1
|
Lei B, Wang S, Zhang X, Chen T, Lin Y. Novel protein ligase based on dual split intein. Biochem Biophys Res Commun 2024; 720:150097. [PMID: 38754162 DOI: 10.1016/j.bbrc.2024.150097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Inteins are unique single-turnover enzymes that can excise themselves from the precursor protein without the aid of any external cofactors or energy. In most cases, inteins are covalently linked with the extein sequences and protein splicing happens spontaneously. In this study, a novel protein ligation system was developed based on two atypical split inteins without cross reaction, in which the large segments of one S1 and one S11 split intein fusion protein acted as a protein ligase, the small segments (only several amino acids long) was fused to the N-extein and C-extein, respectively. The splicing activity was demonstrated in E. coli and in vitro with different extein sequences, which showed ∼15% splicing efficiency in vitro. The protein trans-splicing in vitro was further optimized, and possible reaction explanations were explored. As a proof of concept, we expect this approach to expand the scope of trans-splicing-based protein engineering and provide new clues for intein based protein ligase.
Collapse
Affiliation(s)
- Bing Lei
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, PR China
| | - Suyang Wang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, PR China
| | - Xiaomeng Zhang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, PR China
| | - Tianqi Chen
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, PR China
| | - Ying Lin
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, PR China.
| |
Collapse
|
2
|
Turgeman-Grott I, Arsenault D, Yahav D, Feng Y, Miezner G, Naki D, Peri O, Papke RT, Gogarten JP, Gophna U. Neighboring inteins interfere with one another's homing capacity. PNAS NEXUS 2023; 2:pgad354. [PMID: 38024399 PMCID: PMC10643990 DOI: 10.1093/pnasnexus/pgad354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/16/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Inteins are mobile genetic elements that invade conserved genes across all domains of life and viruses. In some instances, a single gene will have several intein insertion sites. In Haloarchaea, the minichromosome maintenance (MCM) protein at the core of replicative DNA helicase contains four intein insertion sites within close proximity, where two of these sites (MCM-a and MCM-d) are more likely to be invaded. A haloarchaeon that harbors both MCM-a and MCM-d inteins, Haloferax mediterranei, was studied in vivo to determine intein invasion dynamics and the interactions between neighboring inteins. Additionally, invasion frequencies and the conservation of insertion site sequences in 129 Haloferacales mcm homologs were analyzed to assess intein distribution across the order. We show that the inteins at MCM-a and MCM-d recognize and cleave their respective target sites and, in the event that only one empty intein invasion site is present, readily initiate homing (i.e. single homing). However, when two inteins are present co-homing into an intein-free target sequence is much less effective. The two inteins are more effective when invading alleles that already contain an intein at one of the two sites. Our in vivo and computational studies also support that having a proline in place of a serine as the first C-terminal extein residue of the MCM-d insertion site prevents successful intein splicing, but does not stop recognition of the insertion site by the intein's homing endonuclease.
Collapse
Affiliation(s)
- Israela Turgeman-Grott
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, 6997801 Tel Aviv, Israel
| | - Danielle Arsenault
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06268-3125, USA
| | - Dekel Yahav
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, 6997801 Tel Aviv, Israel
| | - Yutian Feng
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06268-3125, USA
| | - Guy Miezner
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, 6997801 Tel Aviv, Israel
| | - Doron Naki
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, 6997801 Tel Aviv, Israel
| | - Omri Peri
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, 6997801 Tel Aviv, Israel
| | - R Thane Papke
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06268-3125, USA
| | - Johann Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06268-3125, USA
- Institute for Systems Genomics, University of Connecticut, 67 North Eagleville Road, Storrs, CT 06268-3003, USA
| | - Uri Gophna
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, 6997801 Tel Aviv, Israel
| |
Collapse
|
3
|
Pasch T, Schröder A, Kattelmann S, Eisenstein M, Pietrokovski S, Kümmel D, Mootz HD. Structural and biochemical analysis of a novel atypically split intein reveals a conserved histidine specific to cysteine-less inteins. Chem Sci 2023; 14:5204-5213. [PMID: 37206380 PMCID: PMC10189870 DOI: 10.1039/d3sc01200j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/23/2023] [Indexed: 05/21/2023] Open
Abstract
Protein trans-splicing mediated by a split intein reconstitutes a protein backbone from two parts. This virtually traceless autoprocessive reaction provides the basis for numerous protein engineering applications. Protein splicing typically proceeds through two thioester or oxyester intermediates involving the side chains of cysteine or serine/threonine residues. A cysteine-less split intein has recently attracted particular interest as it can splice under oxidizing conditions and is orthogonal to disulfide or thiol bioconjugation chemistries. Here, we report the split PolB16 OarG intein, a second such cysteine-independent intein. As a unique trait, it is atypically split with a short intein-N precursor fragment of only 15 amino acids, the shortest characterized to date, which was chemically synthesized to enable protein semi-synthesis. By rational engineering we obtained a high-yielding, improved split intein mutant. Structural and mutational analysis revealed the dispensability of the usually crucial conserved motif N3 (block B) histidine as an obvious peculiar property. Unexpectedly, we identified a previously unnoticed histidine in hydrogen-bond forming distance to the catalytic serine 1 as critical for splicing. This histidine has been overlooked so far in multiple sequence alignments and is highly conserved only in cysteine-independent inteins as a part of a newly discovered motif NX. The motif NX histidine is thus likely of general importance to the specialized environment in the active site required in this intein subgroup. Together, our study advances the toolbox as well as the structural and mechanistic understanding of cysteine-less inteins.
Collapse
Affiliation(s)
- Tim Pasch
- Institute of Biochemistry, University of Münster Corrensstr. 36 48149 Münster Germany
| | - Alexander Schröder
- Institute of Biochemistry, University of Münster Corrensstr. 36 48149 Münster Germany
| | - Sabrina Kattelmann
- Institute of Biochemistry, University of Münster Corrensstr. 36 48149 Münster Germany
| | - Miriam Eisenstein
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot 76100 Israel
| | - Shmuel Pietrokovski
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot 76100 Israel
| | - Daniel Kümmel
- Institute of Biochemistry, University of Münster Corrensstr. 36 48149 Münster Germany
| | - Henning D Mootz
- Institute of Biochemistry, University of Münster Corrensstr. 36 48149 Münster Germany
| |
Collapse
|
4
|
Beyer HM, Iwaï H. Structural Basis for the Propagation of Homing Endonuclease-Associated Inteins. Front Mol Biosci 2022; 9:855511. [PMID: 35372505 PMCID: PMC8966425 DOI: 10.3389/fmolb.2022.855511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
Inteins catalyze their removal from a host protein through protein splicing. Inteins that contain an additional site-specific endonuclease domain display genetic mobility via a process termed “homing” and thereby act as selfish DNA elements. We elucidated the crystal structures of two archaeal inteins associated with an active or inactive homing endonuclease domain. This analysis illustrated structural diversity in the accessory domains (ACDs) associated with the homing endonuclease domain. To augment homing endonucleases with highly specific DNA cleaving activity using the intein scaffold, we engineered the ACDs and characterized their homing site recognition. Protein engineering of the ACDs in the inteins illuminated a possible strategy for how inteins could avoid their extinction but spread via the acquisition of a diverse accessory domain.
Collapse
Affiliation(s)
- Hannes M. Beyer
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Institute of Synthetic Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Hideo Iwaï
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- *Correspondence: Hideo Iwaï, or,
| |
Collapse
|
5
|
Mini-Intein Structures from Extremophiles Suggest a Strategy for Finding Novel Robust Inteins. Microorganisms 2021; 9:microorganisms9061226. [PMID: 34198729 PMCID: PMC8229266 DOI: 10.3390/microorganisms9061226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/26/2021] [Accepted: 06/02/2021] [Indexed: 11/28/2022] Open
Abstract
Inteins are prevalent among extremophiles. Mini-inteins with robust splicing properties are of particular interest for biotechnological applications due to their small size. However, biochemical and structural characterization has still been limited to a small number of inteins, and only a few serve as widely used tools in protein engineering. We determined the crystal structure of a naturally occurring Pol-II mini-intein from Pyrococcus horikoshii and compared all three mini-inteins found in the genome of P. horikoshii. Despite their similar sizes, the comparison revealed distinct differences in the insertions and deletions, implying specific evolutionary pathways from distinct ancestral origins. Our studies suggest that sporadically distributed mini-inteins might be more promising for further protein engineering applications than highly conserved mini-inteins. Structural investigations of additional inteins could guide the shortest path to finding novel robust mini-inteins suitable for various protein engineering purposes.
Collapse
|
6
|
Williams JE, Jaramillo MV, Li Z, Zhao J, Wang C, Li H, Mills KV. An alternative domain-swapped structure of the Pyrococcus horikoshii PolII mini-intein. Sci Rep 2021; 11:11680. [PMID: 34083592 PMCID: PMC8175363 DOI: 10.1038/s41598-021-91090-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/19/2021] [Indexed: 01/09/2023] Open
Abstract
Protein splicing is a post-translational process by which an intein catalyzes its own excision from flanking polypeptides, or exteins, concomitant with extein ligation. Many inteins have nested homing endonuclease domains that facilitate their propagation into intein-less alleles, whereas other inteins lack the homing endonuclease (HEN) and are called mini-inteins. The mini-intein that interrupts the DNA PolII of Pyrococcus horikoshii has a linker region in place of the HEN domain that is shorter than the linker in a closely related intein from Pyrococcus abyssi. The P. horikoshii PolII intein requires a higher temperature for catalytic activity and is more stable to digestion by the thermostable protease thermolysin, suggesting that it is more rigid than the P. abyssi intein. We solved a crystal structure of the intein precursor that revealed a domain-swapped dimer. Inteins found as domain swapped dimers have been shown to promote intein-mediated protein alternative splicing, but the solved P. horikoshii PolII intein structure has an active site unlikely to be catalytically competent.
Collapse
Affiliation(s)
- Jennie E Williams
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, MA, USA
| | - Mario V Jaramillo
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, MA, USA
| | - Zhong Li
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, 12208, USA
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Jing Zhao
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
- China Agricultural University, Beijing, China
| | - Chunyu Wang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Hongmin Li
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, 12208, USA
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA
| | - Kenneth V Mills
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, MA, USA.
| |
Collapse
|
7
|
Panda S, Nanda A, Nasker SS, Sen D, Mehra A, Nayak S. Metal effect on intein splicing: A review. Biochimie 2021; 185:53-67. [PMID: 33727137 DOI: 10.1016/j.biochi.2021.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 02/08/2023]
Abstract
Inteins are intervening polypeptides that interrupt the functional domains of several important proteins across the three domains of life. Inteins excise themselves from the precursor protein, ligating concomitant extein residues in a process called protein splicing. Post-translational auto-removal of inteins remain critical for the generation of active proteins. The perspective of inteins in science is a robust field of research, however fundamental studies centralized upon splicing regulatory mechanism are imperative for addressing more intricate issues. Controlled engineering of intein splicing has many applications; intein inhibition can facilitate novel drug design, while activation of intein splicing is exploited in protein purification. This paper provides a comprehensive review of the past and recent advances in the splicing regulation via metal-intein interaction. We compare the behavior of different metal ions on diverse intein systems. Though metals such as Zn, Cu, Pt, Cd, Co, Ni exhibit intein inhibitory effect heterogeneously on different inteins, divalent metal ions such as Ca and Mg fail to do so. The observed diversity in the metal-intein interaction arises mostly due to intein polymorphism and variations in atomic structure of metals. A mechanistic understanding of intein regulation by metals in native as well as synthetically engineered intein systems may yield potent intein inhibitors via direct or indirect approach.
Collapse
Affiliation(s)
- Sunita Panda
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India
| | - Ananya Nanda
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India
| | - Sourya Subhra Nasker
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India
| | - Debjani Sen
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India
| | - Ashwaria Mehra
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India
| | - Sasmita Nayak
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
8
|
Inteins in Science: Evolution to Application. Microorganisms 2020; 8:microorganisms8122004. [PMID: 33339089 PMCID: PMC7765530 DOI: 10.3390/microorganisms8122004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022] Open
Abstract
Inteins are mobile genetic elements that apply standard enzymatic strategies to excise themselves post-translationally from the precursor protein via protein splicing. Since their discovery in the 1990s, recent advances in intein technology allow for them to be implemented as a modern biotechnological contrivance. Radical improvement in the structure and catalytic framework of cis- and trans-splicing inteins devised the development of engineered inteins that contribute to various efficient downstream techniques. Previous literature indicates that implementation of intein-mediated splicing has been extended to in vivo systems. Besides, the homing endonuclease domain also acts as a versatile biotechnological tool involving genetic manipulation and control of monogenic diseases. This review orients the understanding of inteins by sequentially studying the distribution and evolution pattern of intein, thereby highlighting a role in genetic mobility. Further, we include an in-depth summary of specific applications branching from protein purification using self-cleaving tags to protein modification, post-translational processing and labelling, followed by the development of intein-based biosensors. These engineered inteins offer a disruptive approach towards research avenues like biomaterial construction, metabolic engineering and synthetic biology. Therefore, this linear perspective allows for a more comprehensive understanding of intein function and its diverse applications.
Collapse
|
9
|
Beyer HM, Virtanen SI, Aranko AS, Mikula KM, Lountos GT, Wlodawer A, Ollila OHS, Iwaï H. The Convergence of the Hedgehog/Intein Fold in Different Protein Splicing Mechanisms. Int J Mol Sci 2020; 21:ijms21218367. [PMID: 33171880 PMCID: PMC7664689 DOI: 10.3390/ijms21218367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/01/2020] [Accepted: 11/05/2020] [Indexed: 11/16/2022] Open
Abstract
Protein splicing catalyzed by inteins utilizes many different combinations of amino-acid types at active sites. Inteins have been classified into three classes based on their characteristic sequences. We investigated the structural basis of the protein splicing mechanism of class 3 inteins by determining crystal structures of variants of a class 3 intein from Mycobacterium chimaera and molecular dynamics simulations, which suggested that the class 3 intein utilizes a different splicing mechanism from that of class 1 and 2 inteins. The class 3 intein uses a bond cleavage strategy reminiscent of proteases but share the same Hedgehog/INTein (HINT) fold of other intein classes. Engineering of class 3 inteins from a class 1 intein indicated that a class 3 intein would unlikely evolve directly from a class 1 or 2 intein. The HINT fold appears as structural and functional solution for trans-peptidyl and trans-esterification reactions commonly exploited by diverse mechanisms using different combinations of amino-acid types for the active-site residues.
Collapse
Affiliation(s)
- Hannes M. Beyer
- Institute of Biotechnology, University of Helsinki, P.O. Box 65, FIN-00014 Helsinki, Finland; (H.M.B.); (S.I.V.); (A.S.A.); (K.M.M.); (O.H.S.O.)
| | - Salla I. Virtanen
- Institute of Biotechnology, University of Helsinki, P.O. Box 65, FIN-00014 Helsinki, Finland; (H.M.B.); (S.I.V.); (A.S.A.); (K.M.M.); (O.H.S.O.)
| | - A. Sesilja Aranko
- Institute of Biotechnology, University of Helsinki, P.O. Box 65, FIN-00014 Helsinki, Finland; (H.M.B.); (S.I.V.); (A.S.A.); (K.M.M.); (O.H.S.O.)
| | - Kornelia M. Mikula
- Institute of Biotechnology, University of Helsinki, P.O. Box 65, FIN-00014 Helsinki, Finland; (H.M.B.); (S.I.V.); (A.S.A.); (K.M.M.); (O.H.S.O.)
| | - George T. Lountos
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA;
| | - Alexander Wlodawer
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA;
| | - O. H. Samuli Ollila
- Institute of Biotechnology, University of Helsinki, P.O. Box 65, FIN-00014 Helsinki, Finland; (H.M.B.); (S.I.V.); (A.S.A.); (K.M.M.); (O.H.S.O.)
| | - Hideo Iwaï
- Institute of Biotechnology, University of Helsinki, P.O. Box 65, FIN-00014 Helsinki, Finland; (H.M.B.); (S.I.V.); (A.S.A.); (K.M.M.); (O.H.S.O.)
- Correspondence: ; Tel.: +358-2941-59752
| |
Collapse
|
10
|
Oeemig JS, Beyer HM, Aranko AS, Mutanen J, Iwaï H. Substrate specificities of inteins investigated by QuickDrop-cassette mutagenesis. FEBS Lett 2020; 594:3338-3355. [PMID: 32805768 DOI: 10.1002/1873-3468.13909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 01/21/2023]
Abstract
Inteins catalyze self-excision from host precursor proteins while concomitantly ligating the flanking substrates (exteins) with a peptide bond. Noncatalytic extein residues near the splice junctions, such as the residues at the -1 and +2 positions, often strongly influence the protein-splicing efficiency. The substrate specificities of inteins have not been studied for many inteins. We developed a convenient mutagenesis platform termed "QuickDrop"-cassette mutagenesis for investigating the influences of 20 amino acid types at the -1 and +2 positions of different inteins. We elucidated 17 different profiles of the 20 amino acid dependencies across different inteins. The substrate specificities will accelerate our understanding of the structure-function relationship at the splicing junctions for broader applications of inteins in biotechnology and molecular biosciences.
Collapse
Affiliation(s)
- Jesper S Oeemig
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Hannes M Beyer
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - A Sesilja Aranko
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Justus Mutanen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Hideo Iwaï
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Robinzon S, Cawood AR, Ruiz MA, Gophna U, Altman-Price N, Mills KV. Protein Splicing Activity of the Haloferax volcanii PolB-c Intein Is Sensitive to Homing Endonuclease Domain Mutations. Biochemistry 2020; 59:3359-3367. [PMID: 32822531 DOI: 10.1021/acs.biochem.0c00512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Inteins are selfish genetic elements residing in open reading frames that can splice post-translationally, resulting in the ligation of an uninterrupted, functional protein. Like other inteins, the DNA polymerase B (PolB) intein of the halophilic archaeon Haloferax volcanii has an active homing endonuclease (HEN) domain, facilitating its horizontal transmission. Previous work has shown that the presence of the PolB intein exerts a significant fitness cost on the organism compared to an intein-free isogenic H. volcanii. Here, we show that mutation of a conserved residue in the HEN domain not only reduces intein homing but also slows growth. Surprisingly, although this mutation is far from the protein splicing active site, it also significantly reduces in vitro protein splicing. Moreover, two additional HEN domain mutations, which could not be introduced to H. volcanii, presumably due to lethality, also eliminate protein splicing activity in vitro. These results suggest an interplay between HEN residues and the protein splicing domain, despite an over 35 Å separation in a PolB intein homology model. The combination of in vivo and in vitro evidence strongly supports a model of codependence between the self-splicing domain and the HEN domain that has been alluded to by previous in vitro studies of protein splicing with HEN domain-containing inteins.
Collapse
Affiliation(s)
- Shachar Robinzon
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Alexandra R Cawood
- Department of Chemistry, College of the Holy Cross, Worcester, Massachusetts 01610, United States
| | - Mercedes A Ruiz
- Department of Chemistry, College of the Holy Cross, Worcester, Massachusetts 01610, United States
| | - Uri Gophna
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Neta Altman-Price
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.,The Open University, Raanana 43107, Israel
| | - Kenneth V Mills
- Department of Chemistry, College of the Holy Cross, Worcester, Massachusetts 01610, United States
| |
Collapse
|
12
|
Chiarolanzio KC, Pusztay JM, Chavez A, Zhao J, Xie J, Wang C, Mills KV. Allosteric Influence of Extremophile Hairpin Motif Mutations on the Protein Splicing Activity of a Hyperthermophilic Intein. Biochemistry 2020; 59:2459-2467. [PMID: 32559373 DOI: 10.1021/acs.biochem.0c00348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein splicing is a post-translational process mediated by an intein, whereby the intein excises itself from a precursor protein with concomitant ligation of the two flanking polypeptides. The intein that interrupts the DNA polymerase II in the extreme hyperthermophile Pyrococcus abyssi has a β-hairpin that extends the central β-sheet of the intein. This β-hairpin is mostly found in inteins from archaea, as well as halophilic eubacteria, and is thus called the extremophile hairpin (EXH) motif. The EXH is stabilized by multiple favorable interactions, including electrostatic interactions involving Glu29, Glu31, and Arg40. Mutations of these residues diminish the extent of N-terminal cleavage and the extent of protein splicing, likely by interfering with the coordination of the steps of splicing. These same mutations decrease the global stability of the intein fold as measured by susceptibility to thermolysin cleavage. 15N-1H heteronuclear single-quantum coherence demonstrated that these mutations altered the chemical environment of active site residues such as His93 (B-block histidine) and Ser166 (F-block residue 4). This work again underscores the connected and coordinated nature of intein conformation and dynamics, where remote mutations can disturb a finely tuned interaction network to inhibit or enhance protein splicing.
Collapse
Affiliation(s)
- Kathryn C Chiarolanzio
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, Massachusetts 01610, United States
| | - Jennifer M Pusztay
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, Massachusetts 01610, United States
| | - Angel Chavez
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, Massachusetts 01610, United States
| | - Jing Zhao
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Jian Xie
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Chunyu Wang
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Kenneth V Mills
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, Massachusetts 01610, United States
| |
Collapse
|
13
|
Beyer HM, Mikula KM, Li M, Wlodawer A, Iwaï H. The crystal structure of the naturally split gp41-1 intein guides the engineering of orthogonal split inteins from cis-splicing inteins. FEBS J 2020; 287:1886-1898. [PMID: 31665813 PMCID: PMC7190452 DOI: 10.1111/febs.15113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/01/2019] [Accepted: 10/29/2019] [Indexed: 01/09/2023]
Abstract
Protein trans-splicing catalyzed by split inteins has increasingly become useful as a protein engineering tool. We solved the 1.0 Å-resolution crystal structure of a fused variant from the naturally split gp41-1 intein, previously identified from environmental metagenomic sequence data. The structure of the 125-residue gp41-1 intein revealed a compact pseudo-C2-symmetry commonly found in the Hedgehog/Intein superfamily with extensive charge-charge interactions between the split N- and C-terminal intein fragments that are common among naturally occurring split inteins. We successfully created orthogonal split inteins by engineering a similar charge network into the same region of a cis-splicing intein. This strategy could be applicable for creating novel natural-like split inteins from other, more prevalent cis-splicing inteins. DATABASE: Structural data are available in the RCSB Protein Data Bank under the accession number 6QAZ.
Collapse
Affiliation(s)
- Hannes Michael Beyer
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Kornelia Malgorzata Mikula
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Mi Li
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
- Basic Science Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Alexander Wlodawer
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Hideo Iwaï
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
14
|
Crystal structures of CDC21-1 inteins from hyperthermophilic archaea reveal the selection mechanism for the highly conserved homing endonuclease insertion site. Extremophiles 2019; 23:669-679. [PMID: 31363851 PMCID: PMC6801210 DOI: 10.1007/s00792-019-01117-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/09/2019] [Indexed: 11/27/2022]
Abstract
Self-splicing inteins are mobile genetic elements invading host genes via nested homing endonuclease (HEN) domains. All HEN domains residing within inteins are inserted at a highly conserved insertion site. A purifying selection mechanism directing the location of the HEN insertion site has not yet been identified. In this work, we solved the three-dimensional crystal structures of two inteins inserted in the cell division control protein 21 of the hyperthermophilic archaea Pyrococcus abyssi and Pyrococcus horikoshii. A comparison between the structures provides the structural basis for the thermo-stabilization mechanism of inteins that have lost the HEN domain during evolution. The presence of an entire extein domain in the intein structure from Pyrococcus horikoshii suggests the selection mechanism for the highly conserved HEN insertion point.
Collapse
|
15
|
Abstract
Inteins are intervening proteins that undergo an autocatalytic splicing reaction that ligates flanking host protein sequences termed exteins. Some intein-containing proteins have evolved to couple splicing to environmental signals; this represents a new form of posttranslational regulation. Of particular interest is RadA from the archaeon Pyrococcus horikoshii, for which long-range intein-extein interactions block splicing, requiring temperature and single-stranded DNA (ssDNA) substrate to splice rapidly and accurately. Here, we report that splicing of the intein-containing RadA from another archaeon, Thermococcus sibericus, is activated by significantly lower temperatures than is P. horikoshii RadA, consistent with differences in their growth environments. Investigation into variations between T. sibericus and P. horikoshii RadA inteins led to the discovery that a nonconserved region (NCR) of the intein, a flexible loop where a homing endonuclease previously resided, is critical to splicing. Deletion of the NCR leads to a substantial loss in the rate and accuracy of P. horikoshii RadA splicing only within native exteins. The influence of the NCR deletion can be largely overcome by ssDNA, demonstrating that the splicing-competent conformation can be achieved. We present a model whereby the NCR is a flexible hinge which acts as a switch by controlling distant intein-extein interactions that inhibit active site assembly. These results speak to the repurposing of the vestigial endonuclease loop to control an intein-extein partnership, which ultimately allows exquisite adaptation of protein splicing upon changes in the environment. Inteins are mobile genetic elements that interrupt coding sequences (exteins) and are removed by protein splicing. They are abundant elements in microbes, and recent work has demonstrated that protein splicing can be controlled by environmental cues, including the substrate of the intein-containing protein. Here, we describe an intein-extein collaboration that controls temperature-induced splicing of RadA from two archaea and how variation in this intein-extein partnership results in fine-tuning of splicing to closely match the environment. Specifically, we found that a small sequence difference between the two inteins, a flexible loop that likely once housed a homing endonuclease used for intein mobility, acts as a switch to control intein-extein interactions that block splicing. Our results argue strongly that some inteins have evolved away from a purely parasitic lifestyle to control the activity of host proteins, representing a new form of posttranslational regulation that is potentially widespread in the microbial world.
Collapse
|