1
|
Zhang Y, Ma L, Bao H. Energetics, kinetics, and pathways of SNARE assembly in membrane fusion. Crit Rev Biochem Mol Biol 2022; 57:443-460. [PMID: 36151854 PMCID: PMC9588726 DOI: 10.1080/10409238.2022.2121804] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Fusion of transmitter-containing vesicles with plasma membranes at the synaptic and neuromuscular junctions mediates neurotransmission and muscle contractions, respectively, thereby underlying all thoughts and actions. The fusion process is driven by the coupled folding and assembly of three synaptic SNARE proteins--syntaxin-1 and SNAP-25 on the target plasma membrane (t-SNAREs) and VAMP2 on the vesicular membrane (v-SNARE) into a four-helix bundle. Their assembly is chaperoned by Munc18-1 and many other proteins to achieve the speed and accuracy required for neurotransmission. However, the physiological pathway of SNARE assembly and its coupling to membrane fusion remains unclear. Here, we review recent progress in understanding SNARE assembly and membrane fusion, with a focus on results obtained by single-molecule manipulation approaches and electric recordings of single fusion pores. We describe two pathways of synaptic SNARE assembly, their associated intermediates, energetics, and kinetics. Assembly of the three SNAREs in vitro begins with the formation of a t-SNARE binary complex, on which VAMP2 folds in a stepwise zipper-like fashion. Munc18-1 significantly alters the SNARE assembly pathway: syntaxin-1 and VAMP2 first bind on the surface of Munc18-1 to form a template complex, with which SNAP-25 associates to conclude SNARE assembly and displace Munc18-1. During membrane fusion, multiple trans-SNARE complexes cooperate to open a dynamic fusion pore in a manner dependent upon their copy number and zippering states. Together, these results demonstrate that stepwise and cooperative SNARE assembly drive stagewise membrane fusion.
Collapse
Affiliation(s)
- Yongli Zhang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA;,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA;,Conatct: and
| | - Lu Ma
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA;,Present address: Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Huan Bao
- Department of Molecular Medicine, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida, 33458,Conatct: and
| |
Collapse
|
2
|
Tao Y, Xie J, Zhong Q, Wang Y, Zhang S, Luo F, Wen F, Xie J, Zhao J, Sun X, Long H, Ma J, Zhang Q, Long J, Fang X, Lu Y, Li D, Li M, Zhu J, Sun B, Li G, Diao J, Liu C. A novel partially open state of SHP2 points to a "multiple gear" regulation mechanism. J Biol Chem 2021; 296:100538. [PMID: 33722610 PMCID: PMC8054191 DOI: 10.1016/j.jbc.2021.100538] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 03/03/2021] [Accepted: 03/10/2021] [Indexed: 11/14/2022] Open
Abstract
The protein tyrosine phosphatase SHP2 mediates multiple signal transductions in various cellular pathways, controlled by a variety of upstream inputs. SHP2 dysregulation is causative of different types of cancers and developmental disorders, making it a promising drug target. However, how SHP2 is modulated by its different regulators remains largely unknown. Here, we use single-molecule fluorescence resonance energy transfer and molecular dynamics simulations to investigate this question. We identify a partially open, semiactive conformation of SHP2 that is intermediate between the known open and closed states. We further demonstrate a “multiple gear” regulatory mechanism, in which different activators (e.g., insulin receptor substrate-1 and CagA), oncogenic mutations (e.g., E76A), and allosteric inhibitors (e.g., SHP099) can shift the equilibrium of the three conformational states and regulate SHP2 activity to different levels. Our work reveals the essential role of the intermediate state in fine-tuning the activity of SHP2, which may provide new opportunities for drug development for relevant cancers.
Collapse
Affiliation(s)
- Youqi Tao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Jingfei Xie
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Qinglu Zhong
- University of the Chinese Academy of Sciences, Beijing, China; Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yongyao Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Feng Luo
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Fengcai Wen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jingjing Xie
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Jiawei Zhao
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaoou Sun
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Houfang Long
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Junfeng Ma
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qian Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xianyang Fang
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ying Lu
- University of the Chinese Academy of Sciences, Beijing, China; Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Li
- University of the Chinese Academy of Sciences, Beijing, China; Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Jidong Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Bo Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Guohui Li
- University of the Chinese Academy of Sciences, Beijing, China; Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; University of the Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Single-molecule studies of amyloid proteins: from biophysical properties to diagnostic perspectives. Q Rev Biophys 2020; 53:e12. [PMID: 33148356 DOI: 10.1017/s0033583520000086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In neurodegenerative diseases, a wide range of amyloid proteins or peptides such as amyloid-beta and α-synuclein fail to keep native functional conformations, followed by misfolding and self-assembling into a diverse array of aggregates. The aggregates further exert toxicity leading to the dysfunction, degeneration and loss of cells in the affected organs. Due to the disordered structure of the amyloid proteins, endogenous molecules, such as lipids, are prone to interact with amyloid proteins at a low concentration and influence amyloid cytotoxicity. The heterogeneity of amyloid proteinscomplicates the understanding of the amyloid cytotoxicity when relying only on conventional bulk and ensemble techniques. As complementary tools, single-molecule techniques (SMTs) provide novel insights into the different subpopulations of a heterogeneous amyloid mixture as well as the cytotoxicity, in particular as involved in lipid membranes. This review focuses on the recent advances of a series of SMTs, including single-molecule fluorescence imaging, single-molecule force spectroscopy and single-nanopore electrical recording, for the understanding of the amyloid molecular mechanism. The working principles, benefits and limitations of each technique are discussed and compared in amyloid protein related studies.. We also discuss why SMTs show great potential and are worthy of further investigation with feasibility studies as diagnostic tools of neurodegenerative diseases and which limitations are to be addressed.
Collapse
|