | - Vivek Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Sarvesh Rustagi
- Department of Food Technology, UCLAS, Uttaranchal University, Dehradun, India
| |
Collapse
|
3
|
Vester-Christensen MB, Holck J, Rejzek M, Perrin L, Tovborg M, Svensson B, Field RA, Møller MS. Exploration of the Transglycosylation Activity of Barley Limit Dextrinase for Production of Novel Glycoconjugates. Molecules 2023; 28:4111. [PMID: 37241852 PMCID: PMC10223164 DOI: 10.3390/molecules28104111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
A few α-glucan debranching enzymes (DBEs) of the large glycoside hydrolase family 13 (GH13), also known as the α-amylase family, have been shown to catalyze transglycosylation as well as hydrolysis. However, little is known about their acceptor and donor preferences. Here, a DBE from barley, limit dextrinase (HvLD), is used as a case study. Its transglycosylation activity is studied using two approaches; (i) natural substrates as donors and different p-nitrophenyl (pNP) sugars as well as different small glycosides as acceptors, and (ii) α-maltosyl and α-maltotriosyl fluorides as donors with linear maltooligosaccharides, cyclodextrins, and GH inhibitors as acceptors. HvLD showed a clear preference for pNP maltoside both as acceptor/donor and acceptor with the natural substrate pullulan or a pullulan fragment as donor. Maltose was the best acceptor with α-maltosyl fluoride as donor. The findings highlight the importance of the subsite +2 of HvLD for activity and selectivity when maltooligosaccharides function as acceptors. However, remarkably, HvLD is not very selective when it comes to aglycone moiety; different aromatic ring-containing molecules besides pNP could function as acceptors. The transglycosylation activity of HvLD can provide glycoconjugate compounds with novel glycosylation patterns from natural donors such as pullulan, although the reaction would benefit from optimization.
Collapse
Affiliation(s)
- Malene Bech Vester-Christensen
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (M.B.V.-C.); (B.S.)
| | - Jesper Holck
- Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark;
| | - Martin Rejzek
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7TJ, UK; (M.R.); (R.A.F.)
| | - Léa Perrin
- Applied Molecular Enzyme Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark;
| | | | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (M.B.V.-C.); (B.S.)
| | - Robert A. Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7TJ, UK; (M.R.); (R.A.F.)
| | - Marie Sofie Møller
- Applied Molecular Enzyme Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark;
| |
Collapse
|
4
|
Wangpaiboon K, Charoenwongpaiboon T, Klaewkla M, Field RA, Panpetch P. Cassava pullulanase and its synergistic debranching action with isoamylase 3 in starch catabolism. FRONTIERS IN PLANT SCIENCE 2023; 14:1114215. [PMID: 36778707 PMCID: PMC9911869 DOI: 10.3389/fpls.2023.1114215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Pullulanase (EC 3.2.1.41, PUL), a debranching enzyme belonging to glycoside hydrolase family 13 subfamily 13, catalyses the cleavage of α-1,6 linkages of pullulan and β-limit dextrin. The present work studied PUL from cassava Manihot esculenta Crantz (MePUL) tubers, an important economic crop. The Mepul gene was successfully cloned and expressed in E. coli and rMePUL was biochemically characterised. MePUL was present as monomer and homodimer, as judged by apparent mass of ~ 84 - 197 kDa by gel permeation chromatography analysis. Optimal pH and temperature were at pH 6.0 and 50 °C, and enzyme activity was enhanced by the addition of Ca2+ ions. Pullulan is the most favourable substrate for rMePUL, followed by β-limit dextrin. Additionally, maltooligosaccharides were potential allosteric modulators of rMePUL. Interestingly, short-chain maltooligosaccharides (DP 2 - 4) were significantly revealed at a higher level when rMePUL was mixed with cassava isoamylase 3 (rMeISA3), compared to that of each single enzyme reaction. This suggests that MePUL and MeISA3 debranch β-limit dextrin in a synergistic manner, which represents a major starch catabolising process in dicots. Additionally, subcellular localisation suggested the involvement of MePUL in starch catabolism, which normally takes place in plastids.
Collapse
Affiliation(s)
- Karan Wangpaiboon
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Methus Klaewkla
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Robert A. Field
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Pawinee Panpetch
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Du J, Hu S, Dong J, Wu R, Yu J, Yin H. Exploring the factors that affect the themostability of barley limit dextrinase - Inhibitor complex. J Mol Graph Model 2021; 109:108043. [PMID: 34649145 DOI: 10.1016/j.jmgm.2021.108043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 11/30/2022]
Abstract
Barley Limit dextrinase (Hordeum vulgare HvLD) is the unique endogenous starch-debranching enzyme, determining the production of a high degree of fermentation. The activity of HvLD is regulated by an endogenous LD inhibitor protein (LDI). In beer production, free LD is easy to inactivate in mashing process under the condition of high temperature. The binding of LD with LDI protects it against heat inactivation. Exploring the factors affecting the themostability of HvLD-LDI complex is important for beer production. In this work, the themostability of HvLD-LDI complex at different NaCl concentrations and temperatures were explored by molecular dynamics simulation and binding free energy calculation. In NaCl solution, the complex exhibits higher conformational stability at 343 K and 363 K than those in pure water. Root mean square fluctuation (RMSF) analysis identified the thermal sensitive regions of HvLD and LDI. The binding free energy results suggest that the LD-LDI complex is more stable in NaCl solution than those in pure water at high temperature. The residues with high contribution to the complex were identified. The structural and dynamic details will help us to understand the driving forces that lead to the themostability of HvLD-LDI complex at different temperatures and different salt concentrations, which will facilitate the optimization conditions of beer production for maintaining the thermal stability and activity of HvLD.
Collapse
Affiliation(s)
- Juan Du
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery, Qingdao, China; Shandong Province Key Laboratory of Applied Mycology, College of Life Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shumin Hu
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery, Qingdao, China.
| | - Jianjun Dong
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery, Qingdao, China
| | - Ruihan Wu
- Shandong Province Key Laboratory of Applied Mycology, College of Life Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Junhong Yu
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery, Qingdao, China
| | - Hua Yin
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery, Qingdao, China
| |
Collapse
|
6
|
Cockburn DW, Kibler R, Brown HA, Duvall R, Moraïs S, Bayer E, Koropatkin NM. Structure and substrate recognition by the Ruminococcus bromii amylosome pullulanases. J Struct Biol 2021; 213:107765. [PMID: 34186214 DOI: 10.1016/j.jsb.2021.107765] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/11/2021] [Accepted: 06/23/2021] [Indexed: 01/15/2023]
Abstract
Pullulanases are glycoside hydrolase family 13 (GH13) enzymes that target α1,6 glucosidic linkages within starch and aid in the degradation of the α1,4- and α1,6- linked glucans pullulan, glycogen and amylopectin. The human gut bacterium Ruminococcus bromii synthesizes two extracellular pullulanases, Amy10 and Amy12, that are incorporated into the multiprotein amylosome complex that enables the digestion of granular resistant starch from the diet. Here we provide a comparative biochemical analysis of these pullulanases and the x-ray crystal structures of the wild type and the nucleophile mutant D392A of Amy12 complexed with maltoheptaose and 63-α-D glucosyl-maltotriose. While Amy10 displays higher catalytic efficiency on pullulan and cleaves only α1,6 linkages, Amy12 has some activity on α1,4 linkages suggesting that these enzymes are not redundant within the amylosome. Our structures of Amy12 include a mucin-binding protein (MucBP) domain that follows the C-domain of the GH13 fold, an atypical feature of these enzymes. The wild type Amy12 structure with maltoheptaose captured two oligosaccharides in the active site arranged as expected following catalysis of an α1,6 branch point in amylopectin. The nucleophile mutant D392A complexed with maltoheptaose or 63-α-D glucosyl-maltotriose captured β-glucose at the reducing end in the -1 subsite, facilitated by the truncation of the active site aspartate and stabilized by stacking with Y279. The core interface between the co-crystallized ligands and Amy12 occurs within the -2 through + 1 subsites, which may allow for flexible recognition of α1,6 linkages within a variety of starch structures.
Collapse
Affiliation(s)
- Darrell W Cockburn
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Ryan Kibler
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Haley A Brown
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Rebecca Duvall
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Sarah Moraïs
- Faculty of Natural Sciences, Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Edward Bayer
- Faculty of Natural Sciences, Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| |
Collapse
|
7
|
Microbial starch debranching enzymes: Developments and applications. Biotechnol Adv 2021; 50:107786. [PMID: 34147588 DOI: 10.1016/j.biotechadv.2021.107786] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 12/28/2022]
Abstract
Starch debranching enzymes (SDBEs) hydrolyze the α-1,6 glycosidic bonds in polysaccharides such as starch, amylopectin, pullulan and glycogen. SDBEs are also important enzymes for the preparation of sugar syrup, resistant starch and cyclodextrin. As the synergistic catalysis of SDBEs and other starch-acting hydrolases can effectively improve the raw material utilization and production efficiency during starch processing steps such as saccharification and modification, they have attracted substantial research interest in the past decades. The substrate specificities of the two major members of SDBEs, pullulanases and isoamylases, are quite different. Pullulanases generally require at least two α-1,4 linked glucose units existing on both sugar chains linked by the α-1,6 bond, while isoamylases require at least three units of α-1,4 linked glucose. SDBEs mainly belong to glycoside hydrolase (GH) family 13 and 57. Except for GH57 type II pullulanse, GH13 pullulanases and isoamylases share plenty of similarities in sequence and structure of the core catalytic domains. However, the N-terminal domains, which might be one of the determinants contributing to the substrate binding of SDBEs, are distinct in different enzymes. In order to overcome the current defects of SDBEs in catalytic efficiency, thermostability and expression level, great efforts have been made to develop effective enzyme engineering and fermentation strategies. Herein, the diverse biochemical properties and distinct features in the sequence and structure of pullulanase and isoamylase from different sources are summarized. Up-to-date developments in the enzyme engineering, heterologous production and industrial applications of SDBEs is also reviewed. Finally, research perspective which could help understanding and broadening the applications of SDBEs are provided.
Collapse
|
8
|
Møller MS, Olesen SV, André I. An ultra-high affinity protein-protein interface displaying sequence-robustness. Protein Sci 2021; 30:1144-1156. [PMID: 33837990 DOI: 10.1002/pro.4080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/09/2021] [Accepted: 04/08/2021] [Indexed: 11/11/2022]
Abstract
Protein-protein interactions are crucial in biology and play roles in for example, the immune system, signaling pathways, and enzyme regulation. Ultra-high affinity interactions (Kd <0.1 nM) occur in these systems, however, structures and energetics behind stability of ultra-high affinity protein-protein complexes are not well understood. Regulation of the starch debranching barley limit dextrinase (LD) and its endogenous cereal type inhibitor (LDI) exemplifies an ultra-high affinity complex (Kd of 42 pM). In this study the LD-LDI complex is investigated to unveil how robust the ultra-high affinity is to LDI sequence variation at the protein-protein interface and whether alternative sequences can retain the ultra-high binding affinity. The interface of LD-LDI was engineered using computational protein redesign aiming at identifying LDI variants predicted to retain ultra-high binding affinity. These variants present a very diverse set of mutations going beyond conservative and alanine substitutions typically used to probe interfaces. Surface plasmon resonance analysis of the LDI variants revealed that high affinity of LD-LDI requires interactions of several residues at the rim of the protein interface, unlike the classical hotspot arrangement where key residues are found at the center of the interface. Notably, substitution of interface residues in LDI, including amino acids with functional groups different from the wild-type, could occur without loss of affinity. This demonstrates that ultra-high binding affinity can be conferred without hotspot residues, thus making complexes more robust to mutational drift in evolution. The present mutational analysis also demonstrates how energetic coupling can emerge between residues at large distances at the interface.
Collapse
Affiliation(s)
- Marie Sofie Møller
- Biochemistry and Structural Biology, Lund University, Lund, Sweden.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sita Vaag Olesen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ingemar André
- Biochemistry and Structural Biology, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Møller MS, Svensson B. Enzymes in grain processing. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Huang P, Wu S, Yang S, Yan Q, Jiang Z. Structural basis of carbohydrate binding in domain C of a type I pullulanase fromPaenibacillus barengoltzii. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2020; 76:447-457. [DOI: 10.1107/s205979832000409x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 03/24/2020] [Indexed: 11/10/2022]
Abstract
Pullulanase (EC 3.2.1.41) is a well known starch-debranching enzyme that catalyzes the cleavage of α-1,6-glycosidic linkages in α-glucans such as starch and pullulan. Crystal structures of a type I pullulanase fromPaenibacillus barengoltzii(PbPulA) and ofPbPulA in complex with maltopentaose (G5), maltohexaose (G6)/α-cyclodextrin (α-CD) and β-cyclodextrin (β-CD) were determined in order to better understand substrate binding to this enzyme.PbPulA belongs to glycoside hydrolase (GH) family 13 subfamily 14 and is composed of three domains (CBM48, A and C). Three carbohydrate-binding sites identified inPbPulA were located in CBM48, near the active site and in domain C, respectively. The binding site in CBM48 was specific for β-CD, while that in domain C has not been reported for other pullulanases. The domain C binding site had higher affinity for α-CD than for G6; a small motif (FGGEH) seemed to be one of the major determinants for carbohydrate binding in this domain. Structure-based mutations of several surface-exposed aromatic residues in CBM48 and domain C had a debilitating effect on the activity of the enzyme. These results suggest that both CBM48 and domain C play a role in binding substrates. The crystal forms described contribute to the understanding of pullulanase domain–carbohydrate interactions.
Collapse
|
11
|
Du J, Dong J, Du S, Zhang K, Yu J, Hu S, Yin H. Understanding Thermostability Factors of Barley Limit Dextrinase by Molecular Dynamics Simulations. Front Mol Biosci 2020; 7:51. [PMID: 32478090 PMCID: PMC7241666 DOI: 10.3389/fmolb.2020.00051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
Limit dextrinase (LD) is the only endogenous starch-debranching enzyme in barley (Hordeum vulgare, Hv), which is the key factor affecting the production of a high degree of fermentation. Free LD will lose its activity in the mashing process at high temperature in beer production. However, there remains a lack of understanding on the factor affecting the themostability of HvLD at the atomic level. In this work, the molecular dynamics simulations were carried out for HvLD to explore the key factors affecting the thermal stability of LD. The higher value of root mean square deviation (RMSD), radius of gyration (Rg), and surface accessibility (SASA) suggests the instability of HvLD at high temperatures. Intra-protein hydrogen bonds and hydrogen bonds between protein and water decrease at high temperature. Long-lived hydrogen bonds, salt bridges, and hydrophobic contacts are lost at high temperature. The salt bridge interaction analysis suggests that these salt bridges are important for the thermostability of HvLD, including E568–R875, D317–R378, D803–R884, D457–R214, D468–R395, D456–R452, D399–R471, and D541–R542. Root mean square fluctuation (RMSF) analysis identified the thermal-sensitive regions of HvLD, which will facilitate enzyme engineering of HvLD for enhanced themostability.
Collapse
Affiliation(s)
- Juan Du
- State Key Laboratory of Biological Fermentation Engineering of Beer, College of Life Sciences, Qingdao Agricultural University, Qingdao, China.,Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jianjun Dong
- State Key Laboratory of Biological Fermentation Engineering of Beer, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Songjie Du
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Kun Zhang
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Junhong Yu
- State Key Laboratory of Biological Fermentation Engineering of Beer, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shumin Hu
- State Key Laboratory of Biological Fermentation Engineering of Beer, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Hua Yin
- State Key Laboratory of Biological Fermentation Engineering of Beer, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
12
|
Andersen S, Svensson B, Møller MS. Roles of the N-terminal domain and remote substrate binding subsites in activity of the debranching barley limit dextrinase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140294. [DOI: 10.1016/j.bbapap.2019.140294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/15/2019] [Accepted: 10/10/2019] [Indexed: 11/28/2022]
|
13
|
Janeček Š, Mareček F, MacGregor EA, Svensson B. Starch-binding domains as CBM families-history, occurrence, structure, function and evolution. Biotechnol Adv 2019; 37:107451. [PMID: 31536775 DOI: 10.1016/j.biotechadv.2019.107451] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/01/2019] [Accepted: 09/15/2019] [Indexed: 01/05/2023]
Abstract
The term "starch-binding domain" (SBD) has been applied to a domain within an amylolytic enzyme that gave the enzyme the ability to bind onto raw, i.e. thermally untreated, granular starch. An SBD is a special case of a carbohydrate-binding domain, which in general, is a structurally and functionally independent protein module exhibiting no enzymatic activity but possessing potential to target the catalytic domain to the carbohydrate substrate to accommodate it and process it at the active site. As so-called families, SBDs together with other carbohydrate-binding modules (CBMs) have become an integral part of the CAZy database (http://www.cazy.org/). The first two well-described SBDs, i.e. the C-terminal Aspergillus-type and the N-terminal Rhizopus-type have been assigned the families CBM20 and CBM21, respectively. Currently, among the 85 established CBM families in CAZy, fifteen can be considered as families having SBD functional characteristics: CBM20, 21, 25, 26, 34, 41, 45, 48, 53, 58, 68, 69, 74, 82 and 83. All known SBDs, with the exception of the extra long CBM74, were recognized as a module consisting of approximately 100 residues, adopting a β-sandwich fold and possessing at least one carbohydrate-binding site. The present review aims to deliver and describe: (i) the SBD identification in different amylolytic and related enzymes (e.g., CAZy GH families) as well as in other relevant enzymes and proteins (e.g., laforin, the β-subunit of AMPK, and others); (ii) information on the position in the polypeptide chain and the number of SBD copies and their CBM family affiliation (if appropriate); (iii) structure/function studies of SBDs with a special focus on solved tertiary structures, in particular, as complexes with α-glucan ligands; and (iv) the evolutionary relationships of SBDs in a tree common to all SBD CBM families (except for the extra long CBM74). Finally, some special cases and novel potential SBDs are also introduced.
Collapse
Affiliation(s)
- Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, SK-84551 Bratislava, Slovakia; Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, Nám. J. Herdu 2, SK-91701 Trnava, Slovakia.
| | - Filip Mareček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, SK-84551 Bratislava, Slovakia; Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, Nám. J. Herdu 2, SK-91701 Trnava, Slovakia
| | - E Ann MacGregor
- 2 Nicklaus Green, Livingston EH54 8RX, West Lothian, United Kingdom
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
14
|
Saka N, Malle D, Iwamoto H, Takahashi N, Mizutani K, Mikami B. Relationship between the induced-fit loop and the activity of Klebsiella pneumoniae pullulanase. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2019; 75:792-803. [DOI: 10.1107/s2059798319010660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/30/2019] [Indexed: 11/10/2022]
Abstract
Klebsiella pneumoniae pullulanase (KPP) belongs to glycoside hydrolase family 13 subfamily 13 (GH13_13) and is the only enzyme that is reported to perform an induced-fit motion of the active-site loop (residues 706–710). Comparison of pullulanase structures indicated that only KPP has Leu680 present behind the loop, in contrast to the glycine found in other GH13_13 members. Analysis of the structure and activity of recombinant pullulanase from K. pneumoniae ATCC 9621 (rKPP) and its mutant (rKPP-G680L) indicated that the side chain of residue 680 is important for the induced-fit motion of the loop 706–710 and alters the binding affinity of the substrate.
Collapse
|
15
|
Structural basis of glycogen metabolism in bacteria. Biochem J 2019; 476:2059-2092. [PMID: 31366571 DOI: 10.1042/bcj20170558] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 01/25/2023]
Abstract
The evolution of metabolic pathways is a major force behind natural selection. In the spotlight of such process lies the structural evolution of the enzymatic machinery responsible for the central energy metabolism. Specifically, glycogen metabolism has emerged to allow organisms to save available environmental surplus of carbon and energy, using dedicated glucose polymers as a storage compartment that can be mobilized at future demand. The origins of such adaptive advantage rely on the acquisition of an enzymatic system for the biosynthesis and degradation of glycogen, along with mechanisms to balance the assembly and disassembly rate of this polysaccharide, in order to store and recover glucose according to cell energy needs. The first step in the classical bacterial glycogen biosynthetic pathway is carried out by the adenosine 5'-diphosphate (ADP)-glucose pyrophosphorylase. This allosteric enzyme synthesizes ADP-glucose and acts as a point of regulation. The second step is carried out by the glycogen synthase, an enzyme that generates linear α-(1→4)-linked glucose chains, whereas the third step catalyzed by the branching enzyme produces α-(1→6)-linked glucan branches in the polymer. Two enzymes facilitate glycogen degradation: glycogen phosphorylase, which functions as an α-(1→4)-depolymerizing enzyme, and the debranching enzyme that catalyzes the removal of α-(1→6)-linked ramifications. In this work, we rationalize the structural basis of glycogen metabolism in bacteria to the light of the current knowledge. We describe and discuss the remarkable progress made in the understanding of the molecular mechanisms of substrate recognition and product release, allosteric regulation and catalysis of all those enzymes.
Collapse
|
16
|
Li X, Bai Y, Ji H, Wang J, Cui Y, Jin Z. Functional characterization of tryptophan437 at subsite +2 in pullulanase from Bacillus subtilis str. 168. Int J Biol Macromol 2019; 133:920-928. [DOI: 10.1016/j.ijbiomac.2019.04.103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/30/2019] [Accepted: 04/13/2019] [Indexed: 01/05/2023]
|
17
|
Wilkens C, Svensson B, Møller MS. Functional Roles of Starch Binding Domains and Surface Binding Sites in Enzymes Involved in Starch Biosynthesis. FRONTIERS IN PLANT SCIENCE 2018; 9:1652. [PMID: 30483298 PMCID: PMC6243121 DOI: 10.3389/fpls.2018.01652] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/24/2018] [Indexed: 05/07/2023]
Abstract
Biosynthesis of starch is catalyzed by a cascade of enzymes. The activity of a large number of these enzymes depends on interaction with polymeric substrates via carbohydrate binding sites, which are situated outside of the catalytic site and its immediate surroundings including the substrate-binding crevice. Such secondary binding sites can belong to distinct starch binding domains (SBDs), classified as carbohydrate binding modules (CBMs), or be surface binding sites (SBSs) exposed on the surface of catalytic domains. Currently in the Carbohydrate-Active enZYmes (CAZy) database SBDs are found in 13 CBM families. Four of these families; CBM20, CBM45, CBM48, and CBM53 are represented in enzymes involved in starch biosynthesis, namely starch synthases, branching enzymes, isoamylases, glucan, water dikinases, and α-glucan phosphatases. A critical role of the SBD in activity has not been demonstrated for any of these enzymes. Among the well-characterized SBDs important for starch biosynthesis are three CBM53s of Arabidopsis thaliana starch synthase III, which have modest affinity. SBSs, which are overall less widespread than SBDs, have been reported in some branching enzymes, isoamylases, synthases, phosphatases, and phosphorylases active in starch biosynthesis. SBSs appear to exert roles similar to CBMs. SBSs, however, have also been shown to modulate specificity for example by discriminating the length of chains transferred by branching enzymes. Notably, the difference in rate of occurrence between SBDs and SBSs may be due to lack of awareness of SBSs. Thus, SBSs as opposed to CBMs are not recognized at the protein sequence level, which hampers their identification. Moreover, only a few SBSs in enzymes involved in starch biosynthesis have been functionally characterized, typically by structure-guided site-directed mutagenesis. The glucan phosphatase Like SEX4 2 from A. thaliana has two SBSs with weak affinity for β-cyclodextrin, amylose and amylopectin, which were indicated by mutational analysis to be more important than the active site for initial substrate recognition. The present review provides an update on occurrence of functional SBDs and SBSs in enzymes involved in starch biosynthesis.
Collapse
Affiliation(s)
- Casper Wilkens
- Enzyme Technology, Department of Bioengineering and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Bioengineering and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Marie Sofie Møller
- Enzyme and Protein Chemistry, Department of Bioengineering and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
18
|
Saka N, Iwamoto H, Malle D, Takahashi N, Mizutani K, Mikami B. Elucidation of the mechanism of interaction between Klebsiella pneumoniae pullulanase and cyclodextrin. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:1115-1123. [DOI: 10.1107/s2059798318014523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 10/15/2018] [Indexed: 11/10/2022]
Abstract
Crystal structures of Klebsiella pneumoniae pullulanase (KPP) in complex with α-cyclodextrin (α-CD), β-cyclodextrin (β-CD) and γ-cyclodextrin (γ-CD) were refined at around 1.98–2.59 Å resolution from data collected at SPring-8. In the structures of the complexes obtained with 1 mM α-CD or γ-CD, one molecule of CD was found at carbohydrate-binding module 41 only (CBM41). In the structures of the complexes obtained with 1 mM β-CD or with 10 mM α-CD or γ-CD, two molecules of CD were found at CBM41 and in the active-site cleft, where the hydrophobic residue of Phe746 occupies the inside cavity of the CD rings. In contrast to α-CD and γ-CD, one β-CD molecule was found at the active site only in the presence of 0.1 mM β-CD. These results were coincident with the solution experiments, which showed that β-CD inhibits this enzyme more than a thousand times more potently than α-CD and γ-CD. The strong inhibition of β-CD is caused by the optimized interaction between β-CD and the side chain of Phe746. The increased K
i values of the F746A mutant for β-CD supported the importance of Phe746 in the strong interaction of pullulanase with β-CD.
Collapse
|
19
|
Wang J, Liu Z, Zhou Z. Cloning and Characterization of a Novel Thermophilic Amylopullulanase with a Type I Pullulanase Structure FromAnoxybacillussp. WB42. STARCH-STARKE 2018. [DOI: 10.1002/star.201700265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jianfeng Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education; Jiangnan University; Wuxi 214122 China
- Faculty of Biology; East China University of Technology; Nanchang 330013 China
| | - Zhongmei Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education; Jiangnan University; Wuxi 214122 China
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education; Jiangnan University; Wuxi 214122 China
| |
Collapse
|
20
|
Hedin N, Barchiesi J, Gomez-Casati DF, Iglesias AA, Ballicora MA, Busi MV. Identification and characterization of a novel starch branching enzyme from the picoalgae Ostreococcus tauri. Arch Biochem Biophys 2017; 618:52-61. [DOI: 10.1016/j.abb.2017.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/16/2017] [Accepted: 02/18/2017] [Indexed: 01/26/2023]
|
21
|
Møller MS, Svensson B. Structural biology of starch-degrading enzymes and their regulation. Curr Opin Struct Biol 2016; 40:33-42. [DOI: 10.1016/j.sbi.2016.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/06/2016] [Accepted: 07/06/2016] [Indexed: 02/05/2023]
|
22
|
Sundekilde UK, Meier S. 1H–13C NMR-Based Profiling of Biotechnological Starch Utilization. Anal Chem 2016; 88:9685-9690. [DOI: 10.1021/acs.analchem.6b02555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ulrik K. Sundekilde
- Department
of Food Science, Aarhus University, Kirstinebjergvej 10, 5792 Årslev, Denmark
| | - Sebastian Meier
- Department
of Chemistry, Technical University of Denmark, Kemitorvet, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
23
|
Syson K, Stevenson CEM, Miah F, Barclay JE, Tang M, Gorelik A, Rashid AM, Lawson DM, Bornemann S. Ligand-bound Structures and Site-directed Mutagenesis Identify the Acceptor and Secondary Binding Sites of Streptomyces coelicolor Maltosyltransferase GlgE. J Biol Chem 2016; 291:21531-21540. [PMID: 27531751 PMCID: PMC5076824 DOI: 10.1074/jbc.m116.748160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/02/2016] [Indexed: 11/20/2022] Open
Abstract
GlgE is a maltosyltransferase involved in α-glucan biosynthesis in bacteria that has been genetically validated as a target for tuberculosis therapies. Crystals of the Mycobacterium tuberculosis enzyme diffract at low resolution so most structural studies have been with the very similar Streptomyces coelicolor GlgE isoform 1. Although the donor binding site for α-maltose 1-phosphate had been previously structurally defined, the acceptor site had not. Using mutagenesis, kinetics, and protein crystallography of the S. coelicolor enzyme, we have now identified the +1 to +6 subsites of the acceptor/product, which overlap with the known cyclodextrin binding site. The sugar residues in the acceptor subsites +1 to +5 are oriented such that they disfavor the binding of malto-oligosaccharides that bear branches at their 6-positions, consistent with the known acceptor chain specificity of GlgE. A secondary binding site remote from the catalytic center was identified that is distinct from one reported for the M. tuberculosis enzyme. This new site is capable of binding a branched α-glucan and is most likely involved in guiding acceptors toward the donor site because its disruption kinetically compromises the ability of GlgE to extend polymeric substrates. However, disruption of this site, which is conserved in the Streptomyces venezuelae GlgE enzyme, did not affect the growth of S. venezuelae or the structure of the polymeric product. The acceptor subsites +1 to +4 in the S. coelicolor enzyme are well conserved in the M. tuberculosis enzyme so their identification could help inform the design of inhibitors with therapeutic potential.
Collapse
Affiliation(s)
- Karl Syson
- From the Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Clare E M Stevenson
- From the Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Farzana Miah
- From the Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - J Elaine Barclay
- From the Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Minhong Tang
- From the Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Andrii Gorelik
- From the Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Abdul M Rashid
- From the Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - David M Lawson
- From the Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Stephen Bornemann
- From the Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
24
|
Møller MS, Henriksen A, Svensson B. Structure and function of α-glucan debranching enzymes. Cell Mol Life Sci 2016; 73:2619-41. [PMID: 27137180 PMCID: PMC11108273 DOI: 10.1007/s00018-016-2241-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 10/21/2022]
Abstract
α-Glucan debranching enzymes hydrolyse α-1,6-linkages in starch/glycogen, thereby, playing a central role in energy metabolism in all living organisms. They belong to glycoside hydrolase families GH13 and GH57 and several of these enzymes are industrially important. Nine GH13 subfamilies include α-glucan debranching enzymes; isoamylase and glycogen debranching enzymes (GH13_11); pullulanase type I/limit dextrinase (GH13_12-14); pullulan hydrolase (GH13_20); bifunctional glycogen debranching enzyme (GH13_25); oligo-1 and glucan-1,6-α-glucosidases (GH13_31); pullulanase type II (GH13_39); and α-amylase domains (GH13_41) in two-domain amylase-pullulanases. GH57 harbours type II pullulanases. Specificity differences, domain organisation, carbohydrate binding modules, sequence motifs, three-dimensional structures and specificity determinants are discussed. The phylogenetic analysis indicated that GH13_39 enzymes could represent a "missing link" between the strictly α-1,6-specific debranching enzymes and the enzymes with dual specificity and α-1,4-linkage preference.
Collapse
Affiliation(s)
- Marie Sofie Møller
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
- Center for Molecular Protein Science, Department of Chemistry, Lund University, 221 00, Lund, Sweden.
| | - Anette Henriksen
- Global Research Unit, Department of Large Protein Biophysics and Formulation, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
25
|
Chen Y, Bao J. Underlying Mechanisms of Zymographic Diversity in Starch Synthase I and Pullulanase in Rice-Developing Endosperm. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2030-7. [PMID: 26860852 DOI: 10.1021/acs.jafc.5b06030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Amylopectin is synthesized by the coordinated actions of many (iso)enzymes, including ADP-glucose pyrophosphorylase (AGPase), starch synthases (SSs), branching enzymes (BEs), and debranching enzymes (DBEs). Here, two polymorphic forms of starch synthase I (SSI) and pullulanase (PUL) in rice-developing seeds, designated as SSI-1/SSI-2 and PUL-1/PUL-2, were discovered for the first time by zymographic analysis. The SSI and PUL polymorphisms were strongly associated with the SSI microsatellite marker (p = 3.6 × 10(-37)) and PUL insertion/deletion (InDel) markers (p < 3.6 × 10(-51)). Western blotting and mass spectrometric analysis confirmed that the polymorphic bands were truly the SSI and PUL enzymes. Only one non-synonymous variation in SSI DNA sequence (the SNP A/G) causing the change of the amino acid K438 to E438 was observed, which coincided well with the polymorphic forms of SSI. Nine non-synonymous variations were found between PUL-1 and PUL-2. Two non-synonymous variations of PUL (F316L and D770E) were identified by mass spectrometric analysis, but all of the variations did not change the structure of PUL. The co-immunoprecipitation results revealed the differences in protein-protein interaction patterns, i.e., strong or weaker signals of SSI-BEI and SSI-BEIIb, between the two forms of SSI. The results will enhance our understanding of SSI and PUL properties and provide helpful information to understand their functions in starch biosynthesis in rice endosperm.
Collapse
Affiliation(s)
- Yaling Chen
- Institute of Nuclear Agricultural Science, College of Agriculture and Biotechnology, Zhejiang University , Huajiachi Campus, Hangzhou, Zhejiang 310029, People's Republic of China
| | - Jinsong Bao
- Institute of Nuclear Agricultural Science, College of Agriculture and Biotechnology, Zhejiang University , Huajiachi Campus, Hangzhou, Zhejiang 310029, People's Republic of China
| |
Collapse
|
26
|
Møller MS, Vester-Christensen MB, Jensen JM, Hachem MA, Henriksen A, Svensson B. Crystal structure of barley limit dextrinase-limit dextrinase inhibitor (LD-LDI) complex reveals insights into mechanism and diversity of cereal type inhibitors. J Biol Chem 2015; 290:12614-29. [PMID: 25792743 DOI: 10.1074/jbc.m115.642777] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Indexed: 12/11/2022] Open
Abstract
Molecular details underlying regulation of starch mobilization in cereal seed endosperm remain unknown despite the paramount role of this process in plant growth. The structure of the complex between the starch debranching enzyme barley limit dextrinase (LD), hydrolyzing α-1,6-glucosidic linkages, and its endogenous inhibitor (LDI) was solved at 2.7 Å. The structure reveals an entirely new and unexpected binding mode of LDI as compared with previously solved complex structures of related cereal type family inhibitors (CTIs) bound to glycoside hydrolases but is structurally analogous to binding of dual specificity CTIs to proteases. Site-directed mutagenesis establishes that a hydrophobic cluster flanked by ionic interactions in the protein-protein interface is vital for the picomolar affinity of LDI to LD as assessed by analysis of binding by using surface plasmon resonance and also supported by LDI inhibition of the enzyme activity. A phylogenetic analysis identified four LDI-like proteins in cereals among the 45 sequences from monocot databases that could be classified as unique CTI sequences. The unprecedented binding mechanism shown here for LDI has likely evolved in cereals from a need for effective inhibition of debranching enzymes having characteristic open active site architecture. The findings give a mechanistic rationale for the potency of LD activity regulation and provide a molecular understanding of the debranching events associated with optimal starch mobilization and utilization during germination. This study unveils a hitherto not recognized structural basis for the features endowing diversity to CTIs.
Collapse
Affiliation(s)
- Marie S Møller
- From Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark and the Protein Chemistry Group, Carlsberg Laboratory, DK-1799 København V, Denmark
| | - Malene B Vester-Christensen
- From Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark and the Protein Chemistry Group, Carlsberg Laboratory, DK-1799 København V, Denmark
| | - Johanne M Jensen
- From Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark and the Protein Chemistry Group, Carlsberg Laboratory, DK-1799 København V, Denmark
| | - Maher Abou Hachem
- From Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark and
| | - Anette Henriksen
- the Protein Chemistry Group, Carlsberg Laboratory, DK-1799 København V, Denmark
| | - Birte Svensson
- From Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark and
| |
Collapse
|
27
|
Wilkens C, Cockburn D, Andersen S, Ole Petersen B, Ruzanski C, A. Field R, Hindsgaul O, Nakai H, McCleary B, M. Smith A, Abou Hachem M, Svensson B. Analysis of Surface Binding Sites (SBS) within GH62, GH13, and GH77. J Appl Glycosci (1999) 2015. [DOI: 10.5458/jag.jag.jag-2015_006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Casper Wilkens
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark
| | - Darrell Cockburn
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark
| | - Susan Andersen
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark
| | - Bent Ole Petersen
- Carbohydrate Chemistry Group, Carlsberg Laboratory, Gamle Carlsberg Vej 10
| | | | | | - Ole Hindsgaul
- Carbohydrate Chemistry Group, Carlsberg Laboratory, Gamle Carlsberg Vej 10
| | - Hiroyuki Nakai
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark
| | | | | | - Maher Abou Hachem
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark
| |
Collapse
|