1
|
Mills KR, Torabifard H. Uncovering the Mechanism of the Proton-Coupled Fluoride Transport in the CLC F Antiporter. J Chem Inf Model 2023; 63:2445-2455. [PMID: 37053383 DOI: 10.1021/acs.jcim.2c01228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Fluoride is a natural antibiotic abundantly present in the environment and, in micromolar concentrations, is able to inhibit enzymes necessary for bacteria to survive. However, as is the case with many antibiotics, bacteria have evolved resistance methods, including through the use of recently discovered membrane proteins. One such protein is the CLCF F-/H+ antiporter protein, a member of the CLC superfamily of anion-transport proteins. Though previous studies have examined this F- transporter, many questions are still left unanswered. To reveal details of the transport mechanism used by CLCF, we have employed molecular dynamics simulations and umbrella sampling calculations. Our results have led to several discoveries, including the mechanism of proton import and how it is able to aid in the fluoride export. Additionally, we have determined the role of the previously identified residues Glu118, Glu318, Met79, and Tyr396. This work is among the first studies of the CLCF F-/H+ antiporter and is the first computational investigation to model the full transport process, proposing a mechanism which couples the F- export with the H+ import.
Collapse
Affiliation(s)
- Kira R Mills
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Hedieh Torabifard
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
2
|
Yadav PR, Basha SH. Impact of F80M and F83M mutations on the functionality of fluoride ion channel elucidated in microsecond level molecular dynamic simulation. J Biomol Struct Dyn 2022; 40:10899-10904. [PMID: 34463212 DOI: 10.1080/07391102.2021.1951356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Fluoride ion channels of the Fluc family plays a critically important role in combating environmental fluoride toxicity. As per the crystal structure of these fluoride ion channels, the pore region is densely packed with a series of hydrogen bond donating residues arranged in a ladder fashion creating an ion conducting pathway. In earlier studies, it was revealed that although the ion conducting pathway polarity is highly conserved, however the functionality of the channel protein depends on several residues at particular positions. While, a threonine at end of the pore is critically important in forming initial interactions, two phenylalanines at the central region coordinate F- transportation through the channel. It was also revealed that these two phenylalanines cannot be substituted by any other aromatic, polar or non-polar residues without hindering the functionality with exception of methionine. In another study, it was revealed that these two phenylalanines F80 and F83 when mutated with methionine; F80M lead to active state, while the F83M has lead to inactivity of F- anion conductivity. However, the exact atomic level detailing on how exactly these mutations have impacted the conductivity remained elusive. In this scenario, in this present study, we have modeled these two mutations and performed a microsecond level simulation on each mutation compared with wild type towards understanding the atomic level detailing revealing several insights on what exactly happening at these residues responsible for the selective conductivity of F- ions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pulala Raghuveer Yadav
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | | |
Collapse
|
3
|
Ernst M, Robertson JL. The Role of the Membrane in Transporter Folding and Activity. J Mol Biol 2021; 433:167103. [PMID: 34139219 PMCID: PMC8756397 DOI: 10.1016/j.jmb.2021.167103] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/23/2022]
Abstract
The synthesis, folding, and function of membrane transport proteins are critical factors for defining cellular physiology. Since the stability of these proteins evolved amidst the lipid bilayer, it is no surprise that we are finding that many of these membrane proteins demonstrate coupling of their structure or activity in some way to the membrane. More and more transporter structures are being determined with some information about the surrounding membrane, and computational modeling is providing further molecular details about these solvation structures. Thus, the field is moving towards identifying which molecular mechanisms - lipid interactions, membrane perturbations, differential solvation, and bulk membrane effects - are involved in linking membrane energetics to transporter stability and function. In this review, we present an overview of these mechanisms and the growing evidence that the lipid bilayer is a major determinant of the fold, form, and function of membrane transport proteins in membranes.
Collapse
Affiliation(s)
- Melanie Ernst
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Janice L Robertson
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
4
|
Mersch K, Ozturk TN, Park K, Lim HH, Robertson JL. Altering CLC stoichiometry by reducing non-polar side-chains at the dimerization interface. J Mol Biol 2021; 433:166886. [PMID: 33617898 DOI: 10.1016/j.jmb.2021.166886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/03/2021] [Accepted: 02/16/2021] [Indexed: 10/22/2022]
Abstract
CLC-ec1 is a Cl-/H+ antiporter that forms stable homodimers in lipid bilayers, with a free energy of -10.9 kcal/mol in 2:1 POPE/POPG lipid bilayers. The dimerization interface is formed by four transmembrane helices: H, I, P and Q, that are lined by non-polar side-chains that come in close contact, yet it is unclear as to whether their interactions drive dimerization. To investigate whether non-polar side-chains are required for dimer assembly, we designed a series of constructs where side-chain packing in the dimer state is significantly reduced by making 4-5 alanine substitutions along each helix (H-ala, I-ala, P-ala, Q-ala). All constructs are functional and three purify as stable dimers in detergent micelles despite the removal of significant side-chain interactions. On the other hand, H-ala shows the unique behavior of purifying as a mixture of monomers and dimers, followed by a rapid and complete conversion to monomers. In lipid bilayers, all four constructs are monomeric as examined by single-molecule photobleaching analysis. Further study of the H-helix shows that the single mutation L194A is sufficient to yield monomeric CLC-ec1 in detergent micelles and lipid bilayers. X-ray crystal structures of L194A reveal the protein re-assembles to form dimers, with a structure that is identical to wild-type. Altogether, these results demonstrate that non-polar membrane embedded side-chains play an important role in defining dimer stability, but the stoichiometry is highly contextual to the solvent environment. Furthermore, we discovered that L194 is a molecular hot-spot for defining dimerization of CLC-ec1.
Collapse
Affiliation(s)
- Kacey Mersch
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA; Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA
| | - Tugba N Ozturk
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Kunwoong Park
- Department of Structure and Function of Neural Network, Korea Brain Research Institute, 41068 Daegu, Republic of Korea
| | - Hyun-Ho Lim
- Department of Structure and Function of Neural Network, Korea Brain Research Institute, 41068 Daegu, Republic of Korea; Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, 42988 Daegu, Republic of Korea
| | - Janice L Robertson
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
5
|
Abstract
Microorganisms contend with numerous and unusual chemical threats and have evolved a catalog of resistance mechanisms in response. One particularly ancient, pernicious threat is posed by fluoride ion (F-), a common xenobiotic in natural environments that causes broad-spectrum harm to metabolic pathways. This review focuses on advances in the last ten years toward understanding the microbial response to cytoplasmic accumulation of F-, with a special emphasis on the structure and mechanisms of the proteins that microbes use to export fluoride: the CLCF family of F-/H+ antiporters and the Fluc/FEX family of F- channels.
Collapse
Affiliation(s)
- Benjamin C McIlwain
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Michal T Ruprecht
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Randy B Stockbridge
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA; .,Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
6
|
RNA-Seq comparative analysis reveals the response of Enterococcus faecalis TV4 under fluoride exposure. Gene 2020; 726:144197. [DOI: 10.1016/j.gene.2019.144197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 10/08/2019] [Accepted: 10/20/2019] [Indexed: 12/14/2022]
|
7
|
Xing A, Ma Y, Wu Z, Nong S, Zhu J, Sun H, Tao J, Wen B, Zhu X, Fang W, Li X, Wang Y. Genome-wide identification and expression analysis of the CLC superfamily genes in tea plants (Camellia sinensis). Funct Integr Genomics 2020; 20:497-508. [PMID: 31897824 DOI: 10.1007/s10142-019-00725-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/17/2019] [Accepted: 11/05/2019] [Indexed: 11/30/2022]
Abstract
The voltage-gated chloride channel (CLC) superfamily is one of the most important anion channels that is widely distributed in bacteria and plants. CLC is involved in transporting various anions such as chloride (Cl-) and fluoride (F-) in and out of cells. Although Camellia sinensis is a hyper-accumulated F plant, there is no studies on the CLC gene superfamily in the tea plant. Here, 8 CLC genes were identified from C. sinensis and they were named CsCLC1-8. The structure of CsCLC genes and the proteins were not conserved; the number of exons varied from 3 to 24, and the number of transmembrane domains contained 2 to 10. Furthermore, phylogenetic analysis revealed that CsCLC4-8 in subclass I contained the typical conserved domains GxGIPE (I), GKxGPxxH (II) and PxxGxLF (III), and CsCLC1-3 in subclass II did not contain any of the three conserved residues. We measured the expression levels of CsCLCs in roots, stems and leaves to assess the responses to different concentrations of Cl- and F-. The result indicated that CsCLCs participated in subfunctionalization in response to Cl- and F-, and CsCLC1-3 was more sensitive to F- treatments than CsCLC4-8, CsCLC6 and CsCLC7 may participate in absorption and long-distance transport of Cl-.
Collapse
Affiliation(s)
- Anqi Xing
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanchun Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zichen Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shouhua Nong
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiaojiao Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hua Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Tao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bo Wen
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, China
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaocheng Li
- Jiaozhou Vocational Education Center School, Qingdao, 266300, China
| | - Yuhua Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
8
|
Abstract
Energy-coupling factor (ECF)-type ATP-binding cassette (ABC) transporters catalyze membrane transport of micronutrients in prokaryotes. Crystal structures and biochemical characterization have revealed that ECF transporters are mechanistically distinct from other ABC transport systems. Notably, ECF transporters make use of small integral membrane subunits (S-components) that are predicted to topple over in the membrane when carrying the bound substrate from the extracellular side of the bilayer to the cytosol. Here, we review the phylogenetic diversity of ECF transporters as well as recent structural and biochemical advancements that have led to the postulation of conceptually different mechanistic models. These models can be described as power stroke and thermal ratchet. Structural data indicate that the lipid composition and bilayer structure are likely to have great impact on the transport function. We argue that study of ECF transporters could lead to generic insight into membrane protein structure, dynamics, and interaction.
Collapse
Affiliation(s)
- S Rempel
- Gr oningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands; , ,
| | - W K Stanek
- Gr oningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands; , ,
| | - D J Slotboom
- Gr oningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands; , , .,Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
9
|
Jentsch TJ, Pusch M. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease. Physiol Rev 2018; 98:1493-1590. [DOI: 10.1152/physrev.00047.2017] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CLC anion transporters are found in all phyla and form a gene family of eight members in mammals. Two CLC proteins, each of which completely contains an ion translocation parthway, assemble to homo- or heteromeric dimers that sometimes require accessory β-subunits for function. CLC proteins come in two flavors: anion channels and anion/proton exchangers. Structures of these two CLC protein classes are surprisingly similar. Extensive structure-function analysis identified residues involved in ion permeation, anion-proton coupling and gating and led to attractive biophysical models. In mammals, ClC-1, -2, -Ka/-Kb are plasma membrane Cl−channels, whereas ClC-3 through ClC-7 are 2Cl−/H+-exchangers in endolysosomal membranes. Biological roles of CLCs were mostly studied in mammals, but also in plants and model organisms like yeast and Caenorhabditis elegans. CLC Cl−channels have roles in the control of electrical excitability, extra- and intracellular ion homeostasis, and transepithelial transport, whereas anion/proton exchangers influence vesicular ion composition and impinge on endocytosis and lysosomal function. The surprisingly diverse roles of CLCs are highlighted by human and mouse disorders elicited by mutations in their genes. These pathologies include neurodegeneration, leukodystrophy, mental retardation, deafness, blindness, myotonia, hyperaldosteronism, renal salt loss, proteinuria, kidney stones, male infertility, and osteopetrosis. In this review, emphasis is laid on biophysical structure-function analysis and on the cell biological and organismal roles of mammalian CLCs and their role in disease.
Collapse
Affiliation(s)
- Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Michael Pusch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| |
Collapse
|
10
|
Lacruz RS, Habelitz S, Wright JT, Paine ML. DENTAL ENAMEL FORMATION AND IMPLICATIONS FOR ORAL HEALTH AND DISEASE. Physiol Rev 2017; 97:939-993. [PMID: 28468833 DOI: 10.1152/physrev.00030.2016] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 12/16/2022] Open
Abstract
Dental enamel is the hardest and most mineralized tissue in extinct and extant vertebrate species and provides maximum durability that allows teeth to function as weapons and/or tools as well as for food processing. Enamel development and mineralization is an intricate process tightly regulated by cells of the enamel organ called ameloblasts. These heavily polarized cells form a monolayer around the developing enamel tissue and move as a single forming front in specified directions as they lay down a proteinaceous matrix that serves as a template for crystal growth. Ameloblasts maintain intercellular connections creating a semi-permeable barrier that at one end (basal/proximal) receives nutrients and ions from blood vessels, and at the opposite end (secretory/apical/distal) forms extracellular crystals within specified pH conditions. In this unique environment, ameloblasts orchestrate crystal growth via multiple cellular activities including modulating the transport of minerals and ions, pH regulation, proteolysis, and endocytosis. In many vertebrates, the bulk of the enamel tissue volume is first formed and subsequently mineralized by these same cells as they retransform their morphology and function. Cell death by apoptosis and regression are the fates of many ameloblasts following enamel maturation, and what cells remain of the enamel organ are shed during tooth eruption, or are incorporated into the tooth's epithelial attachment to the oral gingiva. In this review, we examine key aspects of dental enamel formation, from its developmental genesis to the ever-increasing wealth of data on the mechanisms mediating ionic transport, as well as the clinical outcomes resulting from abnormal ameloblast function.
Collapse
Affiliation(s)
- Rodrigo S Lacruz
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - Stefan Habelitz
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - J Timothy Wright
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - Michael L Paine
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| |
Collapse
|
11
|
Chadda R, Krishnamani V, Mersch K, Wong J, Brimberry M, Chadda A, Kolmakova-Partensky L, Friedman LJ, Gelles J, Robertson JL. The dimerization equilibrium of a ClC Cl(-)/H(+) antiporter in lipid bilayers. eLife 2016; 5. [PMID: 27484630 PMCID: PMC5010387 DOI: 10.7554/elife.17438] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 07/29/2016] [Indexed: 12/20/2022] Open
Abstract
Interactions between membrane protein interfaces in lipid bilayers play an important role in membrane protein folding but quantification of the strength of these interactions has been challenging. Studying dimerization of ClC-type transporters offers a new approach to the problem, as individual subunits adopt a stable and functionally verifiable fold that constrains the system to two states - monomer or dimer. Here, we use single-molecule photobleaching analysis to measure the probability of ClC-ec1 subunit capture into liposomes during extrusion of large, multilamellar membranes. The capture statistics describe a monomer to dimer transition that is dependent on the subunit/lipid mole fraction density and follows an equilibrium dimerization isotherm. This allows for the measurement of the free energy of ClC-ec1 dimerization in lipid bilayers, revealing that it is one of the strongest membrane protein complexes measured so far, and introduces it as new type of dimerization model to investigate the physical forces that drive membrane protein association in membranes.
Collapse
Affiliation(s)
- Rahul Chadda
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | | | - Kacey Mersch
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | - Jason Wong
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States.,Department of Natural Sciences, University of Bath, Bath, United Kingdom
| | - Marley Brimberry
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | - Ankita Chadda
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | | | - Larry J Friedman
- Department of Biochemistry, Brandeis University, Waltham, United States
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, United States
| | - Janice L Robertson
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| |
Collapse
|