1
|
Jung E, Kraimps A, Dittmann S, Griesser T, Costafrolaz J, Mattenberger Y, Jurt S, Viollier PH, Sander P, Sievers S, Gademann K. Phenolic Substitution in Fidaxomicin: A Semisynthetic Approach to Antibiotic Activity Across Species. Chembiochem 2023; 24:e202300570. [PMID: 37728121 DOI: 10.1002/cbic.202300570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/21/2023]
Abstract
Fidaxomicin (Fdx) is a natural product antibiotic with potent activity against Clostridioides difficile and other Gram-positive bacteria such as Mycobacterium tuberculosis. Only a few Fdx derivatives have been synthesized and examined for their biological activity in the 50 years since its discovery. Fdx has a well-studied mechanism of action, namely inhibition of the bacterial RNA polymerase. Yet, the targeted organisms harbor different target protein sequences, which poses a challenge for the rational development of new semisynthetic Fdx derivatives. We introduced substituents on the two phenolic hydroxy groups of Fdx and evaluated the resulting trends in antibiotic activity against M. tuberculosis, C. difficile, and the Gram-negative model organism Caulobacter crescentus. As suggested by the target protein structures, we identified the preferable derivatisation site for each organism. The derivative ortho-methyl Fdx also exhibited activity against the Gram-negative C. crescentus wild type, a first for fidaxomicin antibiotics. These insights will guide the synthesis of next-generation fidaxomicin antibiotics.
Collapse
Affiliation(s)
- Erik Jung
- Department of Chemistry, University of Zurich, 8057, Zürich, Switzerland
| | - Anastassia Kraimps
- Department of Chemistry, University of Zurich, 8057, Zürich, Switzerland
| | - Silvia Dittmann
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Tizian Griesser
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Jordan Costafrolaz
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Yves Mattenberger
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Simon Jurt
- Department of Chemistry, University of Zurich, 8057, Zürich, Switzerland
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Peter Sander
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Susanne Sievers
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Karl Gademann
- Department of Chemistry, University of Zurich, 8057, Zürich, Switzerland
| |
Collapse
|
2
|
Cao X, Boyaci H, Chen J, Bao Y, Landick R, Campbell EA. Basis of narrow-spectrum activity of fidaxomicin on Clostridioides difficile. Nature 2022; 604:541-545. [PMID: 35388215 PMCID: PMC9635844 DOI: 10.1038/s41586-022-04545-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 02/10/2022] [Indexed: 01/12/2023]
Abstract
Fidaxomicin (Fdx) is widely used to treat Clostridioides difficile (Cdiff) infections, but the molecular basis of its narrow-spectrum activity in the human gut microbiome remains unknown. Cdiff infections are a leading cause of nosocomial deaths1. Fidaxomicin, which inhibits RNA polymerase, targets Cdiff with minimal effects on gut commensals, reducing recurrence of Cdiff infection2,3. Here we present the cryo-electron microscopy structure of Cdiff RNA polymerase in complex with fidaxomicin and identify a crucial fidaxomicin-binding determinant of Cdiff RNA polymerase that is absent in most gut microbiota such as Proteobacteria and Bacteroidetes. By combining structural, biochemical, genetic and bioinformatic analyses, we establish that a single residue in Cdiff RNA polymerase is a sensitizing element for fidaxomicin narrow-spectrum activity. Our results provide a blueprint for targeted drug design against an important human pathogen.
Collapse
Affiliation(s)
- Xinyun Cao
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Hande Boyaci
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, United States
| | - James Chen
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, United States
| | - Yu Bao
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States.
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States.
| | - Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, United States.
| |
Collapse
|
3
|
Prusa J, Zhu DX, Flynn AJ, Jensen D, Ruiz Manzano A, Galburt EA, Stallings CL. Molecular dissection of RbpA-mediated regulation of fidaxomicin sensitivity in mycobacteria. J Biol Chem 2022; 298:101752. [PMID: 35189142 PMCID: PMC8956947 DOI: 10.1016/j.jbc.2022.101752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 01/13/2023] Open
Abstract
RNA polymerase (RNAP) binding protein A (RbpA) is essential for mycobacterial viability and regulates transcription initiation by increasing the stability of the RNAP-promoter open complex (RPo). RbpA consists of four domains: an N-terminal tail (NTT), a core domain (CD), a basic linker, and a sigma interaction domain. We have previously shown that truncation of the RbpA NTT and CD increases RPo stabilization by RbpA, implying that these domains inhibit this activity of RbpA. Previously published structural studies showed that the NTT and CD are positioned near multiple RNAP-σA holoenzyme functional domains and predict that the RbpA NTT contributes specific amino acids to the binding site of the antibiotic fidaxomicin (Fdx), which inhibits the formation of the RPo complex. Furthermore, deletion of the NTT results in decreased Mycobacterium smegmatis sensitivity to Fdx, but whether this is caused by a loss in Fdx binding is unknown. We generated a panel of rbpA mutants and found that the RbpA NTT residues predicted to directly interact with Fdx are partially responsible for RbpA-dependent Fdx activity in vitro, while multiple additional RbpA domains contribute to Fdx activity in vivo. Specifically, our results suggest that the RPo-stabilizing activity of RbpA decreases Fdx activity in vivo. In support of the association between RPo stability and Fdx activity, we find that another factor that promotes RPo stability in bacteria, CarD, also impacts to Fdx sensitivity. Our findings highlight how RbpA and other factors may influence RNAP dynamics to affect Fdx sensitivity.
Collapse
Affiliation(s)
- Jerome Prusa
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Dennis X. Zhu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Aidan J. Flynn
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Drake Jensen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ana Ruiz Manzano
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Eric A. Galburt
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Christina L. Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA,For correspondence: Christina L. Stallings
| |
Collapse
|
4
|
Novel fidaxomicin antibiotics through site-selective catalysis. Commun Chem 2021; 4:59. [PMID: 36697765 PMCID: PMC9814943 DOI: 10.1038/s42004-021-00501-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/31/2021] [Indexed: 01/28/2023] Open
Abstract
Fidaxomicin (FDX) is a marketed antibiotic for the treatment of Clostridioides difficile infections (CDI). Fidaxomicin displays antibacterial properties against many Gram-positive bacteria, yet the application of this antibiotic is currently limited to treatment of CDI. Semisynthetic modifications present a promising strategy to improve its pharmacokinetic properties and also circumvent resistance development by broadening the structural diversity of the derivatives. Here, based on a rational design using cryo-EM structural analysis, we implement two strategic site-selective catalytic reactions with a special emphasis to study the role of the carbohydrate units. Site-selective introduction of various ester moieties on the noviose as well as a Tsuji-Trost type rhamnose cleavage allow the synthesis of novel fidaxomicin analogs with promising antibacterial activities against C. difficile and Mycobacterium tuberculosis.
Collapse
|
5
|
Aissaoui N, Lai-Kee-Him J, Mills A, Declerck N, Morichaud Z, Brodolin K, Baconnais S, Le Cam E, Charbonnier JB, Sounier R, Granier S, Ropars V, Bron P, Bellot G. Modular Imaging Scaffold for Single-Particle Electron Microscopy. ACS NANO 2021; 15:4186-4196. [PMID: 33586425 DOI: 10.1021/acsnano.0c05113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Technological breakthroughs in electron microscopy (EM) have made it possible to solve structures of biological macromolecular complexes and to raise novel challenges, specifically related to sample preparation and heterogeneous macromolecular assemblies such as DNA-protein, protein-protein, and membrane protein assemblies. Here, we built a V-shaped DNA origami as a scaffolding molecular system to template proteins at user-defined positions in space. This template positions macromolecular assemblies of various sizes, juxtaposes combinations of biomolecules into complex arrangements, isolates biomolecules in their active state, and stabilizes membrane proteins in solution. In addition, the design can be engineered to tune DNA mechanical properties by exerting a controlled piconewton (pN) force on the molecular system and thus adapted to characterize mechanosensitive proteins. The binding site can also be specifically customized to accommodate the protein of interest, either interacting spontaneously with DNA or through directed chemical conjugation, increasing the range of potential targets for single-particle EM investigation. We assessed the applicability for five different proteins. Finally, as a proof of principle, we used RNAP protein to validate the approach and to explore the compatibility of the template with cryo-EM sample preparation.
Collapse
Affiliation(s)
- Nesrine Aissaoui
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, F-34000 Montpellier, France
- Université de Montpellier, F-34000 Montpellier, France
| | - Josephine Lai-Kee-Him
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, F-34000 Montpellier, France
- Université de Montpellier, F-34000 Montpellier, France
| | - Allan Mills
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, F-34000 Montpellier, France
- Université de Montpellier, F-34000 Montpellier, France
| | - Nathalie Declerck
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, F-34000 Montpellier, France
- Université de Montpellier, F-34000 Montpellier, France
- Departement MICA, INRA, 78352 Jouy-en-Josas, France
| | - Zakia Morichaud
- Université de Montpellier, F-34000 Montpellier, France
- IRIM, CNRS, Université Montpellier, 1919 Route de Mende, 34293 Montpellier, France
| | - Konstantin Brodolin
- Université de Montpellier, F-34000 Montpellier, France
- IRIM, CNRS, Université Montpellier, 1919 Route de Mende, 34293 Montpellier, France
| | - Sonia Baconnais
- Signalisations, Noyaux et Innovations en Cancérologie, UMR 8126, CNRS, Université Paris-Sud, Gustave Roussy, Université Paris-Saclay, 94800 Villejuif, France
| | - Eric Le Cam
- Signalisations, Noyaux et Innovations en Cancérologie, UMR 8126, CNRS, Université Paris-Sud, Gustave Roussy, Université Paris-Saclay, 94800 Villejuif, France
| | - Jean Baptiste Charbonnier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Rémy Sounier
- Université de Montpellier, F-34000 Montpellier, France
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, INSERM U1191, F-34000 Montpellier, France
| | - Sébastien Granier
- Université de Montpellier, F-34000 Montpellier, France
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, INSERM U1191, F-34000 Montpellier, France
| | - Virginie Ropars
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Patrick Bron
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, F-34000 Montpellier, France
- Université de Montpellier, F-34000 Montpellier, France
| | - Gaetan Bellot
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, F-34000 Montpellier, France
- Université de Montpellier, F-34000 Montpellier, France
| |
Collapse
|
6
|
Oguienko A, Petushkov I, Pupov D, Esyunina D, Kulbachinskiy A. Universal functions of the σ finger in alternative σ factors during transcription initiation by bacterial RNA polymerase. RNA Biol 2021; 18:2028-2037. [PMID: 33573428 DOI: 10.1080/15476286.2021.1889254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The bacterial σ factor plays the central role in promoter recognition by RNA polymerase (RNAP). The primary σ factor, involved in transcription of housekeeping genes, was also shown to participate in the initiation of RNA synthesis and promoter escape by RNAP. In the open promoter complex, the σ finger formed by σ region 3.2 directly interacts with the template DNA strand upstream of the transcription start site. Here, we analysed the role of the σ finger in transcription initiation by four alternative σ factors in Escherichia coli, σ38, σ32, σ28 and σ24. We found that deletions of the σ finger to various extent compromise the activity of RNAP holoenzymes containing alternative σ factors, especially at low NTP concentrations. All four σs are able to utilize NADH as a noncanonical priming substrate but it has only mild effects on the efficiency of transcription initiation. The mediators of the stringent response, transcription factor DksA and the alarmone ppGpp decrease RNAP activity and promoter complex stability for all four σ factors on tested promoters. For all σs except σ38, deletions of the σ finger conversely increase the stability of promoter complexes and decrease their sensitivity to DksA and ppGpp. The result suggests that the σ finger plays a universal role in transcription initiation by alternative σ factors and sensitizes promoter complexes to the action of global transcription regulators DksA and ppGpp by modulating promoter complex stability.
Collapse
Affiliation(s)
| | - Ivan Petushkov
- Institute of Molecular Genetics, NRC "Kurchatov Institute", Moscow, Russia
| | - Danil Pupov
- Institute of Molecular Genetics, NRC "Kurchatov Institute", Moscow, Russia
| | - Daria Esyunina
- Institute of Molecular Genetics, NRC "Kurchatov Institute", Moscow, Russia
| | | |
Collapse
|
7
|
Brodolin K, Morichaud Z. Region 4 of the RNA polymerase σ subunit counteracts pausing during initial transcription. J Biol Chem 2021; 296:100253. [PMID: 33380428 PMCID: PMC7948647 DOI: 10.1074/jbc.ra120.016299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 01/24/2023] Open
Abstract
All cellular genetic information is transcribed into RNA by multisubunit RNA polymerases (RNAPs). The basal transcription initiation factors of cellular RNAPs stimulate the initial RNA synthesis via poorly understood mechanisms. Here, we explored the mechanism employed by the bacterial factor σ in promoter-independent initial transcription. We found that the RNAP holoenzyme lacking the promoter-binding domain σ4 is ineffective in de novo transcription initiation and displays high propensity to pausing upon extension of RNAs 3 to 7 nucleotides in length. The nucleotide at the RNA 3' end determines the pause lifetime. The σ4 domain stabilizes short RNA:DNA hybrids and suppresses pausing by stimulating RNAP active-center translocation. The antipausing activity of σ4 is modulated by its interaction with the β subunit flap domain and by the σ remodeling factors AsiA and RbpA. Our results suggest that the presence of σ4 within the RNA exit channel compensates for the intrinsic instability of short RNA:DNA hybrids by increasing RNAP processivity, thus favoring productive transcription initiation. This "RNAP boosting" activity of the initiation factor is shaped by the thermodynamics of RNA:DNA interactions and thus, should be relevant for any factor-dependent RNAP.
Collapse
Affiliation(s)
- Konstantin Brodolin
- Institut de Recherche en Infectiologie de Montpellier, Centre national de la recherche scientifique, Univ Montpellier, Montpellier, France; Institut national de la santé et de la recherche médicale, Institut de Recherche en Infectiologie de Montpellier, Montpellier, France.
| | - Zakia Morichaud
- Institut de Recherche en Infectiologie de Montpellier, Centre national de la recherche scientifique, Univ Montpellier, Montpellier, France
| |
Collapse
|
8
|
Dorst A, Berg R, Gertzen CGW, Schäfle D, Zerbe K, Gwerder M, Schnell SD, Sander P, Gohlke H, Gademann K. Semisynthetic Analogs of the Antibiotic Fidaxomicin-Design, Synthesis, and Biological Evaluation. ACS Med Chem Lett 2020; 11:2414-2420. [PMID: 33329763 PMCID: PMC7734799 DOI: 10.1021/acsmedchemlett.0c00381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/01/2020] [Indexed: 01/06/2023] Open
Abstract
The glycoslated macrocyclic antibiotic fidaxomicin (1, tiacumicin B, lipiarmycin A3) displays good to excellent activity against Gram-positive bacteria and was approved for the treatment of Clostridium difficile infections (CDI). Among the main limitations for this compound, its low water solubility impacts further clinical uses. We report on the synthesis of new fidaxomicin derivatives based on structural design and utilizing an operationally simple one-step protecting group-free preparative approach from the natural product. An increase in solubility of up to 25-fold with largely retained activity was observed. Furthermore, hybrid antibiotics were prepared that show improved antibiotic activities.
Collapse
Affiliation(s)
- Andrea Dorst
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Regina Berg
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Christoph G. W. Gertzen
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf
and John von Neumann Institute for Computing (NIC), Institute of Biological
Information Processing (IBI-7: Structural Biochemistry) & Jülich
Supercomputing Centre (JSC), Forschungszentrum Jülich, 40225 Düsseldorf, Germany
| | - Daniel Schäfle
- Institute
of Medical Microbiology, University of Zurich, Gloriastrasse 28/30, 8006 Zurich, Switzerland
| | - Katja Zerbe
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Myriam Gwerder
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Simon D. Schnell
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Peter Sander
- Institute
of Medical Microbiology, University of Zurich, Gloriastrasse 28/30, 8006 Zurich, Switzerland
- National
Center for Mycobacteria, University of Zurich, Gloriastrasse 28/30, 8006 Zurich, Switzerland
| | - Holger Gohlke
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf
and John von Neumann Institute for Computing (NIC), Institute of Biological
Information Processing (IBI-7: Structural Biochemistry) & Jülich
Supercomputing Centre (JSC), Forschungszentrum Jülich, 40225 Düsseldorf, Germany
| | - Karl Gademann
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
9
|
Dorst A, Shchelik IS, Schäfle D, Sander P, Gademann K. Synthesis and Biological Evaluation of Iodinated Fidaxomicin Antibiotics. Helv Chim Acta 2020. [DOI: 10.1002/hlca.202000130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Andrea Dorst
- Department of Chemistry University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Inga S. Shchelik
- Department of Chemistry University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Daniel Schäfle
- Institute of Medical Microbiology University of Zurich Gloriastrasse 28/30 CH-8006 Zurich Switzerland
| | - Peter Sander
- Institute of Medical Microbiology University of Zurich Gloriastrasse 28/30 CH-8006 Zurich Switzerland
- National Center for Mycobacteria University of Zurich Gloriastrasse 28/30 CH-8006 Zurich Switzerland
| | - Karl Gademann
- Department of Chemistry University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| |
Collapse
|
10
|
Harbottle J, Zenkin N. Ureidothiophene inhibits interaction of bacterial RNA polymerase with -10 promotor element. Nucleic Acids Res 2020; 48:7914-7923. [PMID: 32652039 PMCID: PMC7430646 DOI: 10.1093/nar/gkaa591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/26/2020] [Accepted: 07/05/2020] [Indexed: 01/25/2023] Open
Abstract
Bacterial RNA polymerase is a potent target for antibiotics, which utilize a plethora of different modes of action, some of which are still not fully understood. Ureidothiophene (Urd) was found in a screen of a library of chemical compounds for ability to inhibit bacterial transcription. The mechanism of Urd action is not known. Here, we show that Urd inhibits transcription at the early stage of closed complex formation by blocking interaction of RNA polymerase with the promoter -10 element, while not affecting interactions with -35 element or steps of transcription after promoter closed complex formation. We show that mutation in the region 1.2 of initiation factor σ decreases sensitivity to Urd. The results suggest that Urd may directly target σ region 1.2, which allosterically controls the recognition of -10 element by σ region 2. Alternatively, Urd may block conformational changes of the holoenzyme required for engagement with -10 promoter element, although by a mechanism distinct from that of antibiotic fidaxomycin (lipiarmycin). The results suggest a new mode of transcription inhibition involving the regulatory domain of σ subunit, and potentially pinpoint a novel target for development of new antibacterials.
Collapse
Affiliation(s)
- John Harbottle
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle Upon Tyne NE2 4AX, UK
| | - Nikolay Zenkin
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle Upon Tyne NE2 4AX, UK
| |
Collapse
|
11
|
Vishwakarma RK, Brodolin K. The σ Subunit-Remodeling Factors: An Emerging Paradigms of Transcription Regulation. Front Microbiol 2020; 11:1798. [PMID: 32849409 PMCID: PMC7403470 DOI: 10.3389/fmicb.2020.01798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/09/2020] [Indexed: 11/13/2022] Open
Abstract
Transcription initiation is a key checkpoint and highly regulated step of gene expression. The sigma (σ) subunit of RNA polymerase (RNAP) controls all transcription initiation steps, from recognition of the -10/-35 promoter elements, upon formation of the closed promoter complex (RPc), to stabilization of the open promoter complex (RPo) and stimulation of the primary steps in RNA synthesis. The canonical mechanism to regulate σ activity upon transcription initiation relies on activators that recognize specific DNA motifs and recruit RNAP to promoters. This mini-review describes an emerging group of transcriptional regulators that form a complex with σ or/and RNAP prior to promoter binding, remodel the σ subunit conformation, and thus modify RNAP activity. Such strategy is widely used by bacteriophages to appropriate the host RNAP. Recent findings on RNAP-binding protein A (RbpA) from Mycobacterium tuberculosis and Crl from Escherichia coli suggest that activator-driven changes in σ conformation can be a widespread regulatory mechanism in bacteria.
Collapse
Affiliation(s)
- Rishi Kishore Vishwakarma
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, Montpellier, France
| | - Konstantin Brodolin
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, Montpellier, France
| |
Collapse
|
12
|
Dorst A, Gademann K. Chemistry and Biology of the Clinically Used Macrolactone Antibiotic Fidaxomicin. Helv Chim Acta 2020. [DOI: 10.1002/hlca.202000038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Andrea Dorst
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 CH-8057 Zürich Switzerland
| | - Karl Gademann
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 CH-8057 Zürich Switzerland
| |
Collapse
|
13
|
Duchi D, Gryte K, Robb NC, Morichaud Z, Sheppard C, Brodolin K, Wigneshweraraj S, Kapanidis AN. Conformational heterogeneity and bubble dynamics in single bacterial transcription initiation complexes. Nucleic Acids Res 2019; 46:677-688. [PMID: 29177430 PMCID: PMC5778504 DOI: 10.1093/nar/gkx1146] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 10/31/2017] [Indexed: 12/16/2022] Open
Abstract
Transcription initiation is a major step in gene regulation for all organisms. In bacteria, the promoter DNA is first recognized by RNA polymerase (RNAP) to yield an initial closed complex. This complex subsequently undergoes conformational changes resulting in DNA strand separation to form a transcription bubble and an RNAP-promoter open complex; however, the series and sequence of conformational changes, and the factors that influence them are unclear. To address the conformational landscape and transitions in transcription initiation, we applied single-molecule Förster resonance energy transfer (smFRET) on immobilized Escherichia coli transcription open complexes. Our results revealed the existence of two stable states within RNAP–DNA complexes in which the promoter DNA appears to adopt closed and partially open conformations, and we observed large-scale transitions in which the transcription bubble fluctuated between open and closed states; these transitions, which occur roughly on the 0.1 s timescale, are distinct from the millisecond-timescale dynamics previously observed within diffusing open complexes. Mutational studies indicated that the σ70 region 3.2 of the RNAP significantly affected the bubble dynamics. Our results have implications for many steps of transcription initiation, and support a bend-load-open model for the sequence of transitions leading to bubble opening during open complex formation.
Collapse
Affiliation(s)
- Diego Duchi
- Gene Machines Group, Biological Physics Research Unit, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Kristofer Gryte
- Gene Machines Group, Biological Physics Research Unit, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Nicole C Robb
- Gene Machines Group, Biological Physics Research Unit, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Zakia Morichaud
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Carol Sheppard
- MRC Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Konstantin Brodolin
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | | | - Achillefs N Kapanidis
- Gene Machines Group, Biological Physics Research Unit, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| |
Collapse
|
14
|
Sudalaiyadum Perumal A, Vishwakarma R, Hu Y, Morichaud Z, Brodolin K. RbpA relaxes promoter selectivity of M. tuberculosis RNA polymerase. Nucleic Acids Res 2019; 46:10106-10118. [PMID: 30102406 PMCID: PMC6212719 DOI: 10.1093/nar/gky714] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/25/2018] [Indexed: 01/25/2023] Open
Abstract
The transcriptional activator RbpA associates with Mycobacterium tuberculosis RNA polymerase (MtbRNAP) during transcription initiation, and stimulates formation of the MtbRNAP-promoter open complex (RPo). Here, we explored the influence of promoter motifs on RbpA-mediated activation of MtbRNAP containing the stress-response σB subunit. We show that both the ‘extended −10’ promoter motif (T-17G-16T-15G-14) and RbpA stabilized RPo and allowed promoter opening at suboptimal temperatures. Furthermore, in the presence of the T-17G-16T-15G-14 motif, RbpA was dispensable for RNA synthesis initiation, while exerting a stabilization effect on RPo. On the other hand, RbpA compensated for the lack of sequence-specific interactions of domains 3 and 4 of σB with the extended −10 and the −35 motifs, respectively. Mutations of the positively charged residues K73, K74 and R79 in RbpA basic linker (BL) had little effect on RPo formation, but affected MtbRNAP capacity for de novo transcription initiation. We propose that RbpA stimulates transcription by strengthening the non-specific interaction of the σ subunit with promoter DNA upstream of the −10 element, and by indirectly optimizing MtbRNAP interaction with initiation substrates. Consequently, RbpA renders MtbRNAP promiscuous in promoter selection, thus compensating for the weak conservation of the −35 motif in mycobacteria.
Collapse
MESH Headings
- Amino Acid Substitution
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Binding Sites
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA-Directed RNA Polymerases/chemistry
- DNA-Directed RNA Polymerases/genetics
- DNA-Directed RNA Polymerases/metabolism
- Gene Expression Regulation, Bacterial
- Kinetics
- Lysine/chemistry
- Lysine/metabolism
- Models, Molecular
- Mutation
- Mycobacterium tuberculosis/genetics
- Mycobacterium tuberculosis/metabolism
- Nucleotide Motifs
- Promoter Regions, Genetic
- Protein Binding
- Protein Interaction Domains and Motifs
- Protein Structure, Secondary
- RNA, Bacterial/biosynthesis
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Sigma Factor/chemistry
- Sigma Factor/genetics
- Sigma Factor/metabolism
- Substrate Specificity
- Temperature
- Transcriptional Activation
Collapse
Affiliation(s)
| | | | - Yangbo Hu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zakia Morichaud
- IRIM, CNRS, Univ Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Konstantin Brodolin
- IRIM, CNRS, Univ Montpellier, 1919 route de Mende, 34293 Montpellier, France
- To whom correspondence should be addressed. Tel: +33 4 34359469; Fax: +33 4 34359411;
| |
Collapse
|
15
|
Vishwakarma RK, Cao AM, Morichaud Z, Perumal AS, Margeat E, Brodolin K. Single-molecule analysis reveals the mechanism of transcription activation in M. tuberculosis. SCIENCE ADVANCES 2018; 4:eaao5498. [PMID: 29806016 PMCID: PMC5966222 DOI: 10.1126/sciadv.aao5498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 04/10/2018] [Indexed: 06/01/2023]
Abstract
The σ subunit of bacterial RNA polymerase (RNAP) controls recognition of the -10 and -35 promoter elements during transcription initiation. Free σ adopts a "closed," or inactive, conformation incompatible with promoter binding. The conventional two-state model of σ activation proposes that binding to core RNAP induces formation of an "open," active, σ conformation, which is optimal for promoter recognition. Using single-molecule Förster resonance energy transfer, we demonstrate that vegetative-type σ subunits exist in open and closed states even after binding to the RNAP core. As an extreme case, RNAP from Mycobacterium tuberculosis preferentially retains σ in the closed conformation, which is converted to the open conformation only upon binding by the activator protein RbpA and interaction with promoter DNA. These findings reveal that the conformational dynamics of the σ subunit in the RNAP holoenzyme is a target for regulation by transcription factors and plays a critical role in promoter recognition.
Collapse
Affiliation(s)
- Rishi Kishore Vishwakarma
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, Montpellier, France
| | - Anne-Marinette Cao
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Zakia Morichaud
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, Montpellier, France
| | | | - Emmanuel Margeat
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Konstantin Brodolin
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, Montpellier, France
| |
Collapse
|
16
|
Hattori H, Kaufmann E, Miyatake-Ondozabal H, Berg R, Gademann K. Total Synthesis of Tiacumicin A. Total Synthesis, Relay Synthesis, and Degradation Studies of Fidaxomicin (Tiacumicin B, Lipiarmycin A3). J Org Chem 2018; 83:7180-7205. [DOI: 10.1021/acs.joc.8b00101] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hiromu Hattori
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Elias Kaufmann
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| | | | - Regina Berg
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Karl Gademann
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
17
|
Boyaci H, Chen J, Lilic M, Palka M, Mooney RA, Landick R, Darst SA, Campbell EA. Fidaxomicin jams Mycobacterium tuberculosis RNA polymerase motions needed for initiation via RbpA contacts. eLife 2018; 7:34823. [PMID: 29480804 PMCID: PMC5837556 DOI: 10.7554/elife.34823] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/13/2018] [Indexed: 01/22/2023] Open
Abstract
Fidaxomicin (Fdx) is an antimicrobial RNA polymerase (RNAP) inhibitor highly effective against Mycobacterium tuberculosis RNAP in vitro, but clinical use of Fdx is limited to treating Clostridium difficile intestinal infections due to poor absorption. To identify the structural determinants of Fdx binding to RNAP, we determined the 3.4 Å cryo-electron microscopy structure of a complete M. tuberculosis RNAP holoenzyme in complex with Fdx. We find that the actinobacteria general transcription factor RbpA contacts fidaxomycin, explaining its strong effect on M. tuberculosis. Additional structures define conformational states of M. tuberculosis RNAP between the free apo-holoenzyme and the promoter-engaged open complex ready for transcription. The results establish that Fdx acts like a doorstop to jam the enzyme in an open state, preventing the motions necessary to secure promoter DNA in the active site. Our results provide a structural platform to guide development of anti-tuberculosis antimicrobials based on the Fdx binding pocket. Tuberculosis (TB) is an infectious disease that affects over ten million people every year. The Mycobacterium tuberculosis bacteria that cause the disease spread through the air from one person to another and mainly infect the lungs. Although curable, TB is difficult to eradicate because it is remarkably widespread, with one third of the world’s population estimated to carry the bacteria. Treatment for TB involves a mix of antibiotics that should be taken for several months to a year. The number of multidrug-resistant TB cases, where the infection is not treatable by the common cocktail of antibiotics, is rapidly increasing. There is therefore a need to discover new drugs that can kill the M. tuberculosis bacteria. An antibiotic called fidaxomicin is used to treat intestinal infections. Although it can kill Mycobacterium tuberculosis cells in culture, it is not absorbed from the intestines to the blood and thus cannot reach the lungs to kill the bacteria. It may be possible to change the structure of the drug so that it can enter the bloodstream. Before this can be done, researchers need to understand exactly how fidaxomicin kills the bacteria so that they know which parts of the drug they can alter without making it less effective. Fidaxomicin kills bacterial cells by binding to an enzyme called RNA polymerase. The antibiotic prevents the enzyme from reading and ‘transcribing’ DNA to form molecules that are essential for life. To learn more about how fidaxomicin has this effect, Boyaci, Chen et al. used cryo-electron microscopy to look at structures of the M. tuberculosis RNA polymerase in different states, including when it was bound to fidaxomicin. The structures reveal the chemical details of the interactions between the RNA polymerase and the antibiotic. The two molecules bind to each other through a region of the RNA polymerase that is unique to M. tuberculosis and closely related bacteria. Fidaxomicin acts like a doorstop to jam the RNA polymerase in an open state that cannot bind to DNA and transcribe genes. Medicinal chemists could now build on these findings to develop new drugs that might treat TB, either by modifying fidaxomicin or designing new antibiotics that bind to the same region of the RNA polymerase. Because the fidaxomicin-binding region of the RNA polymerase is specific to M. tuberculosis new antibiotics could be tailored towards the bacteria that have a minimal effect on a patient’s normal gut bacteria.
Collapse
Affiliation(s)
- Hande Boyaci
- The Rockefeller University, New York, United States
| | - James Chen
- The Rockefeller University, New York, United States
| | | | - Margaret Palka
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Rachel Anne Mooney
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States.,Department of Bacteriology, University of Wisconsin-Madison, Madison, United States
| | - Seth A Darst
- The Rockefeller University, New York, United States
| | | |
Collapse
|
18
|
Feklistov A, Bae B, Hauver J, Lass-Napiorkowska A, Kalesse M, Glaus F, Altmann KH, Heyduk T, Landick R, Darst SA. RNA polymerase motions during promoter melting. Science 2017; 356:863-866. [PMID: 28546214 PMCID: PMC5696265 DOI: 10.1126/science.aam7858] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/27/2017] [Indexed: 12/17/2022]
Abstract
All cellular RNA polymerases (RNAPs), from those of bacteria to those of man, possess a clamp that can open and close, and it has been assumed that the open RNAP separates promoter DNA strands and then closes to establish a tight grip on the DNA template. Here, we resolve successive motions of the initiating bacterial RNAP by studying real-time signatures of fluorescent reporters placed on RNAP and DNA in the presence of ligands locking the clamp in distinct conformations. We report evidence for an unexpected and obligatory step early in the initiation involving a transient clamp closure as a prerequisite for DNA melting. We also present a 2.6-angstrom crystal structure of a late-initiation intermediate harboring a rotationally unconstrained downstream DNA duplex within the open RNAP active site cleft. Our findings explain how RNAP thermal motions control the promoter search and drive DNA melting in the absence of external energy sources.
Collapse
Affiliation(s)
- Andrey Feklistov
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | - Brian Bae
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Jesse Hauver
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Agnieszka Lass-Napiorkowska
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, USA
| | - Markus Kalesse
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Brunswick, Germany
| | - Florian Glaus
- ETH Zürich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 1-5/10 8093 Zürich, Switzerland
| | - Karl-Heinz Altmann
- ETH Zürich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 1-5/10 8093 Zürich, Switzerland
| | - Tomasz Heyduk
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, USA
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Seth A Darst
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
19
|
Lee J, Borukhov S. Bacterial RNA Polymerase-DNA Interaction-The Driving Force of Gene Expression and the Target for Drug Action. Front Mol Biosci 2016; 3:73. [PMID: 27882317 PMCID: PMC5101437 DOI: 10.3389/fmolb.2016.00073] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/24/2016] [Indexed: 11/17/2022] Open
Abstract
DNA-dependent multisubunit RNA polymerase (RNAP) is the key enzyme of gene expression and a target of regulation in all kingdoms of life. It is a complex multifunctional molecular machine which, unlike other DNA-binding proteins, engages in extensive and dynamic interactions (both specific and nonspecific) with DNA, and maintains them over a distance. These interactions are controlled by DNA sequences, DNA topology, and a host of regulatory factors. Here, we summarize key recent structural and biochemical studies that elucidate the fine details of RNAP-DNA interactions during initiation. The findings of these studies help unravel the molecular mechanisms of promoter recognition and open complex formation, initiation of transcript synthesis and promoter escape. We also discuss most current advances in the studies of drugs that specifically target RNAP-DNA interactions during transcription initiation and elongation.
Collapse
Affiliation(s)
- Jookyung Lee
- Department of Cell Biology, Rowan University School of Osteopathic Medicine Stratford, NJ, USA
| | - Sergei Borukhov
- Department of Cell Biology, Rowan University School of Osteopathic Medicine Stratford, NJ, USA
| |
Collapse
|