1
|
Mohan NH, Pathak P, Buragohain L, Deka J, Bharati J, Das AK, Thomas R, Singh R, Sarma DK, Gupta VK, Das BC. Comparative muscle transcriptome of Mali and Hampshire breeds of pigs: a preliminary study. Anim Biotechnol 2023; 34:3946-3961. [PMID: 37587839 DOI: 10.1080/10495398.2023.2244988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Muscle development is an important priority of pig breeding programs. There is a considerable variation in muscularity between the breeds, but the regulation mechanisms of genes underlying myogenesis are still unclear. Transcriptome data from two breeds of pigs with divergent muscularity (Mali and Hampshire) were integrated with histology, immunofluorescence and meat yield to identify differences in myogenesis during the early growth phase. The muscle transcriptomics analysis revealed 17,721 common, 1413 and 1115 unique transcripts to Hampshire and Mali, respectively. This study identified 908 differentially expressed genes (p < 0.05; log2FC > ±1) in the muscle samples, of which 550 were upregulated and 358 were downregulated in Hampshire pigs, indicating differences in physiological process related to muscle function and development. Expression of genes related to myoblast fusion (MYMK), skeletal muscle satellite cell proliferation (ANGPT1, CDON) and growth factors (HGF, IGF1, IGF2) were higher in Hampshire than Mali, even though transcript levels of several other myogenesis-related genes (MYF6, MYOG, MSTN) were similar. The number of fibers per fascicle and the expression of myogenic marker proteins (MYOD1, MYOG and PAX7) were more in Hampshire as compared to Mali breed of pig, supporting results of transcriptome studies. The results suggest that differences in muscularity between breeds could be related to the regulation of myoblast fusion and myogenic activities. The present study will help to identify genes that could be explored for their utility in the selection of animals with different muscularities.
Collapse
Affiliation(s)
| | | | | | - Juri Deka
- ICAR-National Research Centre on Pig, Guwahati, Assam, India
| | - Jaya Bharati
- ICAR-National Research Centre on Pig, Guwahati, Assam, India
| | - Anil Kumar Das
- ICAR-National Research Centre on Pig, Guwahati, Assam, India
| | | | - Rajendra Singh
- ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | | | | | | |
Collapse
|
2
|
Cai C, Yue Y, Yue B. Single-cell RNA sequencing in skeletal muscle developmental biology. Biomed Pharmacother 2023; 162:114631. [PMID: 37003036 DOI: 10.1016/j.biopha.2023.114631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/01/2023] Open
Abstract
Skeletal muscle is the most extensive tissue in mammals, and they perform several functions; it is derived from paraxial mesodermal somites and undergoes hyperplasia and hypertrophy to form multinucleated, contractile, and functional muscle fibers. Skeletal muscle is a complex heterogeneous tissue composed of various cell types that establish communication strategies to exchange biological information; therefore, characterizing the cellular heterogeneity and transcriptional signatures of skeletal muscle is central to understanding its ontogeny's details. Studies of skeletal myogenesis have focused primarily on myogenic cells' proliferation, differentiation, migration, and fusion and ignored the intricate network of cells with specific biological functions. The rapid development of single-cell sequencing technology has recently enabled the exploration of skeletal muscle cell types and molecular events during development. This review summarizes the progress in single-cell RNA sequencing and its applications in skeletal myogenesis, which will provide insights into skeletal muscle pathophysiology.
Collapse
Affiliation(s)
- Cuicui Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China; Guyuan Branch, Ningxia Academy of Agriculture and Forestry Sciences, Guyuan 7560000, China
| | - Yuan Yue
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Binglin Yue
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China.
| |
Collapse
|
3
|
Williams K, Yokomori K, Mortazavi A. Heterogeneous Skeletal Muscle Cell and Nucleus Populations Identified by Single-Cell and Single-Nucleus Resolution Transcriptome Assays. Front Genet 2022; 13:835099. [PMID: 35646075 PMCID: PMC9136090 DOI: 10.3389/fgene.2022.835099] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Single-cell RNA-seq (scRNA-seq) has revolutionized modern genomics, but the large size of myotubes and myofibers has restricted use of scRNA-seq in skeletal muscle. For the study of muscle, single-nucleus RNA-seq (snRNA-seq) has emerged not only as an alternative to scRNA-seq, but as a novel method providing valuable insights into multinucleated cells such as myofibers. Nuclei within myofibers specialize at junctions with other cell types such as motor neurons. Nuclear heterogeneity plays important roles in certain diseases such as muscular dystrophies. We survey current methods of high-throughput single cell and subcellular resolution transcriptomics, including single-cell and single-nucleus RNA-seq and spatial transcriptomics, applied to satellite cells, myoblasts, myotubes and myofibers. We summarize the major myonuclei subtypes identified in homeostatic and regenerating tissue including those specific to fiber type or at junctions with other cell types. Disease-specific nucleus populations were found in two muscular dystrophies, FSHD and Duchenne muscular dystrophy, demonstrating the importance of performing transcriptome studies at the single nucleus level in muscle.
Collapse
Affiliation(s)
- Katherine Williams
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, United States
| | - Kyoko Yokomori
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
4
|
Tributyrin, a Butyrate Pro-Drug, Primes Satellite Cells for Differentiation by Altering the Epigenetic Landscape. Cells 2021; 10:cells10123475. [PMID: 34943981 PMCID: PMC8700657 DOI: 10.3390/cells10123475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 01/07/2023] Open
Abstract
Satellite cells (SC) are a population of muscle resident stem cells that are responsible for postnatal muscle growth and repair. With investigation into the genomic regulation of SC fate, the role of the epigenome in governing SC myogenesis is becoming clearer. Histone deacetylase (HDAC) inhibitors have been demonstrated to be effective at enhancing the myogenic program of SC, but their role in altering the epigenetic landscape of SC remains undetermined. Our objective was to determine how an HDAC inhibitor, butyrate, promotes myogenic differentiation. SC from tributyrin treated neonatal piglets showed a decrease relative to SC from control animals in the expression of enhance of zeste homologue-2 (EZH2), a chromatin modifier, ex vivo. Chromatin Immunoprecipitation-Sequencing (ChIP-Seq) analysis of SC isolated from tributyrin treated pigs showed a global reduction of the tri-methylation of lysine 27 of histone H3 (H3K27me3) repressive chromatin mark. To determine if reductions in EZH2 was the primary mechanism through which butyrate affects SC behavior, SC were transfected with siRNA targeting EZH2, treated with 0.5 mM butyrate, or both. Treatment with butyrate reduced paired-box-7 (Pax7) and myogenic differentiation-1 (MyoD) gene expression, while siRNA caused reductions in EZH2 had no effect on their expression. EZH2 depletion did result in an increase in differentiating SC, but not in myotube hypertrophy. These results indicate that while EZH2 reduction may force myogenic differentiation, butyrate may operate through a parallel mechanism to enhance the myogenic program.
Collapse
|
5
|
Manandhar D, Song L, Kabadi A, Kwon JB, Edsall LE, Ehrlich M, Tsumagari K, Gersbach CA, Crawford GE, Gordân R. Incomplete MyoD-induced transdifferentiation is associated with chromatin remodeling deficiencies. Nucleic Acids Res 2017; 45:11684-11699. [PMID: 28977539 PMCID: PMC5714206 DOI: 10.1093/nar/gkx773] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 08/28/2017] [Indexed: 12/13/2022] Open
Abstract
Our current understanding of cellular transdifferentiation systems is limited. It is oftentimes unknown, at a genome-wide scale, how much transdifferentiated cells differ quantitatively from both the starting cells and the target cells. Focusing on transdifferentiation of primary human skin fibroblasts by forced expression of myogenic transcription factor MyoD, we performed quantitative analyses of gene expression and chromatin accessibility profiles of transdifferentiated cells compared to fibroblasts and myoblasts. In this system, we find that while many of the early muscle marker genes are reprogrammed, global gene expression and accessibility changes are still incomplete when compared to myoblasts. In addition, we find evidence of epigenetic memory in the transdifferentiated cells, with reminiscent features of fibroblasts being visible both in chromatin accessibility and gene expression. Quantitative analyses revealed a continuum of changes in chromatin accessibility induced by MyoD, and a strong correlation between chromatin-remodeling deficiencies and incomplete gene expression reprogramming. Classification analyses identified genetic and epigenetic features that distinguish reprogrammed from non-reprogrammed sites, and suggested ways to potentially improve transdifferentiation efficiency. Our approach for combining gene expression, DNA accessibility, and protein-DNA binding data to quantify and characterize the efficiency of cellular transdifferentiation on a genome-wide scale can be applied to any transdifferentiation system.
Collapse
Affiliation(s)
- Dinesh Manandhar
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27708, USA.,Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - Lingyun Song
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA.,Department of Pediatrics, Medical Genetics Division, Duke University, Durham, NC 27708, USA
| | - Ami Kabadi
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA.,Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Jennifer B Kwon
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA.,University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA
| | - Lee E Edsall
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA.,University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA
| | - Melanie Ehrlich
- Hayward Genetics Center, Tulane Health Sciences Center, New Orleans, LA 70112, USA.,Tulane Cancer Center, and Center for Bioinformatics and Genomics, Tulane Health Sciences Center, New Orleans, LA 70112, USA
| | - Koji Tsumagari
- Hayward Genetics Center, Tulane Health Sciences Center, New Orleans, LA 70112, USA
| | - Charles A Gersbach
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA.,Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Gregory E Crawford
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA.,Department of Pediatrics, Medical Genetics Division, Duke University, Durham, NC 27708, USA
| | - Raluca Gordân
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA.,Departments of Biostatistics and Bioinformatics, Computer Science, and Molecular Genetics and Microbiology, Duke University, Durham NC 27708, USA
| |
Collapse
|
6
|
Temporal regulation of chromatin during myoblast differentiation. Semin Cell Dev Biol 2017; 72:77-86. [PMID: 29079444 DOI: 10.1016/j.semcdb.2017.10.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/06/2017] [Accepted: 10/22/2017] [Indexed: 11/23/2022]
Abstract
The commitment to and execution of differentiation programmes involves a significant change in gene expression in the precursor cell to facilitate development of the mature cell type. In addition to being regulated by lineage-determining and auxiliary transcription factors that drive these changes, the structural status of the chromatin has a considerable impact on the transcriptional competence of differentiation-specific genes, which is clearly demonstrated by the large number of cofactors and the extraordinary complex mechanisms by which these genes become activated. The terminal differentiation of myoblasts to myotubes and mature skeletal muscle is an excellent system to illustrate these points. The MyoD family of closely related, lineage-determining transcription factors directs, largely through targeting to chromatin, a cascade of cooperating transcription factors and enzymes that incorporate or remove variant histones, post-translationally modify histones, and alter nucleosome structure and positioning via energy released by ATP hydrolysis. The coordinated action of these transcription factors and enzymes prevents expression of differentiation-specific genes in myoblasts and facilitates the transition of these genes from transcriptionally repressed to activated during the differentiation process. Regulation is achieved in both a temporal as well as spatial manner, as at least some of these factors and enzymes affect local chromatin structure at myogenic gene regulatory sequences as well as higher-order genome organization. Here we discuss the transition of genes that promote myoblast differentiation from the silenced to the activated state with an emphasis on the changes that occur to individual histones and the chromatin structure present at these loci.
Collapse
|
7
|
Nuclear bodies reorganize during myogenesis in vitro and are differentially disrupted by expression of FSHD-associated DUX4. Skelet Muscle 2016; 6:42. [PMID: 27906075 PMCID: PMC5134237 DOI: 10.1186/s13395-016-0113-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 11/17/2016] [Indexed: 11/18/2022] Open
Abstract
Background Nuclear bodies, such as nucleoli, PML bodies, and SC35 speckles, are dynamic sub-nuclear structures that regulate multiple genetic and epigenetic processes. Additional regulation is provided by RNA/DNA handling proteins, notably TDP-43 and FUS, which have been linked to ALS pathology. Previous work showed that mouse cell line myotubes have fewer but larger nucleoli than myoblasts, and we had found that nuclear aggregation of TDP-43 in human myotubes was induced by expression of DUX4-FL, a transcription factor that is aberrantly expressed and causes pathology in facioscapulohumeral dystrophy (FSHD). However, questions remained about nuclear bodies in human myogenesis and in muscle disease. Methods We examined nucleoli, PML bodies, SC35 speckles, TDP-43, and FUS in myoblasts and myotubes derived from healthy donors and from patients with FSHD, laminin-alpha-2-deficiency (MDC1A), and alpha-sarcoglycan-deficiency (LGMD2D). We further examined how these nuclear bodies and proteins were affected by DUX4-FL expression. Results We found that nucleoli, PML bodies, and SC35 speckles reorganized during differentiation in vitro, with all three becoming less abundant in myotube vs. myoblast nuclei. In addition, though PML bodies did not change in size, both nucleoli and SC35 speckles were larger in myotube than myoblast nuclei. Similar patterns of nuclear body reorganization occurred in healthy control, MDC1A, and LGMD2D cultures, as well as in the large fraction of nuclei that did not show DUX4-FL expression in FSHD cultures. In contrast, nuclei that expressed endogenous or exogenous DUX4-FL, though retaining normal nucleoli, showed disrupted morphology of some PML bodies and most SC35 speckles and also co-aggregation of FUS with TDP-43. Conclusions Nucleoli, PML bodies, and SC35 speckles reorganize during human myotube formation in vitro. These nuclear body reorganizations are likely needed to carry out the distinct gene transcription and splicing patterns that are induced upon myotube formation. DUX4-FL-induced disruption of some PML bodies and most SC35 speckles, along with co-aggregation of TDP-43 and FUS, could contribute to pathogenesis in FSHD, perhaps by locally interfering with genetic and epigenetic regulation of gene expression in the small subset of nuclei that express high levels of DUX4-FL at any one time.
Collapse
|
8
|
Ostankovitch M, Stagljar I. Omics Approaches Deciphering Molecular Function in Large Biological Systems. J Mol Biol 2015; 427:3351-5. [DOI: 10.1016/j.jmb.2015.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Chakroun I, Yang D, Girgis J, Gunasekharan A, Phenix H, Kærn M, Blais A. Genome-wide association between Six4, MyoD, and the histone demethylase Utx during myogenesis. FASEB J 2015; 29:4738-55. [PMID: 26229056 DOI: 10.1096/fj.15-277053] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/20/2015] [Indexed: 01/14/2023]
Abstract
Adult skeletal muscles can regenerate after injury, due to the presence of satellite cells, a quiescent population of myogenic progenitor cells. Once activated, satellite cells repair the muscle damage by undergoing myogenic differentiation. The myogenic regulatory factors (MRFs) coordinate the process of progenitor differentiation in cooperation with other families of transcription factors (TFs). The Six1 and Six4 homeodomain TFs are expressed in developing and adult muscle and Six1 is critical for embryonic and adult myogenesis. However, the lack of a muscle developmental phenotype in Six4-null mice, which has been attributed to compensation by other Six family members, has discouraged further assessment of the role of Six4 during adult muscle regeneration. By employing genome-wide approaches to address the function of Six4 during adult skeletal myogenesis, we have identified a core set of muscle genes coordinately regulated in adult muscle precursors by Six4 and the MRF MyoD. Throughout the genome of differentiating adult myoblasts, the cooperation between Six4 and MyoD is associated with chromatin repressive mark removal by Utx, a demethylase of histone H3 trimethylated at lysine 27. Among the genes coordinately regulated by Six4 and MyoD are several genes critical for proper in vivo muscle regeneration, implicating a role of Six4 in this process. Using in vivo RNA interference of Six4, we expose an uncompensated function of this TF during muscle regeneration. Together, our results reveal a role for Six4 during adult muscle regeneration and suggest a widespread mechanism of cooperation between Six4 and MyoD.
Collapse
Affiliation(s)
- Imane Chakroun
- *Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada; and Department of Biochemistry, Microbiology, and Immunology and Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Dabo Yang
- *Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada; and Department of Biochemistry, Microbiology, and Immunology and Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - John Girgis
- *Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada; and Department of Biochemistry, Microbiology, and Immunology and Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Atchayaa Gunasekharan
- *Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada; and Department of Biochemistry, Microbiology, and Immunology and Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Hilary Phenix
- *Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada; and Department of Biochemistry, Microbiology, and Immunology and Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mads Kærn
- *Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada; and Department of Biochemistry, Microbiology, and Immunology and Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Alexandre Blais
- *Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada; and Department of Biochemistry, Microbiology, and Immunology and Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|