1
|
Salvador GHM, Fernandes CAH, Borges RJ, Soares AM, Fontes MRM. Structural studies with crotoxin B from Crotalus durissus collilineatus venom suggest a heterodimeric assembly formed by two new isoforms. Biochimie 2024; 218:46-56. [PMID: 37659716 DOI: 10.1016/j.biochi.2023.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/07/2023] [Accepted: 08/31/2023] [Indexed: 09/04/2023]
Abstract
In accidents involving Crotalus snakes, the crotoxin complex (CTX) plays lethal action due to its neurotoxic activity. On the other hand, CTX have potential biotechnological application due to its anti-tumoral, anti-inflammatory, antimicrobial, analgesic and immunomodulatory properties. CTX is a heterodimer composed of Crotoxin A (CA or crotapotin), the acidic nontoxic and non-enzymatic component and; Crotoxin B (CB), a basic, toxic and catalytic PLA2. Currently, there are two classes of CTX isoforms, whose differences in their biological activities have been attributed to features presented in CB isoforms. Here, we present the crystal structure of CB isolated from the Crotalus durissus collilineatus venom. It amino acid sequence was assigned using the SEQUENCE SLIDER software, which revealed that the crystal structure is a heterodimer composed of two new CB isoforms (colCB-A and colCB-B). Bioinformatic and biophysical analyses showed that the toxin forms a tetrameric assembly in solution similar to CB from Crotalus durissus terrificus venom, despite some differences observed at the dimeric interface. By the previously proposed classification, the colCB-B presents features of the class I isoforms while colCB-A cannot be classified into classes I and II based on its amino acid sequence. Due to similar features observed for other CB isoforms found in the NCBI database and the results obtained for colCB-A, we suggest that there are more than two classes of CTX and CB isoforms in crotalic venoms.
Collapse
Affiliation(s)
- Guilherme H M Salvador
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Carlos A H Fernandes
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil; UMR 7590, CNRS, Muséum National d'Histoire Naturelle, IRD, Institut de Minéralogie, Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, Paris, France
| | - Rafael J Borges
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil; Centro de Química Medicina (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade de Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Andreimar M Soares
- Laboratório de Biotecnologia de Proteínas e Compostos Bioativos Aplicados, Fundação Oswaldo Cruz (FIOCRUZ), Unidade Rondônia, Porto Velho, RO, Brazil; Inst Nac. de Epidemiologia da Amazônia Ocidental (INCT-EPIAMO), Rede de Pesquisa e Conhecimento de Excelência na Amazônia Ocidental (RED-CONEXAO), Brazil
| | - Marcos R M Fontes
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil; Instituto de Estudos Avançados do Mar (IEAMar), Universidade Estadual Paulista (UNESP), São Vicente, SP, Brazil.
| |
Collapse
|
2
|
Popoff MR, Faure G, Legout S, Ladant D. Animal Toxins: A Historical Outlook at the Institut Pasteur of Paris. Toxins (Basel) 2023; 15:462. [PMID: 37505731 PMCID: PMC10467091 DOI: 10.3390/toxins15070462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Humans have faced poisonous animals since the most ancient times. It is recognized that certain animals, like specific plants, produce toxic substances that can be lethal, but that can also have therapeutic or psychoactive effects. The use of the term "venom", which initially designated a poison, remedy, or magic drug, is now confined to animal poisons delivered by biting. Following Louis Pasteur's work on pathogenic microorganisms, it was hypothesized that venoms could be related to bacterial toxins and that the process of pathogenicity attenuation could be applied to venoms for the prevention and treatment of envenomation. Cesaire Phisalix and Gabriel Bertrand from the National Museum of Natural History as well as Albert Calmette from the Institut Pasteur in Paris were pioneers in the development of antivenomous serotherapy. Gaston Ramon refined the process of venom attenuation for the immunization of horses using a formalin treatment method that was successful for diphtheria and tetanus toxins. This paved the way for the production of antivenomous sera at the Institut Pasteur, as well as for research on venom constituents and the characterization of their biological activities. The specific activities of certain venom components, such as those involved in blood coagulation or the regulation of chloride ion channels, raises the possibility of developing novel therapeutic drugs that could serve as anticoagulants or as a treatment for cystic fibrosis, for example. Scientists of the Institut Pasteur of Paris have significantly contributed to the study of snake venoms, a topic that is reported in this review.
Collapse
Affiliation(s)
- Michel R. Popoff
- Unité des Toxines Bactériennes, Institut Pasteur, Université Paris Cité, CNRS UMR 2001 INSERM U1306, F-75015 Paris, France
| | - Grazyna Faure
- Unité Récepteurs-Canaux, Institut Pasteur, Université Paris Cité, CNRS UMR 3571, F-75015 Paris, France;
| | - Sandra Legout
- Centre de Ressources et Information Scientifique, Institut Pasteur, Université Paris Cité, F-75015 Paris, France;
| | - Daniel Ladant
- Unité de Biochimie des Interactions Macromoléculaires, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, F-75015 Paris, France;
| |
Collapse
|
3
|
Ravatin M, Odolczyk N, Servel N, Guijarro JI, Tagat E, Chevalier B, Baatallah N, Corringer PJ, Lukács GL, Edelman A, Zielenkiewicz P, Chambard JM, Hinzpeter A, Faure G. Design of Crotoxin-Based Peptides with Potentiator Activity Targeting the ΔF508NBD1 Cystic Fibrosis Transmembrane Conductance Regulator. J Mol Biol 2023; 435:167929. [PMID: 36566799 DOI: 10.1016/j.jmb.2022.167929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
We have previously shown that the CBb subunit of crotoxin, a β-neurotoxin with phospholipase A2 (PLA2) activity, targets the human ΔF508CFTR chloride channel implicated in cystic fibrosis (CF). By direct binding to the nucleotide binding domain 1 (NBD1) of ΔF508CFTR, this neurotoxic PLA2 acts as a potentiator increasing chloride channel current and corrects the trafficking defect of misfolded ΔF508CFTR inside the cell. Here, for a therapeutics development of new anti-cystic fibrosis agents, we use a structure-based in silico approach to design peptides mimicking the CBb-ΔF508NBD1 interface. Combining biophysical and electrophysiological methods, we identify several peptides that interact with the ΔF508NBD1 domain and reveal their effects as potentiators on phosphorylated ΔF508CFTR. Moreover, protein-peptide interactions and electrophysiological studies allowed us to identify key residues of ΔF508NBD1 governing the interactions with the novel potentiators. The designed peptides bind to the same region as CBb phospholipase A2 on ΔF508NBD1 and potentiate chloride channel activity. Certain peptides also show an additive effect towards the clinically approved VX-770 potentiator. The identified CF therapeutics peptides represent a novel class of CFTR potentiators and illustrate a strategy leading to reproducing the effect of specific protein-protein interactions.
Collapse
Affiliation(s)
- Marc Ravatin
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3571, Récepteurs-Canaux, Département de Neuroscience, 25, rue du Dr. Roux, F-75015 Paris, France; Sanofi, R&D, Integrated Drug Discovery, In Vitro Biology, Vitry-sur-Seine, France
| | - Norbert Odolczyk
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3571, Récepteurs-Canaux, Département de Neuroscience, 25, rue du Dr. Roux, F-75015 Paris, France; Department of Systems Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Nathalie Servel
- INSERM, U1151, Université de Paris Cité, Institut Necker Enfants Malades (INEM), CNRS, UMR 8253, 160 rue de Vaugirard, F-75015 Paris, France
| | - J Iñaki Guijarro
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3528, Biological NMR and HDX-MS Technological Platform, 28 rue du Dr. Roux, F-75015 Paris, France
| | - Eric Tagat
- Sanofi, R&D, Integrated Drug Discovery, In Vitro Biology, Vitry-sur-Seine, France
| | - Benoit Chevalier
- INSERM, U1151, Université de Paris Cité, Institut Necker Enfants Malades (INEM), CNRS, UMR 8253, 160 rue de Vaugirard, F-75015 Paris, France
| | - Nesrine Baatallah
- INSERM, U1151, Université de Paris Cité, Institut Necker Enfants Malades (INEM), CNRS, UMR 8253, 160 rue de Vaugirard, F-75015 Paris, France
| | - Pierre-Jean Corringer
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3571, Récepteurs-Canaux, Département de Neuroscience, 25, rue du Dr. Roux, F-75015 Paris, France
| | - Gergely L Lukács
- Department of Physiology and Biochemistry, McGill University, Montréal, Quebec, Canada
| | - Aleksander Edelman
- INSERM, U1151, Université de Paris Cité, Institut Necker Enfants Malades (INEM), CNRS, UMR 8253, 160 rue de Vaugirard, F-75015 Paris, France
| | - Piotr Zielenkiewicz
- Department of Systems Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Jean-Marie Chambard
- Sanofi, R&D, Integrated Drug Discovery, In Vitro Biology, Vitry-sur-Seine, France
| | - Alexandre Hinzpeter
- INSERM, U1151, Université de Paris Cité, Institut Necker Enfants Malades (INEM), CNRS, UMR 8253, 160 rue de Vaugirard, F-75015 Paris, France.
| | - Grazyna Faure
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3571, Récepteurs-Canaux, Département de Neuroscience, 25, rue du Dr. Roux, F-75015 Paris, France.
| |
Collapse
|
4
|
Alves BFA, Ferreira RS. Antineoplastic properties and pharmacological applications of Crotalus durissus terrificus snake venom. Rev Soc Bras Med Trop 2022; 55:S0037-86822022000100207. [PMID: 36542014 PMCID: PMC9757715 DOI: 10.1590/0037-8682-0323-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/04/2022] [Indexed: 12/23/2022] Open
Abstract
Snake toxins are widely studied owing to their importance in snakebite accidents, a serious public health issue in tropical countries, and their broad therapeutic potential. Isolated fractions from venom produced by snakes of the genus Crotalus sp. present a wide variety of pharmacological uses such as antifungal, antiviral, antibacterial, and antitumor properties, among other therapeutic potentialities. Given the direct effect of this venom on tumor cells, isolation of its compounds is important for the characterization of its anticarcinogenic actions. Crotalus durissus terrificus venom and its toxins have been widely evaluated as potential candidates for the development of new antineoplastic therapies that are efficient against different tumor lines and cellular targets. This review highlights the venom toxins of this species, with a focus on their antineoplastic properties.
Collapse
Affiliation(s)
| | - Rui Seabra Ferreira
- Center for the Study of Venoms and Venomous Animals (CEVAP), São
Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
5
|
Biological and Medical Aspects Related to South American Rattlesnake Crotalus durissus (Linnaeus, 1758): A View from Colombia. Toxins (Basel) 2022; 14:toxins14120875. [PMID: 36548772 PMCID: PMC9784998 DOI: 10.3390/toxins14120875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 12/16/2022] Open
Abstract
In Colombia, South America, there is a subspecies of the South American rattlesnake Crotalus durissus, C. d. cumanensis, a snake of the Viperidae family, whose presence has been reduced due to the destruction of its habitat. It is an enigmatic snake from the group of pit vipers, venomous, with large articulated front fangs, special designs on its body, and a characteristic rattle on its tail. Unlike in Brazil, the occurrence of human envenomation by C. durisus in Colombia is very rare and contributes to less than 1% of envenomation caused by snakes. Its venom is a complex cocktail of proteins with different biological effects, which evolved with the purpose of paralyzing the prey, killing it, and starting its digestive process, as well as having defense functions. When its venom is injected into humans as the result of a bite, the victim presents with both local tissue damage and with systemic involvement, including a diverse degree of neurotoxic, myotoxic, nephrotoxic, and coagulopathic effects, among others. Its biological effects are being studied for use in human health, including the possible development of analgesic, muscle relaxant, anti-inflammatory, immunosuppressive, anti-infection, and antineoplastic drugs. Several groups of researchers in Brazil are very active in their contributions in this regard. In this work, a review is made of the most relevant biological and medical aspects related to the South American rattlesnake and of what may be of importance for a better understanding of the snake C. d. cumanensis, present in Colombia and Venezuela.
Collapse
|
6
|
Ivanušec A, Šribar J, Križaj I. Secreted Phospholipases A 2 - not just Enzymes: Revisited. Int J Biol Sci 2022; 18:873-888. [PMID: 35002531 PMCID: PMC8741859 DOI: 10.7150/ijbs.68093] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022] Open
Abstract
Secreted phospholipases A2 (sPLA2s) participate in a very broad spectrum of biological processes through their enzymatic activity and as ligands for membrane and soluble receptors. The physiological roles of sPLA2s as enzymes have been very well described, while their functions as ligands are still poorly known. Since the last overview of sPLA2-binding proteins (sPLA2-BPs) 10 years ago, several important discoveries have occurred in this area. New and more sensitive analytical tools have enabled the discovery of additional sPLA2-BPs, which are presented and critically discussed here. The structural diversity of sPLA2-BPs reveals sPLA2s as very promiscuous proteins, and we offer some structural explanations for this nature that makes these proteins evolutionarily highly advantageous. Three areas of physiological engagement of sPLA2-BPs have appeared most clearly: cellular transport and signalling, and regulation of the enzymatic activity of sPLA2s. Due to the multifunctionality of sPLA2s, they appear to be exceptional pharmacological targets. We reveal the potential to exploit interactions of sPLA2s with other proteins in medical terms, for the development of original diagnostic and therapeutic procedures. We conclude this survey by suggesting the priority questions that need to be answered.
Collapse
Affiliation(s)
- Adrijan Ivanušec
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Jernej Šribar
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
Baatallah N, Elbahnsi A, Mornon JP, Chevalier B, Pranke I, Servel N, Zelli R, Décout JL, Edelman A, Sermet-Gaudelus I, Callebaut I, Hinzpeter A. Pharmacological chaperones improve intra-domain stability and inter-domain assembly via distinct binding sites to rescue misfolded CFTR. Cell Mol Life Sci 2021; 78:7813-7829. [PMID: 34714360 PMCID: PMC11071985 DOI: 10.1007/s00018-021-03994-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022]
Abstract
Protein misfolding is involved in a large number of diseases, among which cystic fibrosis. Complex intra- and inter-domain folding defects associated with mutations in the cystic fibrosis transmembrane regulator (CFTR) gene, among which p.Phe508del (F508del), have recently become a therapeutical target. Clinically approved correctors such as VX-809, VX-661, and VX-445, rescue mutant protein. However, their binding sites and mechanisms of action are still incompletely understood. Blind docking onto the 3D structures of both the first membrane-spanning domain (MSD1) and the first nucleotide-binding domain (NBD1), followed by molecular dynamics simulations, revealed the presence of two potential VX-809 corrector binding sites which, when mutated, abrogated rescue. Network of amino acids in the lasso helix 2 and the intracellular loops ICL1 and ICL4 allosterically coupled MSD1 and NBD1. Corrector VX-445 also occupied two potential binding sites on MSD1 and NBD1, the latter being shared with VX-809. Binding of both correctors on MSD1 enhanced the allostery between MSD1 and NBD1, hence the increased efficacy of the corrector combination. These correctors improve both intra-domain folding by stabilizing fragile protein-lipid interfaces and inter-domain assembly via distant allosteric couplings. These results provide novel mechanistic insights into the rescue of misfolded proteins by small molecules.
Collapse
Affiliation(s)
- Nesrine Baatallah
- INSERM, U1151, Institut Necker Enfants Malades, INEM, Paris, France
- CNRS UMR 8253 - Faculté de Médecine, Université de Paris, Paris, France
| | - Ahmad Elbahnsi
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005, Paris, France
- Department of Applied Physics of Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jean-Paul Mornon
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005, Paris, France
| | - Benoit Chevalier
- INSERM, U1151, Institut Necker Enfants Malades, INEM, Paris, France
- CNRS UMR 8253 - Faculté de Médecine, Université de Paris, Paris, France
| | - Iwona Pranke
- INSERM, U1151, Institut Necker Enfants Malades, INEM, Paris, France
- CNRS UMR 8253 - Faculté de Médecine, Université de Paris, Paris, France
| | - Nathalie Servel
- INSERM, U1151, Institut Necker Enfants Malades, INEM, Paris, France
- CNRS UMR 8253 - Faculté de Médecine, Université de Paris, Paris, France
| | - Renaud Zelli
- Univ. Grenoble Alpes, CNRS, DPM, 38000, Grenoble, France
| | | | - Aleksander Edelman
- INSERM, U1151, Institut Necker Enfants Malades, INEM, Paris, France
- CNRS UMR 8253 - Faculté de Médecine, Université de Paris, Paris, France
| | - Isabelle Sermet-Gaudelus
- INSERM, U1151, Institut Necker Enfants Malades, INEM, Paris, France
- CNRS UMR 8253 - Faculté de Médecine, Université de Paris, Paris, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005, Paris, France.
| | - Alexandre Hinzpeter
- INSERM, U1151, Institut Necker Enfants Malades, INEM, Paris, France.
- CNRS UMR 8253 - Faculté de Médecine, Université de Paris, Paris, France.
| |
Collapse
|
8
|
Baudou FG, Rodriguez JP, Fusco L, de Roodt AR, De Marzi MC, Leiva L. South American snake venoms with abundant neurotoxic components. Composition and toxicological properties. A literature review. Acta Trop 2021; 224:106119. [PMID: 34481791 DOI: 10.1016/j.actatropica.2021.106119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 01/18/2023]
Abstract
In South America there are three snake genera with predominantly neurotoxic venoms: Crotalus, Micrurus and Hydrophis, which include nine species/subspecies, 97 species and a single marine species, respectively. Although accidents with neurotoxic venoms are less frequent than those with anticoagulant, cytotoxic or necrotic venoms (e.g. from Bothrops), they are of major public health importance. Venoms from genus Crotalus have been extensively studied, while data on the venoms from the other two genera are very limited, especially for Hydrophis. The venoms of North and South American Crotalus species show biochemical and physiopathological differences. The former species cause bothrops-like envenomation symptoms, while the latter mainly have neurotoxic and myotoxic effects, leading to respiratory paralysis and, occasionally, renal failure by myoglobinuria and death, often with no local lesions. Micrurus and Hydrophis also cause neurotoxic envenomations. Many studies have isolated, identified and characterized new enzymes and toxins, thus expanding the knowledge of snake venom composition. The present review summarizes the currently available information on neurotoxic venoms from South American snakes, with a focus on protein composition and toxicological properties. It also includes some comments concerning potential medical applications of elapid and crotalic toxins.
Collapse
Affiliation(s)
- Federico G Baudou
- Universidad Nacional de Luján (UNLu), Depto. de Ciencias Básicas, Luján, Buenos Aires, Argentina; Laboratorio de Inmunología, Instituto de Ecología y Desarrollo Sustentable (INEDES), UNLu-CONICET, Luján, Buenos Aires, Argentina.
| | - Juan P Rodriguez
- Laboratorio de Investigaciones Bioquímicas de la Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas (UNNE-CONICET), Corrientes, Argentina
| | - Luciano Fusco
- Laboratorio de Investigación en Proteínas (LabInPro), IQUIBA-NEA (UNNE, CONICET), FaCENA, (UNNE), Corrientes, Argentina
| | - Adolfo R de Roodt
- Área Investigación y Desarrollo-Venenos, Instituto Nacional de Producción de Biológicos, Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán", Ministerio de Salud de la Nación, Argentina; Primera Cátedra de Toxicología, Facultad de Medicina, Universidad de Buenos Aires, Argentina; Laboratorio de Toxinopatología, Centro de Patología Experimental y Aplicada, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Mauricio C De Marzi
- Universidad Nacional de Luján (UNLu), Depto. de Ciencias Básicas, Luján, Buenos Aires, Argentina; Laboratorio de Inmunología, Instituto de Ecología y Desarrollo Sustentable (INEDES), UNLu-CONICET, Luján, Buenos Aires, Argentina
| | - Laura Leiva
- Laboratorio de Investigación en Proteínas (LabInPro), IQUIBA-NEA (UNNE, CONICET), FaCENA, (UNNE), Corrientes, Argentina
| |
Collapse
|
9
|
Nemecz D, Ostrowski M, Ravatin M, Saul F, Faure G. Crystal Structure of Isoform CBd of the Basic Phospholipase A 2 Subunit of Crotoxin: Description of the Structural Framework of CB for Interaction with Protein Targets. Molecules 2020; 25:molecules25225290. [PMID: 33202772 PMCID: PMC7696373 DOI: 10.3390/molecules25225290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 11/16/2022] Open
Abstract
Crotoxin, from the venom of the South American rattlesnake Crotalus durissus terrificus, is a potent heterodimeric presynaptic β-neurotoxin that exists in individual snake venom as a mixture of isoforms of a basic phospholipase A2 (PLA2) subunit (CBa2, CBb, CBc, and CBd) and acidic subunit (CA1-4). Specific natural mutations in CB isoforms are implicated in functional differences between crotoxin isoforms. The three-dimensional structure of two individual CB isoforms (CBa2, CBc), and one isoform in a crotoxin (CA2CBb) complex, have been previously reported. This study concerns CBd, which by interaction with various protein targets exhibits many physiological or pharmacological functions. It binds with high affinity to presynaptic receptors showing neurotoxicity, but also interacts with human coagulation factor Xa (hFXa), exhibiting anticoagulant effect, and acts as a positive allosteric modulator and corrector of mutated chloride channel, cystic fibrosis transmembrane conductance regulator (CFTR), implicated in cystic fibrosis. Thus, CBd represents a novel family of agents that have potential in identifying new drug leads related to anticoagulant and anti-cystic fibrosis function. We determined here the X-ray structure of CBd and compare it with the three other natural isoforms of CB. The structural role of specific amino acid variations between CB isoforms are analyzed and the structural framework of CB for interaction with protein targets is described.
Collapse
Affiliation(s)
- Dorota Nemecz
- Institut Pasteur, Récepteurs-Canaux, CNRS UMR 3571, Département de Neuroscience, 25, rue du Dr. Roux, F-75015 Paris, France; (D.N.); (M.O.); (M.R.)
- Biochemistry Department, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Maciej Ostrowski
- Institut Pasteur, Récepteurs-Canaux, CNRS UMR 3571, Département de Neuroscience, 25, rue du Dr. Roux, F-75015 Paris, France; (D.N.); (M.O.); (M.R.)
- Biochemistry Department, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Marc Ravatin
- Institut Pasteur, Récepteurs-Canaux, CNRS UMR 3571, Département de Neuroscience, 25, rue du Dr. Roux, F-75015 Paris, France; (D.N.); (M.O.); (M.R.)
- Sanofi R&D, Integrated Drug Discovery-High Content Biology, 94400 Vitry-sur-Seine, France
| | - Frederick Saul
- Institut Pasteur, Plateforme de Cristallographie-C2RT, CNRS UMR 3528, 75015 Paris, France;
| | - Grazyna Faure
- Institut Pasteur, Récepteurs-Canaux, CNRS UMR 3571, Département de Neuroscience, 25, rue du Dr. Roux, F-75015 Paris, France; (D.N.); (M.O.); (M.R.)
- Correspondence: ; Tel.: +33-14-568-86-86; Fax: +33-14-568-88-36
| |
Collapse
|
10
|
Drug efficacy and toxicity prediction: an innovative application of transcriptomic data. Cell Biol Toxicol 2020; 36:591-602. [PMID: 32780246 PMCID: PMC7661398 DOI: 10.1007/s10565-020-09552-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
Abstract
Drug toxicity and efficacy are difficult to predict partly because they are both poorly defined, which I aim to remedy here from a transcriptomic perspective. There are two major categories of drugs: (1) restorative drugs aiming to restore an abnormal cell, tissue, or organ to normal function (e.g., restoring normal membrane function of epithelial cells in cystic fibrosis), and (2) disruptive drugs aiming to kill pathogens or malignant cells. These two types of drugs require different definition of efficacy and toxicity. I outlined rationales for defining transcriptomic efficacy and toxicity and illustrated numerically their application with two sets of transcriptomic data, one for restorative drugs (treating cystic fibrosis with lumacaftor/ivacaftor aiming to restore the cellular function of epithelial cells) and the other for disruptive drugs (treating acute myeloid leukemia with prexasertib). The conceptual framework presented will help and sensitize researchers to collect data required for determining drug toxicity.
Collapse
|
11
|
Strub MD, McCray, Jr. PB. Transcriptomic and Proteostasis Networks of CFTR and the Development of Small Molecule Modulators for the Treatment of Cystic Fibrosis Lung Disease. Genes (Basel) 2020; 11:genes11050546. [PMID: 32414011 PMCID: PMC7288469 DOI: 10.3390/genes11050546] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/18/2022] Open
Abstract
Cystic fibrosis (CF) is a lethal autosomal recessive disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. The diversity of mutations and the multiple ways by which the protein is affected present challenges for therapeutic development. The observation that the Phe508del-CFTR mutant protein is temperature sensitive provided proof of principle that mutant CFTR could escape proteosomal degradation and retain partial function. Several specific protein interactors and quality control checkpoints encountered by CFTR during its proteostasis have been investigated for therapeutic purposes, but remain incompletely understood. Furthermore, pharmacological manipulation of many CFTR interactors has not been thoroughly investigated for the rescue of Phe508del-CFTR. However, high-throughput screening technologies helped identify several small molecule modulators that rescue CFTR from proteosomal degradation and restore partial function to the protein. Here, we discuss the current state of CFTR transcriptomic and biogenesis research and small molecule therapy development. We also review recent progress in CFTR proteostasis modulators and discuss how such treatments could complement current FDA-approved small molecules.
Collapse
Affiliation(s)
- Matthew D. Strub
- Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, IA 52242, USA;
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
| | - Paul B. McCray, Jr.
- Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, IA 52242, USA;
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
- Correspondence: ; Tel.: +1-(319)-335-6844
| |
Collapse
|
12
|
Recent Strategic Advances in CFTR Drug Discovery: An Overview. Int J Mol Sci 2020; 21:ijms21072407. [PMID: 32244346 PMCID: PMC7177952 DOI: 10.3390/ijms21072407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR)-rescuing drugs have already transformed cystic fibrosis (CF) from a fatal disease to a treatable chronic condition. However, new-generation drugs able to bind CFTR with higher specificity/affinity and to exert stronger therapeutic benefits and fewer side effects are still awaited. Computational methods and biosensors have become indispensable tools in the process of drug discovery for many important human pathologies. Instead, they have been used only piecemeal in CF so far, calling for their appropriate integration with well-tried CF biochemical and cell-based models to speed up the discovery of new CFTR-rescuing drugs. This review will give an overview of the available structures and computational models of CFTR and of the biosensors, biochemical and cell-based assays already used in CF-oriented studies. It will also give the reader some insights about how to integrate these tools as to improve the efficiency of the drug discovery process targeted to CFTR.
Collapse
|
13
|
Pranke I, Golec A, Hinzpeter A, Edelman A, Sermet-Gaudelus I. Emerging Therapeutic Approaches for Cystic Fibrosis. From Gene Editing to Personalized Medicine. Front Pharmacol 2019; 10:121. [PMID: 30873022 PMCID: PMC6400831 DOI: 10.3389/fphar.2019.00121] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
An improved understanding of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein structure and the consequences of CFTR gene mutations have allowed the development of novel therapies targeting specific defects underlying CF. Some strategies are mutation specific and have already reached clinical development; some strategies include a read-through of the specific premature termination codons (read-through therapies, nonsense mediated decay pathway inhibitors for Class I mutations); correction of CFTR folding and trafficking to the apical plasma membrane (correctors for Class II mutations); and an increase in the function of CFTR channel (potentiators therapy for Class III mutations and any mutant with a residual function located at the membrane). Other therapies that are in preclinical development are not mutation specific and include gene therapy to edit the genome and stem cell therapy to repair the airway tissue. These strategies that are directed at the basic CF defects are now revolutionizing the treatment for patients and should positively impact their survival rates.
Collapse
Affiliation(s)
- Iwona Pranke
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Anita Golec
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Alexandre Hinzpeter
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Aleksander Edelman
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Isabelle Sermet-Gaudelus
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Descartes, Paris, France.,Centre de Référence Maladie Rare, Mucoviscidose et Maladies de CFTR, Paris, France.,Faculté de Médecine, Université Paris Descartes, Paris, France
| |
Collapse
|
14
|
Secreted Phospholipases A₂ from Animal Venoms in Pain and Analgesia. Toxins (Basel) 2017; 9:toxins9120406. [PMID: 29311537 PMCID: PMC5744126 DOI: 10.3390/toxins9120406] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/13/2017] [Accepted: 12/16/2017] [Indexed: 12/20/2022] Open
Abstract
Animal venoms comprise a complex mixture of components that affect several biological systems. Based on the high selectivity for their molecular targets, these components are also a rich source of potential therapeutic agents. Among the main components of animal venoms are the secreted phospholipases A2 (sPLA2s). These PLA2 belong to distinct PLA2s groups. For example, snake venom sPLA2s from Elapidae and Viperidae families, the most important families when considering envenomation, belong, respectively, to the IA and IIA/IIB groups, whereas bee venom PLA2 belongs to group III of sPLA2s. It is well known that PLA2, due to its hydrolytic activity on phospholipids, takes part in many pathophysiological processes, including inflammation and pain. Therefore, secreted PLA2s obtained from animal venoms have been widely used as tools to (a) modulate inflammation and pain, uncovering molecular targets that are implicated in the control of inflammatory (including painful) and neurodegenerative diseases; (b) shed light on the pathophysiology of inflammation and pain observed in human envenomation by poisonous animals; and, (c) characterize molecular mechanisms involved in inflammatory diseases. The present review summarizes the knowledge on the nociceptive and antinociceptive actions of sPLA2s from animal venoms, particularly snake venoms.
Collapse
|
15
|
Neuromuscular paralysis by the basic phospholipase A 2 subunit of crotoxin from Crotalus durissus terrificus snake venom needs its acid chaperone to concurrently inhibit acetylcholine release and produce muscle blockage. Toxicol Appl Pharmacol 2017; 334:8-17. [DOI: 10.1016/j.taap.2017.08.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/10/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022]
|
16
|
Premchandar A, Kupniewska A, Bonna A, Faure G, Fraczyk T, Roldan A, Hoffmann B, Faria da Cunha M, Herrmann H, Lukacs GL, Edelman A, Dadlez M. New insights into interactions between the nucleotide-binding domain of CFTR and keratin 8. Protein Sci 2017; 26:343-354. [PMID: 27870250 DOI: 10.1002/pro.3086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 01/14/2023]
Abstract
The intermediate filament protein keratin 8 (K8) interacts with the nucleotide-binding domain 1 (NBD1) of the cystic fibrosis (CF) transmembrane regulator (CFTR) with phenylalanine 508 deletion (ΔF508), and this interaction hampers the biogenesis of functional ΔF508-CFTR and its insertion into the plasma membrane. Interruption of this interaction may constitute a new therapeutic target for CF patients bearing the ΔF508 mutation. Here, we aimed to determine the binding surface between these two proteins, to facilitate the design of the interaction inhibitors. To identify the NBD1 fragments perturbed by the ΔF508 mutation, we used hydrogen-deuterium exchange coupled with mass spectrometry (HDX-MS) on recombinant wild-type (wt) NBD1 and ΔF508-NBD1 of CFTR. We then performed the same analysis in the presence of a peptide from the K8 head domain, and extended this investigation using bioinformatics procedures and surface plasmon resonance, which revealed regions affected by the peptide binding in both wt-NBD1 and ΔF508-NBD1. Finally, we performed HDX-MS analysis of the NBD1 molecules and full-length K8, revealing hydrogen-bonding network changes accompanying complex formation. In conclusion, we have localized a region in the head segment of K8 that participates in its binding to NBD1. Our data also confirm the stronger binding of K8 to ΔF508-NBD1, which is supported by an additional binding site located in the vicinity of the ΔF508 mutation in NBD1.
Collapse
Affiliation(s)
| | - Anna Kupniewska
- INSERM U1151, team Canalopathies épithéliales : la mucoviscidose et autres maladies, Université Paris Descartes, Paris, France
| | - Arkadiusz Bonna
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Poland.,Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Grazyna Faure
- Unité Récepteurs-Canaux; Institut Pasteur, CNRS, URA 2182, Paris, F-75015, France
| | - Tomasz Fraczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Poland
| | - Ariel Roldan
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Brice Hoffmann
- IMPMC, Sorbonne Universités, UPMC Université Paris 06, UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD UMR 206, IUC, Paris Cedex 05, 75005, France
| | - Mélanie Faria da Cunha
- INSERM U1151, team Canalopathies épithéliales : la mucoviscidose et autres maladies, Université Paris Descartes, Paris, France
| | - Harald Herrmann
- Department of Molecular Genetics, German Cancer Research Center, Heidelberg, D-69120, Germany.,Institute of Neuropathology, University Hospital Erlangen, D-91054, Erlangen, Germany
| | - Gergely L Lukacs
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Aleksander Edelman
- INSERM U1151, team Canalopathies épithéliales : la mucoviscidose et autres maladies, Université Paris Descartes, Paris, France
| | - Michał Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Poland
| |
Collapse
|
17
|
Callebaut I, Hoffmann B, Lehn P, Mornon JP. Molecular modelling and molecular dynamics of CFTR. Cell Mol Life Sci 2017; 74:3-22. [PMID: 27717958 PMCID: PMC11107702 DOI: 10.1007/s00018-016-2385-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/11/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) protein is a member of the ATP-binding cassette (ABC) transporter superfamily that functions as an ATP-gated channel. Considerable progress has been made over the last years in the understanding of the molecular basis of the CFTR functions, as well as dysfunctions causing the common genetic disease cystic fibrosis (CF). This review provides a global overview of the theoretical studies that have been performed so far, especially molecular modelling and molecular dynamics (MD) simulations. A special emphasis is placed on the CFTR-specific evolution of an ABC transporter framework towards a channel function, as well as on the understanding of the effects of disease-causing mutations and their specific modulation. This in silico work should help structure-based drug discovery and design, with a view to develop CFTR-specific pharmacotherapeutic approaches for the treatment of CF in the context of precision medicine.
Collapse
Affiliation(s)
- Isabelle Callebaut
- UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD UMR 206, IUC, Case 115, IMPMC, Sorbonne Universités, UPMC Univ Paris 06, 4 Place Jussieu, 75005, Paris Cedex 05, France.
| | - Brice Hoffmann
- UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD UMR 206, IUC, Case 115, IMPMC, Sorbonne Universités, UPMC Univ Paris 06, 4 Place Jussieu, 75005, Paris Cedex 05, France
| | - Pierre Lehn
- INSERM U1078, SFR ScInBioS, Université de Bretagne Occidentale, Brest, France
| | - Jean-Paul Mornon
- UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD UMR 206, IUC, Case 115, IMPMC, Sorbonne Universités, UPMC Univ Paris 06, 4 Place Jussieu, 75005, Paris Cedex 05, France
| |
Collapse
|
18
|
Faure G, Porowinska D, Saul F. Crotoxin from Crotalus durissus terrificus and Crotoxin-Related Proteins: Structure and Function Relationship. TOXINS AND DRUG DISCOVERY 2017. [DOI: 10.1007/978-94-007-6452-1_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Lopes-Pacheco M. CFTR Modulators: Shedding Light on Precision Medicine for Cystic Fibrosis. Front Pharmacol 2016; 7:275. [PMID: 27656143 PMCID: PMC5011145 DOI: 10.3389/fphar.2016.00275] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/11/2016] [Indexed: 12/15/2022] Open
Abstract
Cystic fibrosis (CF) is the most common life-threatening monogenic disease afflicting Caucasian people. It affects the respiratory, gastrointestinal, glandular and reproductive systems. The major cause of morbidity and mortality in CF is the respiratory disorder caused by a vicious cycle of obstruction of the airways, inflammation and infection that leads to epithelial damage, tissue remodeling and end-stage lung disease. Over the past decades, life expectancy of CF patients has increased due to early diagnosis and improved treatments; however, these patients still present limited quality of life. Many attempts have been made to rescue CF transmembrane conductance regulator (CFTR) expression, function and stability, thereby overcoming the molecular basis of CF. Gene and protein variances caused by CFTR mutants lead to different CF phenotypes, which then require different treatments to quell the patients' debilitating symptoms. In order to seek better approaches to treat CF patients and maximize therapeutic effects, CFTR mutants have been stratified into six groups (although several of these mutations present pleiotropic defects). The research with CFTR modulators (read-through agents, correctors, potentiators, stabilizers and amplifiers) has achieved remarkable progress, and these drugs are translating into pharmaceuticals and personalized treatments for CF patients. This review summarizes the main molecular and clinical features of CF, emphasizes the latest clinical trials using CFTR modulators, sheds light on the molecular mechanisms underlying these new and emerging treatments, and discusses the major breakthroughs and challenges to treating all CF patients.
Collapse
Affiliation(s)
- Miquéias Lopes-Pacheco
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|