1
|
Min D. Folding speeds of helical membrane proteins. Biochem Soc Trans 2024; 52:491-501. [PMID: 38385525 PMCID: PMC10903471 DOI: 10.1042/bst20231315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Membrane proteins play key roles in human health, contributing to cellular signaling, ATP synthesis, immunity, and metabolite transport. Protein folding is the pivotal early step for their proper functioning. Understanding how this class of proteins adopts their native folds could potentially aid in drug design and therapeutic interventions for misfolding diseases. It is an essential piece in the whole puzzle to untangle their kinetic complexities, such as how rapid membrane proteins fold, how their folding speeds are influenced by changing conditions, and what mechanisms are at play. This review explores the folding speed aspect of multipass α-helical membrane proteins, encompassing plausible folding scenarios based on the timing and stability of helix packing interactions, methods for characterizing the folding time scales, relevant folding steps and caveats for interpretation, and potential implications. The review also highlights the recent estimation of the so-called folding speed limit of helical membrane proteins and discusses its consequent impact on the current picture of folding energy landscapes.
Collapse
Affiliation(s)
- Duyoung Min
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
- Center for Wave Energy Materials, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
2
|
Hartmann A, Sreenivasa K, Schenkel M, Chamachi N, Schake P, Krainer G, Schlierf M. An automated single-molecule FRET platform for high-content, multiwell plate screening of biomolecular conformations and dynamics. Nat Commun 2023; 14:6511. [PMID: 37845199 PMCID: PMC10579363 DOI: 10.1038/s41467-023-42232-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
Single-molecule FRET (smFRET) has become a versatile tool for probing the structure and functional dynamics of biomolecular systems, and is extensively used to address questions ranging from biomolecular folding to drug discovery. Confocal smFRET measurements are amongst the widely used smFRET assays and are typically performed in a single-well format. Thus, sampling of many experimental parameters is laborious and time consuming. To address this challenge, we extend here the capabilities of confocal smFRET beyond single-well measurements by integrating a multiwell plate functionality to allow for continuous and automated smFRET measurements. We demonstrate the broad applicability of the multiwell plate assay towards DNA hairpin dynamics, protein folding, competitive and cooperative protein-DNA interactions, and drug-discovery, revealing insights that would be very difficult to achieve with conventional single-well format measurements. For the adaptation into existing instrumentations, we provide a detailed guide and open-source acquisition and analysis software.
Collapse
Affiliation(s)
- Andreas Hartmann
- B CUBE Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307, Dresden, Germany.
| | - Koushik Sreenivasa
- B CUBE Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307, Dresden, Germany
- Department of Bionanoscience, Delft University of Technology, 2629HZ, Delft, Netherlands
| | - Mathias Schenkel
- B CUBE Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307, Dresden, Germany
| | - Neharika Chamachi
- B CUBE Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307, Dresden, Germany
| | - Philipp Schake
- B CUBE Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307, Dresden, Germany
| | - Georg Krainer
- B CUBE Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307, Dresden, Germany
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/III, 8010, Graz, Austria
| | - Michael Schlierf
- B CUBE Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307, Dresden, Germany.
- Physics of Life, DFG Cluster of Excellence, TU Dresden, 01062, Dresden, Germany.
- Faculty of Physics, TU Dresden, 01062, Dresden, Germany.
| |
Collapse
|
3
|
Abstract
SignificanceOuter membrane porins play a crucial role in processes as varied as energy production, photosynthesis, and nutrient transport. They act as the gatekeepers between a gram-negative bacterium and its environment. Understanding how these proteins fold and function is important in improving our understanding and control of these processes. Here we use single-molecule methods to help resolve the apparent differences between the fast folding expected on a molecular scale and the slow kinetics observed in ensemble measurements in the laboratory.
Collapse
|
4
|
Chaperones Skp and SurA dynamically expand unfolded OmpX and synergistically disassemble oligomeric aggregates. Proc Natl Acad Sci U S A 2022; 119:2118919119. [PMID: 35217619 PMCID: PMC8892499 DOI: 10.1073/pnas.2118919119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 11/18/2022] Open
Abstract
Outer membrane proteins (OMPs) are crucial for the survival of bacteria. The two chaperones 17-kilodalton protein (Skp) and survival factor A (SurA) play key roles in OMP maturation by keeping unfolded OMP proteins soluble in the periplasm. However, their functionalities are incompletely understood. Here, we establish connections between structural and energetic features employed by the two chaperones when interacting with unfolded OmpX. We find that expansion, accompanied with fast polypeptide chain reconfiguration, prevents unfolded OmpX from misfolding and aggregating. Moreover, chaperone interaction with unfolded OmpX is thermodynamically calibrated, allowing for a fine-tuned association of chaperones with OMPs in the adenosine triphosphate-depleted periplasm. We further discovered that Skp and SurA act together as disaggregases and are able to disassemble oligomeric OMP aggregates, revealing remarkable functionalities of this periplasmic chaperone system. Periplasmic chaperones 17-kilodalton protein (Skp) and survival factor A (SurA) are essential players in outer membrane protein (OMP) biogenesis. They prevent unfolded OMPs from misfolding during their passage through the periplasmic space and aid in the disassembly of OMP aggregates under cellular stress conditions. However, functionally important links between interaction mechanisms, structural dynamics, and energetics that underpin both Skp and SurA associations with OMPs have remained largely unresolved. Here, using single-molecule fluorescence spectroscopy, we dissect the conformational dynamics and thermodynamics of Skp and SurA binding to unfolded OmpX and explore their disaggregase activities. We show that both chaperones expand unfolded OmpX distinctly and induce microsecond chain reconfigurations in the client OMP structure. We further reveal that Skp and SurA bind their substrate in a fine-tuned thermodynamic process via enthalpy–entropy compensation. Finally, we observed synergistic activity of both chaperones in the disaggregation of oligomeric OmpX aggregates. Our findings provide an intimate view into the multifaceted functionalities of Skp and SurA and the fine-tuned balance between conformational flexibility and underlying energetics in aiding chaperone action during OMP biogenesis.
Collapse
|
5
|
Jurczak P, Sikorska E, Czaplewska P, Rodziewicz-Motowidlo S, Zhukov I, Szymanska A. The Influence of the Mixed DPC:SDS Micelle on the Structure and Oligomerization Process of the Human Cystatin C. MEMBRANES 2020; 11:17. [PMID: 33374409 PMCID: PMC7824358 DOI: 10.3390/membranes11010017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 11/23/2022]
Abstract
Human cystatin C (hCC), a member of the superfamily of papain-like cysteine protease inhibitors, is the most widespread cystatin in human body fluids. Physiologically active hCC is a monomer, which dimerization and oligomerization lead to the formation of the inactive, insoluble amyloid form of the protein, strictly associated with cerebral amyloid angiopathy, a severe state causing death among young patients. It is known, that biological membranes may accelerate the oligomerization processes of amyloidogenic proteins. Therefore, in this study, we describe an influence of membrane mimetic environment-mixed dodecylphosphocholine:sodium dodecyl sulfate (DPC:SDS) micelle (molar ratio 5:1)-on the effect of the hCC oligomerization. The hCC-micelle interactions were analyzed with size exclusion chromatography, circular dichroism, and nuclear magnetic resonance spectroscopy. The experiments were performed on the wild-type (WT) cystatin C, and two hCC variants-V57P and V57G. Collected experimental data were supplemented with molecular dynamic simulations, making it possible to highlight the binding interface and select the residues involved in interactions with the micelle. Obtained data shows that the mixed DPC:SDS micelle does not accelerate the oligomerization of protein and even reverses the hCC dimerization process.
Collapse
Affiliation(s)
- Przemyslaw Jurczak
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (E.S.); (S.R.-M.)
| | - Emilia Sikorska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (E.S.); (S.R.-M.)
| | - Paulina Czaplewska
- Intercollegiate Faculty of Biotechnology UG & MUG, University of Gdańsk, Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland;
| | | | - Igor Zhukov
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, 02-106 Warszawa, Poland
| | - Aneta Szymanska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (E.S.); (S.R.-M.)
| |
Collapse
|
6
|
Krainer G, Hartmann A, Bogatyr V, Nielsen J, Schlierf M, Otzen DE. SDS-induced multi-stage unfolding of a small globular protein through different denatured states revealed by single-molecule fluorescence. Chem Sci 2020; 11:9141-9153. [PMID: 34123163 PMCID: PMC8163379 DOI: 10.1039/d0sc02100h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/07/2020] [Indexed: 12/03/2022] Open
Abstract
Ionic surfactants such as sodium dodecyl sulfate (SDS) unfold proteins in a much more diverse yet effective way than chemical denaturants such as guanidium chloride (GdmCl). But how these unfolding processes compare on a molecular level is poorly understood. Here, we address this question by scrutinising the unfolding pathway of the globular protein S6 in SDS and GdmCl with single-molecule Förster resonance energy transfer (smFRET) spectroscopy. We show that the unfolding mechanism in SDS is strikingly different and convoluted in comparison to denaturation in GdmCl. In contrast to the reversible two-state unfolding behaviour in GdmCl characterised by kinetics on the timescale of seconds, SDS demonstrated not one, but four distinct regimes of interactions with S6, dependent on the surfactant concentration. At ≤1 mM SDS, S6 and surfactant molecules form quasi-micelles on a minute timescale; at millimolar [SDS], the protein denatures through an unfolded/denatured ensemble of highly heterogeneous states on a multi-second timescale; at tens of millimolar of SDS, the protein unfolds into a micelle-packed conformation on the second timescale; and >50 mM SDS, the protein unfolds with millisecond timescale dynamics. We propose a detailed model for multi-stage unfolding of S6 in SDS, which involves at least three different types of denatured states with different level of compactness and dynamics and a continually changing landscape of interactions between protein and surfactant. Our results highlight the great potential of single-molecule fluorescence as a direct probe of nanoscale protein structure and dynamics in chemically complex surfactant environments.
Collapse
Affiliation(s)
- Georg Krainer
- B CUBE - Center for Molecular Bioengineering, TU Dresden Tatzberg 41 01307 Dresden Germany
| | - Andreas Hartmann
- B CUBE - Center for Molecular Bioengineering, TU Dresden Tatzberg 41 01307 Dresden Germany
| | - Vadim Bogatyr
- B CUBE - Center for Molecular Bioengineering, TU Dresden Tatzberg 41 01307 Dresden Germany
| | - Janni Nielsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Michael Schlierf
- B CUBE - Center for Molecular Bioengineering, TU Dresden Tatzberg 41 01307 Dresden Germany
- Cluster of Excellence Physics of Life, TU Dresden 01062 Dresden Germany
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| |
Collapse
|
7
|
Krainer G, Keller S, Schlierf M. Structural dynamics of membrane-protein folding from single-molecule FRET. Curr Opin Struct Biol 2019; 58:124-137. [DOI: 10.1016/j.sbi.2019.05.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/27/2019] [Indexed: 12/15/2022]
|
8
|
Barth A, Voith von Voithenberg L, Lamb DC. Quantitative Single-Molecule Three-Color Förster Resonance Energy Transfer by Photon Distribution Analysis. J Phys Chem B 2019; 123:6901-6916. [PMID: 31117611 DOI: 10.1021/acs.jpcb.9b02967] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Single-molecule Förster resonance energy transfer (FRET) is a powerful tool to study conformational dynamics of biomolecules. Using solution-based single-pair FRET by burst analysis, conformational heterogeneities and fluctuations of fluorescently labeled proteins or nucleic acids can be studied by monitoring a single distance at a time. Three-color FRET is sensitive to three distances simultaneously and can thus elucidate complex coordinated motions within single molecules. While three-color FRET has been applied on the single-molecule level before, a detailed quantitative description of the obtained FRET efficiency distributions is still missing. Direct interpretation of three-color FRET data is additionally complicated by an increased shot noise contribution when converting photon counts to FRET efficiencies. However, to address the question of coordinated motion, it is of special interest to extract information about the underlying distance heterogeneity, which is not easily extracted from the FRET efficiency histograms directly. Here, we present three-color photon distribution analysis (3C-PDA), a method to extract distributions of interdye distances from three-color FRET measurements. We present a model for diffusion-based three-color FRET experiments and apply Bayesian inference to extract information about the physically relevant distance heterogeneity in the sample. The approach is verified using simulated data sets and experimentally applied to triple-labeled DNA duplexes. Finally, three-color FRET experiments on the Hsp70 chaperone BiP reveal conformational coordinated changes between individual domains. The possibility to address the co-occurrence of intramolecular distances makes 3C-PDA a powerful method to study the coordination of domain motions within biomolecules undergoing conformational dynamics.
Collapse
Affiliation(s)
- Anders Barth
- Department of Chemistry, Center for Integrated Protein Science Munich, Nanosystems Initiative Munich and Center for Nanoscience , Ludwig-Maximilians-Universität München , Butenandtstr. 5-13 , 81377 Munich , Germany
| | - Lena Voith von Voithenberg
- Department of Chemistry, Center for Integrated Protein Science Munich, Nanosystems Initiative Munich and Center for Nanoscience , Ludwig-Maximilians-Universität München , Butenandtstr. 5-13 , 81377 Munich , Germany
| | - Don C Lamb
- Department of Chemistry, Center for Integrated Protein Science Munich, Nanosystems Initiative Munich and Center for Nanoscience , Ludwig-Maximilians-Universität München , Butenandtstr. 5-13 , 81377 Munich , Germany
| |
Collapse
|
9
|
Huang H, Ge B, Zhang S, Li J, Sun C, Yue T, Huang F. Using Fluorescence Quenching Titration to Determine the Orientation of a Model Transmembrane Protein in Mimic Membranes. MATERIALS 2019; 12:ma12030349. [PMID: 30678051 PMCID: PMC6384929 DOI: 10.3390/ma12030349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 11/21/2022]
Abstract
After synthesis of transmembrane proteins (TMPs), they are transferred and inserted into plasma membranes to play biological functions. Crucially, orientation of TMPs in membranes determines whether they have biological activities. In cellular environments, a number of cofactors, such as translocon, can assist TMPs to be inserted into membranes in defined orientations. During in vitro reconstitution of TMPs with mimic membranes, both insertion and orientation of TMPs are primarily determined by interactions with the membrane. Yet the knowledge is limited, hindering the in vitro applications of TMPs. Here, we take Bacteriorhodopsin (bR) as a model TMP, using fluorescence quenching titration experiment to identify orientation of bR in mimic membranes, examining effects of a number of factors, including lipid composition, pH value, ionic strength and membrane curvature. The most effective determinant is the lipid type, which modulates insertion and orientation of bR in membranes by changing the membrane surface charge and the membrane fluidity. Both the pH value and the ionic strength play secondary roles by tuning the nature of the electrostatic interaction. The membrane curvature was found to have a minor effect on orientation of bR in membranes. By comparing orientations of bR in folded and unfolded states, no obvious change was observed, informing that nascent proteins could be inserted into membranes in defined orientations before folding into the native state inside the membrane.
Collapse
Affiliation(s)
- Haihong Huang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China.
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Baosheng Ge
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Shuai Zhang
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Jiqiang Li
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Chenghao Sun
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Tongtao Yue
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China.
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China.
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|
10
|
Frotscher E, Krainer G, Hartmann A, Schlierf M, Keller S. Conformational Dynamics Govern the Free-Energy Landscape of a Membrane-Interacting Protein. ACS OMEGA 2018; 3:12026-12032. [PMID: 31459283 PMCID: PMC6690567 DOI: 10.1021/acsomega.8b01609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/11/2018] [Indexed: 05/08/2023]
Abstract
The equilibrium stabilities and the folding rates of membrane-bound proteins are determined by hydrophobic and polar intermolecular contacts with their environment as well as by intramolecular packing and conformational dynamics. The contributions of these factors, however, remain elusive and might vary considerably among proteins. Mistic from Bacillus subtilis is a particularly intriguing example of an α-helical protein that associates with membranes in spite of its unusual hydrophilicity. In micelles, Mistic is stabilized by hydrophobic and polar interactions with detergents, but it is unclear whether and how these intermolecular contacts are coupled to structural and dynamic adaptations of the protein itself. Here, we investigated the packing and the conformational dynamics of Mistic as functions of detergent headgroup chemistry and chain length, employing single-molecule Förster resonance energy transfer spectroscopy and time-resolved intrinsic tryptophan fluorescence spectroscopy. Surprisingly, in nonionic detergents, more effective hydrophobic burial and, thus, greater protein stability with increasing hydrophobic micellar thickness were accompanied by a gradual loosening of the helical bundle. By contrast, Mistic was found to assume a stable, compact fold in zwitterionic detergents that allowed faster dynamics on the nanosecond timescale. Thus, intramolecular packing per se is insufficient for conferring high protein stability; instead, enhanced nanosecond dynamics and, consequently, greater conformational entropy in the compact folded state account for Mistic's high equilibrium stability and fast folding rates in zwitterionic micelles even at the expense of less effective hydrophobic burial.
Collapse
Affiliation(s)
- Erik Frotscher
- Molecular
Biophysics, Technische Universität
Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
| | - Georg Krainer
- Molecular
Biophysics, Technische Universität
Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
- B
CUBE − Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstr. 18, 01307 Dresden, Germany
| | - Andreas Hartmann
- B
CUBE − Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstr. 18, 01307 Dresden, Germany
| | - Michael Schlierf
- B
CUBE − Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstr. 18, 01307 Dresden, Germany
- E-mail: (M.S.)
| | - Sandro Keller
- Molecular
Biophysics, Technische Universität
Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
- E-mail: (S.K.)
| |
Collapse
|
11
|
A minimal helical-hairpin motif provides molecular-level insights into misfolding and pharmacological rescue of CFTR. Commun Biol 2018; 1:154. [PMID: 30302398 PMCID: PMC6162264 DOI: 10.1038/s42003-018-0153-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/24/2018] [Indexed: 12/11/2022] Open
Abstract
Our meagre understanding of CFTR misfolding and its reversal by small-molecule correctors hampers the development of mechanism-based therapies of cystic fibrosis. Here we exploit a helical-hairpin construct—the simplest proxy of membrane-protein tertiary contacts—containing CFTR’s transmembrane helices 3 and 4 and its corresponding disease phenotypic mutant V232D to gain molecular-level insights into CFTR misfolding and drug rescue by the corrector Lumacaftor. Using a single-molecule FRET approach to study hairpin conformations in lipid bilayers, we find that the wild-type hairpin is well folded, whereas the V232D mutant assumes an open conformation in bilayer thicknesses mimicking the endoplasmic reticulum. Addition of Lumacaftor reverses the aberrant opening of the mutant hairpin to restore a compact state as in the wild type. The observed membrane escape of the V232D hairpin and its reversal by Lumacaftor complement cell-based analyses of the full-length protein, thereby providing in vivo and in vitro correlates of CFTR misfolding and drug-action mechanisms. Georg Krainer and Antoine Treff et al. use a helical-hairpin construct derived from the cystic fibrosis transmembrane conductance regulator (CFTR) to investigate misfolding caused by the disease-linked V232D mutation. Using single-molecule FRET, they show that the V232D hairpin assumes an open conformation in lipid bilayers, which is reversed by the pharmacological corrector Lumacaftor.
Collapse
|
12
|
Hartmann A, Berndt F, Ollmann S, Krainer G, Schlierf M. In situ temperature monitoring in single-molecule FRET experiments. J Chem Phys 2018; 148:123330. [DOI: 10.1063/1.5008966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Andreas Hartmann
- B CUBE–Center for Molecular Bioengineering, TU Dresden, Arnoldstr. 18, 01307 Dresden, Germany
| | - Frederic Berndt
- B CUBE–Center for Molecular Bioengineering, TU Dresden, Arnoldstr. 18, 01307 Dresden, Germany
| | - Simon Ollmann
- B CUBE–Center for Molecular Bioengineering, TU Dresden, Arnoldstr. 18, 01307 Dresden, Germany
| | - Georg Krainer
- B CUBE–Center for Molecular Bioengineering, TU Dresden, Arnoldstr. 18, 01307 Dresden, Germany
| | - Michael Schlierf
- B CUBE–Center for Molecular Bioengineering, TU Dresden, Arnoldstr. 18, 01307 Dresden, Germany
| |
Collapse
|
13
|
Zhang Y, Ha T, Marqusee S. Editorial Overview: Single-Molecule Approaches up to Difficult Challenges in Folding and Dynamics. J Mol Biol 2018; 430:405-408. [PMID: 29288633 PMCID: PMC5858691 DOI: 10.1016/j.jmb.2017.12.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yongli Zhang
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, United States.
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Howard Hughes Medical Institute, Baltimore, MD 21205, United States; Department of Biophysics, Johns Hopkins University, Howard Hughes Medical Institute, Baltimore, MD 21205, United States; Department of Biomedical Engineering, Johns Hopkins University, Howard Hughes Medical Institute, Baltimore, MD 21205, United States.
| | - Susan Marqusee
- Department of Molecular & Cell Biology, Institute for Quantitative Biosciences (QB3)-Berkeley, University of California, Berkeley, Berkeley, CA 94720, United States.
| |
Collapse
|