1
|
Nikonov OS, Nikonova EY, Lekontseva NV, Nevskaya NA, Nikonov SV. Crystal-packing analysis of translation initiation factor 2 reveals new details of its function. Acta Crystallogr D Struct Biol 2024; 80:464-473. [PMID: 38860981 DOI: 10.1107/s2059798324004029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/02/2024] [Indexed: 06/12/2024] Open
Abstract
Eukaryotic and archaeal translation initiation factor 2 in complex with GTP delivers the initiator methionyl-tRNA to the small ribosomal subunit. Over the past 20 years, thanks to the efforts of various research groups, including ours, this factor from the archaeon Sulfolobus solfataricus and its individual subunits have been crystallized in ten different space groups. Analysis of the molecular packing in these crystals makes it possible to better understand the roles of functionally significant switches and other elements of the nucleotide-binding pocket during the function of the factor as well as the influence of external effects on its transition between active and inactive states.
Collapse
Affiliation(s)
- O S Nikonov
- Institute of Protein Research, Institutskaya 4, 142290 Pushchino, Moscow Region, Russian Federation
| | - E Y Nikonova
- Institute of Protein Research, Institutskaya 4, 142290 Pushchino, Moscow Region, Russian Federation
| | - N V Lekontseva
- Institute of Protein Research, Institutskaya 4, 142290 Pushchino, Moscow Region, Russian Federation
| | - N A Nevskaya
- Institute of Protein Research, Institutskaya 4, 142290 Pushchino, Moscow Region, Russian Federation
| | - S V Nikonov
- Institute of Protein Research, Institutskaya 4, 142290 Pushchino, Moscow Region, Russian Federation
| |
Collapse
|
2
|
Phung DK, Etienne C, Batista M, Langendijk-Genevaux P, Moalic Y, Laurent S, Liuu S, Morales V, Jebbar M, Fichant G, Bouvier M, Flament D, Clouet-d’Orval B. RNA processing machineries in Archaea: the 5'-3' exoribonuclease aRNase J of the β-CASP family is engaged specifically with the helicase ASH-Ski2 and the 3'-5' exoribonucleolytic RNA exosome machinery. Nucleic Acids Res 2020; 48:3832-3847. [PMID: 32030412 PMCID: PMC7144898 DOI: 10.1093/nar/gkaa052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/14/2020] [Accepted: 01/23/2020] [Indexed: 01/22/2023] Open
Abstract
A network of RNA helicases, endoribonucleases and exoribonucleases regulates the quantity and quality of cellular RNAs. To date, mechanistic studies focussed on bacterial and eukaryal systems due to the challenge of identifying the main drivers of RNA decay and processing in Archaea. Here, our data support that aRNase J, a 5'-3' exoribonuclease of the β-CASP family conserved in Euryarchaeota, engages specifically with a Ski2-like helicase and the RNA exosome to potentially exert control over RNA surveillance, at the vicinity of the ribosome. Proteomic landscapes and direct protein-protein interaction analyses, strengthened by comprehensive phylogenomic studies demonstrated that aRNase J interplay with ASH-Ski2 and a cap exosome subunit. Finally, Thermococcus barophilus whole-cell extract fractionation experiments provide evidences that an aRNase J/ASH-Ski2 complex might exist in vivo and hint at an association of aRNase J with the ribosome that is emphasised in absence of ASH-Ski2. Whilst aRNase J homologues are found among bacteria, the RNA exosome and the Ski2-like RNA helicase have eukaryotic homologues, underlining the mosaic aspect of archaeal RNA machines. Altogether, these results suggest a fundamental role of β-CASP RNase/helicase complex in archaeal RNA metabolism.
Collapse
Affiliation(s)
- Duy Khanh Phung
- Laboratoire de Microbiologie et de Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Paul Sabatier, F-31062 Toulouse, France
| | - Clarisse Etienne
- Laboratoire de Microbiologie et de Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Paul Sabatier, F-31062 Toulouse, France
| | - Manon Batista
- Laboratoire de Microbiologie et de Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Paul Sabatier, F-31062 Toulouse, France
| | - Petra Langendijk-Genevaux
- Laboratoire de Microbiologie et de Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Paul Sabatier, F-31062 Toulouse, France
| | - Yann Moalic
- Ifremer, Univ Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280 Plouzané, France
| | - Sébastien Laurent
- Ifremer, Univ Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280 Plouzané, France
| | - Sophie Liuu
- Micalis Institute, PAPPSO, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Violette Morales
- Laboratoire de Microbiologie et de Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Paul Sabatier, F-31062 Toulouse, France
| | - Mohamed Jebbar
- Ifremer, Univ Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280 Plouzané, France
| | - Gwennaele Fichant
- Laboratoire de Microbiologie et de Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Paul Sabatier, F-31062 Toulouse, France
| | - Marie Bouvier
- Laboratoire de Microbiologie et de Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Paul Sabatier, F-31062 Toulouse, France
| | - Didier Flament
- Ifremer, Univ Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280 Plouzané, France
| | - Béatrice Clouet-d’Orval
- Laboratoire de Microbiologie et de Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Paul Sabatier, F-31062 Toulouse, France
- To whom correspondence should be addressed. Tel: +33 561 335 875; Fax: +33 561 335 886;
| |
Collapse
|
3
|
Kaiser M, Wurm JP, Märtens B, Bläsi U, Pogoryelov D, Wöhnert J. Crystal structure of the translation recovery factor Trf from Sulfolobus solfataricus. FEBS Open Bio 2019; 10:221-228. [PMID: 31804766 PMCID: PMC6996347 DOI: 10.1002/2211-5463.12772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/25/2019] [Accepted: 12/03/2019] [Indexed: 11/08/2022] Open
Abstract
During translation initiation, the heterotrimeric archaeal translation initiation factor 2 (aIF2) recruits the initiator tRNAi to the small ribosomal subunit. In the stationary growth phase and/or during nutrient stress, Sulfolobus solfataricus aIF2 has a second function: It protects leaderless mRNAs against degradation by binding to their 5'-ends. The S. solfataricus protein Sso2509 is a translation recovery factor (Trf) that interacts with aIF2 and is responsible for the release of aIF2 from bound mRNAs, thereby enabling translation re-initiation. It is a member of the domain of unknown function 35 (DUF35) protein family and is conserved in Sulfolobales as well as in other archaea. Here, we present the X-ray structure of S. solfataricus Trf solved to a resolution of 1.65 Å. Trf is composed of an N-terminal rubredoxin-like domain containing a bound zinc ion and a C-terminal oligosaccharide/oligonucleotide binding fold domain. The Trf structure reveals putative mRNA binding sites in both domains. Surprisingly, the Trf protein is structurally but not sequentially very similar to proteins linked to acyl-CoA utilization-for example, the Sso2064 protein from S. solfataricus-as well as to scaffold proteins found in the acetoacetyl-CoA thiolase/high-mobility group-CoA synthase complex of the archaeon Methanothermococcus thermolithotrophicus and in a steroid side-chain-cleaving aldolase complex from the bacterium Thermomonospora curvata. This suggests that members of the DUF35 protein family are able to act as scaffolding and binding proteins in a wide variety of biological processes.
Collapse
Affiliation(s)
- Marco Kaiser
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Germany
| | - Jan Philip Wurm
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Germany
| | - Birgit Märtens
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Austria
| | - Udo Bläsi
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Austria
| | | | - Jens Wöhnert
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Germany
| |
Collapse
|
4
|
Bassani F, Zink IA, Pribasnig T, Wolfinger MT, Romagnoli A, Resch A, Schleper C, Bläsi U, La Teana A. Indications for a moonlighting function of translation factor aIF5A in the crenarchaeum Sulfolobus solfataricus. RNA Biol 2019; 16:675-685. [PMID: 30777488 PMCID: PMC6546411 DOI: 10.1080/15476286.2019.1582953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/14/2019] [Accepted: 02/08/2019] [Indexed: 01/02/2023] Open
Abstract
Translation factor a/eIF5A is highly conserved in Eukarya and Archaea. The eukaryal eIF5A protein is required for transit of ribosomes across consecutive proline codons, whereas the function of the archaeal orthologue remains unknown. Here, we provide a first hint for an involvement of Sulfolobus solfataricus (Sso) aIF5A in translation. CRISPR-mediated knock down of the aif5A gene resulted in strong growth retardation, underlining a pivotal function. Moreover, in vitro studies revealed that Sso aIF5A is endowed with endoribonucleolytic activity. Thus, aIF5A appears to be a moonlighting protein that might be involved in protein synthesis as well as in RNA metabolism.
Collapse
Affiliation(s)
- Flavia Bassani
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Isabelle Anna Zink
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Thomas Pribasnig
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | | | - Alice Romagnoli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Armin Resch
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Christa Schleper
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Udo Bläsi
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Anna La Teana
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
5
|
Boël G, Danot O, de Lorenzo V, Danchin A. Omnipresent Maxwell's demons orchestrate information management in living cells. Microb Biotechnol 2019; 12:210-242. [PMID: 30806035 PMCID: PMC6389857 DOI: 10.1111/1751-7915.13378] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The development of synthetic biology calls for accurate understanding of the critical functions that allow construction and operation of a living cell. Besides coding for ubiquitous structures, minimal genomes encode a wealth of functions that dissipate energy in an unanticipated way. Analysis of these functions shows that they are meant to manage information under conditions when discrimination of substrates in a noisy background is preferred over a simple recognition process. We show here that many of these functions, including transporters and the ribosome construction machinery, behave as would behave a material implementation of the information-managing agent theorized by Maxwell almost 150 years ago and commonly known as Maxwell's demon (MxD). A core gene set encoding these functions belongs to the minimal genome required to allow the construction of an autonomous cell. These MxDs allow the cell to perform computations in an energy-efficient way that is vastly better than our contemporary computers.
Collapse
Affiliation(s)
- Grégory Boël
- UMR 8261 CNRS‐University Paris DiderotInstitut de Biologie Physico‐Chimique13 rue Pierre et Marie Curie75005ParisFrance
| | - Olivier Danot
- Institut Pasteur25‐28 rue du Docteur Roux75724Paris Cedex 15France
| | - Victor de Lorenzo
- Molecular Environmental Microbiology LaboratorySystems Biology ProgrammeCentro Nacional de BiotecnologiaC/Darwin n° 3, Campus de Cantoblanco28049MadridEspaña
| | - Antoine Danchin
- Institute of Cardiometabolism and NutritionHôpital de la Pitié‐Salpêtrière47 Boulevard de l'Hôpital75013ParisFrance
- The School of Biomedical SciencesLi Kashing Faculty of MedicineHong Kong University21, Sassoon RoadPokfulamSAR Hong Kong
| |
Collapse
|
6
|
Kramer S, McLennan AG. The complex enzymology of mRNA decapping: Enzymes of four classes cleave pyrophosphate bonds. WILEY INTERDISCIPLINARY REVIEWS. RNA 2019; 10:e1511. [PMID: 30345629 DOI: 10.1002/wrna.1511] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 12/16/2022]
Abstract
The 5' ends of most RNAs are chemically modified to enable protection from nucleases. In bacteria, this is often achieved by keeping the triphosphate terminus originating from transcriptional initiation, while most eukaryotic mRNAs and small nuclear RNAs have a 5'→5' linked N7 -methyl guanosine (m7 G) cap added. Several other chemical modifications have been described at RNA 5' ends. Common to all modifications is the presence of at least one pyrophosphate bond. To enable RNA turnover, these chemical modifications at the RNA 5' end need to be reversible. Dependent on the direction of the RNA decay pathway (5'→3' or 3'→5'), some enzymes cleave the 5'→5' cap linkage of intact RNAs to initiate decay, while others act as scavengers and hydrolyse the cap element of the remnants of the 3'→5' decay pathway. In eukaryotes, there is also a cap quality control pathway. Most enzymes involved in the cleavage of the RNA 5' ends are pyrophosphohydrolases, with only a few having (additional) 5' triphosphonucleotide hydrolase activities. Despite the identity of their enzyme activities, the enzymes belong to four different enzyme classes. Nudix hydrolases decap intact RNAs as part of the 5'→3' decay pathway, DXO family members mainly degrade faulty RNAs, members of the histidine triad (HIT) family are scavenger proteins, while an ApaH-like phosphatase is the major mRNA decay enzyme of trypanosomes, whose RNAs have a unique cap structure. Many novel cap structures and decapping enzymes have only recently been discovered, indicating that we are only beginning to understand the mechanisms of RNA decapping. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Turnover and Surveillance > Regulation of RNA Stability RNA Processing > Capping and 5' End Modifications.
Collapse
Affiliation(s)
- Susanne Kramer
- Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Alexander G McLennan
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
7
|
Clouet-d'Orval B, Batista M, Bouvier M, Quentin Y, Fichant G, Marchfelder A, Maier LK. Insights into RNA-processing pathways and associated RNA-degrading enzymes in Archaea. FEMS Microbiol Rev 2018; 42:579-613. [PMID: 29684129 DOI: 10.1093/femsre/fuy016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/17/2018] [Indexed: 12/20/2022] Open
Abstract
RNA-processing pathways are at the centre of regulation of gene expression. All RNA transcripts undergo multiple maturation steps in addition to covalent chemical modifications to become functional in the cell. This includes destroying unnecessary or defective cellular RNAs. In Archaea, information on mechanisms by which RNA species reach their mature forms and associated RNA-modifying enzymes are still fragmentary. To date, most archaeal actors and pathways have been proposed in light of information gathered from Bacteria and Eukarya. In this context, this review provides a state of the art overview of archaeal endoribonucleases and exoribonucleases that cleave and trim RNA species and also of the key small archaeal proteins that bind RNAs. Furthermore, synthetic up-to-date views of processing and biogenesis pathways of archaeal transfer and ribosomal RNAs as well as of maturation of stable small non-coding RNAs such as CRISPR RNAs, small C/D and H/ACA box guide RNAs, and other emerging classes of small RNAs are described. Finally, prospective post-transcriptional mechanisms to control archaeal messenger RNA quality and quantity are discussed.
Collapse
Affiliation(s)
- Béatrice Clouet-d'Orval
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Manon Batista
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Marie Bouvier
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Yves Quentin
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Gwennaele Fichant
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | | | | |
Collapse
|
8
|
Abstract
ABSTRACT
Previously, leaderless mRNAs (lmRNAs) were perceived to make up only a minor fraction of the transcriptome in bacteria. However, advancements in RNA sequencing technology are uncovering vast numbers of lmRNAs, particularly in archaea,
Actinobacteria
, and extremophiles and thus underline their significance in cellular physiology and regulation. Due to the absence of conventional ribosome binding signals, lmRNA translation initiation is distinct from canonical mRNAs and can therefore be differentially regulated. The ribosome’s inherent ability to bind a 5′-terminal AUG can stabilize and protect the lmRNA from degradation or allow ribosomal loading for downstream initiation events. As a result, lmRNAs remain translationally competent during a variety of physiological conditions, allowing them to contribute to multiple regulatory mechanisms. Furthermore, the abundance of lmRNAs can increase during adverse conditions through the upregulation of lmRNA transcription from alternative promoters or by the generation of lmRNAs from canonical mRNAs cleaved by an endonucleolytic toxin. In these ways, lmRNA translation can continue during stress and contribute to regulation, illustrating their importance in the cell. Due to their presence in all domains of life and their ability to be translated by heterologous hosts, lmRNAs appear further to represent ancestral transcripts that might allow us to study the evolution of the ribosome and the translational process.
Collapse
|
9
|
|
10
|
Nemchinova M, Balobanov V, Nikonova E, Lekontseva N, Mikhaylina A, Tishchenko S, Nikulin A. An Experimental Tool to Estimate the Probability of a Nucleotide Presence in the Crystal Structures of the Nucleotide-Protein Complexes. Protein J 2017; 36:157-165. [PMID: 28317076 DOI: 10.1007/s10930-017-9709-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A correlation between the ligand-protein affinity and the identification of the ligand in the experimental electron density maps obtained by X-ray crystallography has been tested for a number of RNA-binding proteins. Bacterial translation regulators ProQ, TRAP, Rop, and Hfq together with their archaeal homologues SmAP have been used. The equilibrium dissociation constants for the N-methyl-anthraniloyl-labelled adenosine and guanosine monophosphates titrated by the proteins have been determined by the fluorescent anisotropy measurements. The estimated stability of the nucleotide-protein complexes has been matched with a presence of the nucleotides in the structures of the proposed nucleotide-protein complexes. It has been shown that the ribonucleotides can be definitely identified in the experimental electron density maps at equilibrium dissociation constant <10 μM. At KD of 20-40 μM, long incubation of the protein crystals in the nucleotide solution is required to obtain the structures of the complexes. The complexes with KD value higher than 50 μM are not stable enough to survive in crystallization conditions.
Collapse
Affiliation(s)
- Maria Nemchinova
- Institute of Protein Research RAS, Pushchino, Russian Federation
| | - Vitaly Balobanov
- Institute of Protein Research RAS, Pushchino, Russian Federation
| | | | | | - Alisa Mikhaylina
- Institute of Protein Research RAS, Pushchino, Russian Federation
| | | | - Alexey Nikulin
- Institute of Protein Research RAS, Pushchino, Russian Federation.
| |
Collapse
|
11
|
Cho S, Kim MS, Jeong Y, Lee BR, Lee JH, Kang SG, Cho BK. Genome-wide primary transcriptome analysis of H 2-producing archaeon Thermococcus onnurineus NA1. Sci Rep 2017; 7:43044. [PMID: 28216628 PMCID: PMC5316973 DOI: 10.1038/srep43044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/18/2017] [Indexed: 01/09/2023] Open
Abstract
In spite of their pivotal roles in transcriptional and post-transcriptional processes, the regulatory elements of archaeal genomes are not yet fully understood. Here, we determine the primary transcriptome of the H2-producing archaeon Thermococcus onnurineus NA1. We identified 1,082 purine-rich transcription initiation sites along with well-conserved TATA box, A-rich B recognition element (BRE), and promoter proximal element (PPE) motif in promoter regions, a high pyrimidine nucleotide content (T/C) at the -1 position, and Shine-Dalgarno (SD) motifs (GGDGRD) in 5' untranslated regions (5' UTRs). Along with differential transcript levels, 117 leaderless genes and 86 non-coding RNAs (ncRNAs) were identified, representing diverse cellular functions and potential regulatory functions under the different growth conditions. Interestingly, we observed low GC content in ncRNAs for RNA-based regulation via unstructured forms or interaction with other cellular components. Further comparative analysis of T. onnurineus upstream regulatory sequences with those of closely related archaeal genomes demonstrated that transcription of orthologous genes are initiated by highly conserved promoter sequences, however their upstream sequences for transcriptional and translational regulation are largely diverse. These results provide the genetic information of T. onnurineus for its future application in metabolic engineering.
Collapse
Affiliation(s)
- Suhyung Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Min-Sik Kim
- Korea Institute of Ocean Science and Technology, Ansan 426-744, Republic of Korea
| | - Yujin Jeong
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Bo-Rahm Lee
- Intelligent Synthetic Biology Center, Daejeon 305-701, Republic of Korea
| | - Jung-Hyun Lee
- Korea Institute of Ocean Science and Technology, Ansan 426-744, Republic of Korea
| | - Sung Gyun Kang
- Korea Institute of Ocean Science and Technology, Ansan 426-744, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
- Intelligent Synthetic Biology Center, Daejeon 305-701, Republic of Korea
| |
Collapse
|