1
|
Arianna GA, Korzhnev DM. Protein Assemblies in Translesion Synthesis. Genes (Basel) 2024; 15:832. [PMID: 39062611 PMCID: PMC11276120 DOI: 10.3390/genes15070832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Translesion synthesis (TLS) is a mechanism of DNA damage tolerance utilized by eukaryotic cells to replicate DNA across lesions that impede the high-fidelity replication machinery. In TLS, a series of specialized DNA polymerases are employed, which recognize specific DNA lesions, insert nucleotides across the damage, and extend the distorted primer-template. This allows cells to preserve genetic integrity at the cost of mutations. In humans, TLS enzymes include the Y-family, inserter polymerases, Polη, Polι, Polκ, Rev1, and the B-family extender polymerase Polζ, while in S. cerevisiae only Polη, Rev1, and Polζ are present. To bypass DNA lesions, TLS polymerases cooperate, assembling into a complex on the eukaryotic sliding clamp, PCNA, termed the TLS mutasome. The mutasome assembly is contingent on protein-protein interactions (PPIs) between the modular domains and subunits of TLS enzymes, and their interactions with PCNA and DNA. While the structural mechanisms of DNA lesion bypass by the TLS polymerases and PPIs of their individual modules are well understood, the mechanisms by which they cooperate in the context of TLS complexes have remained elusive. This review focuses on structural studies of TLS polymerases and describes the case of TLS holoenzyme assemblies in action emerging from recent high-resolution Cryo-EM studies.
Collapse
Affiliation(s)
| | - Dmitry M. Korzhnev
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030, USA;
| |
Collapse
|
2
|
Dash RC, Hadden K. Protein-Protein Interactions in Translesion Synthesis. Molecules 2021; 26:5544. [PMID: 34577015 PMCID: PMC8468184 DOI: 10.3390/molecules26185544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022] Open
Abstract
Translesion synthesis (TLS) is an error-prone DNA damage tolerance mechanism used by actively replicating cells to copy past DNA lesions and extend the primer strand. TLS ensures that cells continue replication in the presence of damaged DNA bases, albeit at the expense of an increased mutation rate. Recent studies have demonstrated a clear role for TLS in rescuing cancer cells treated with first-line genotoxic agents by allowing them to replicate and survive in the presence of chemotherapy-induced DNA lesions. The importance of TLS in both the initial response to chemotherapy and the long-term development of acquired resistance has allowed it to emerge as an interesting target for small molecule drug discovery. Proper TLS function is a complicated process involving a heteroprotein complex that mediates multiple attachment and switching steps through several protein-protein interactions (PPIs). In this review, we briefly describe the importance of TLS in cancer and provide an in-depth analysis of key TLS PPIs, focusing on key structural features at the PPI interface while also exploring the potential druggability of each key PPI.
Collapse
Affiliation(s)
| | - Kyle Hadden
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Rd, Storrs, CT 06029-3092, USA;
| |
Collapse
|
3
|
Madloo P, Lema M, Cartea ME, Soengas P. Sclerotinia sclerotiorum Response to Long Exposure to Glucosinolate Hydrolysis Products by Transcriptomic Approach. Microbiol Spectr 2021; 9:e0018021. [PMID: 34259546 PMCID: PMC8552769 DOI: 10.1128/spectrum.00180-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/24/2021] [Indexed: 11/21/2022] Open
Abstract
White mold disease, caused by the necrotrophic fungus Sclerotinia sclerotiorum, affects Brassica crops. Brassica crops produce a broad array of compounds, such as glucosinolates, which contribute to the defense against pathogens. From their hydrolysis, several products arise that have antimicrobial activity (GHPs) whose toxicity is structure dependent. S. sclerotiorum may overcome the toxic effect of moderate GHP concentrations after prolonged exposure to their action. Our objective was to identify the molecular mechanism underlying S. sclerotiorum response to long exposure to two chemically diverse GHPs: aliphatic GHP allyl-isothiocyanate (AITC) and indole GHP indol-3-carbinol (I3C). We found that the transcriptomic response is dependent on the type of GHP and on their initial target, involving cell membranes in the case of AITC or DNA in the case of I3C. Response mechanisms include the reorganization of chromatin, mediated by histone chaperones hip4 and cia1, ribosome synthesis controlled by the kinase-phosphatase pair aps1-ppn1, catabolism of proteins, ergosterol synthesis, and induction of detoxification systems. These mechanisms probably help S. sclerotiorum to grow and survive in an environment where GHPs are constantly produced by Brassica plants upon glucosinolate breakdown. IMPORTANCEBrassica species, including important vegetable crops, such as cabbage, cauliflower, or broccoli, or oil crops, such as rapeseed, produce specific chemical compounds useful to protect them against pests and pathogens. One of the most destructive Brassica diseases in temperate areas around the world is Sclerotinia stem rot, caused by the fungus Sclerotinia sclerotiorum. This is a generalist pathogen that causes disease over more than 400 plant species, being a serious threat to economically important crops worldwide, including potato, bean, soybean, and sunflower, among many others. Understanding the mechanisms utilized by pathogens to overcome specific plant defensive compounds can be useful to increase plant resistance. Our study demonstrated that Sclerotinia shows different adaptation mechanisms, including detoxification systems, to grow and survive when plant protective compounds are present.
Collapse
Affiliation(s)
- Pari Madloo
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), Pontevedra, Spain
- Department of Functional Biology, School of Biology, Universidade de Santiago de Compostela, Santiago, Spain
| | - Margarita Lema
- Department of Functional Biology, School of Biology, Universidade de Santiago de Compostela, Santiago, Spain
| | - Maria Elena Cartea
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), Pontevedra, Spain
| | - Pilar Soengas
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), Pontevedra, Spain
| |
Collapse
|
4
|
Arbel M, Liefshitz B, Kupiec M. DNA damage bypass pathways and their effect on mutagenesis in yeast. FEMS Microbiol Rev 2021; 45:5896953. [PMID: 32840566 DOI: 10.1093/femsre/fuaa038] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/23/2020] [Indexed: 12/11/2022] Open
Abstract
What is the origin of mutations? In contrast to the naïve notion that mutations are unfortunate accidents, genetic research in microorganisms has demonstrated that most mutations are created by genetically encoded error-prone repair mechanisms. However, error-free repair pathways also exist, and it is still unclear how cells decide when to use one repair method or the other. Here, we summarize what is known about the DNA damage tolerance mechanisms (also known as post-replication repair) for perhaps the best-studied organism, the yeast Saccharomyces cerevisiae. We describe the latest research, which has established the existence of at least two error-free and two error-prone inter-related mechanisms of damage tolerance that compete for the handling of spontaneous DNA damage. We explore what is known about the induction of mutations by DNA damage. We point to potential paradoxes and to open questions that still remain unanswered.
Collapse
Affiliation(s)
- Matan Arbel
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Batia Liefshitz
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Martin Kupiec
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
5
|
Du Truong C, Craig TA, Cui G, Botuyan MV, Serkasevich RA, Chan KY, Mer G, Chiu PL, Kumar R. Cryo-EM reveals conformational flexibility in apo DNA polymerase ζ. J Biol Chem 2021; 297:100912. [PMID: 34174285 PMCID: PMC8319531 DOI: 10.1016/j.jbc.2021.100912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 11/29/2022] Open
Abstract
The translesion synthesis (TLS) DNA polymerases Rev1 and Polζ function together in DNA lesion bypass during DNA replication, acting as nucleotide inserter and extender polymerases, respectively. While the structural characterization of the Saccharomyces cerevisiae Polζ in its DNA-bound state has illuminated how this enzyme synthesizes DNA, a mechanistic understanding of TLS also requires probing conformational changes associated with DNA- and Rev1 binding. Here, we used single-particle cryo-electron microscopy to determine the structure of the apo Polζ holoenzyme. We show that compared with its DNA-bound state, apo Polζ displays enhanced flexibility that correlates with concerted motions associated with expansion of the Polζ DNA-binding channel upon DNA binding. We also identified a lysine residue that obstructs the DNA-binding channel in apo Polζ, suggesting a gating mechanism. The Polζ subunit Rev7 is a hub protein that directly binds Rev1 and is a component of several other protein complexes such as the shieldin DNA double-strand break repair complex. We analyzed the molecular interactions of budding yeast Rev7 in the context of Polζ and those of human Rev7 in the context of shieldin using a crystal structure of Rev7 bound to a fragment of the shieldin-3 protein. Overall, our study provides new insights into Polζ mechanism of action and the manner in which Rev7 recognizes partner proteins.
Collapse
Affiliation(s)
- Chloe Du Truong
- School of Molecular Sciences, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Theodore A Craig
- Nephrology and Hypertension Research, Division of Hypertension and Nephrology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Gaofeng Cui
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Maria Victoria Botuyan
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Rachel A Serkasevich
- Nephrology and Hypertension Research, Division of Hypertension and Nephrology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Ka-Yi Chan
- School of Molecular Sciences, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Georges Mer
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA; Department of Cancer Biology, Mayo Clinic, Rochester, Minnesota, USA.
| | - Po-Lin Chiu
- School of Molecular Sciences, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA; Biodesign Center for Structural Applied Discovery, Arizona State University, Tempe, Arizona, USA.
| | - Rajiv Kumar
- Nephrology and Hypertension Research, Division of Hypertension and Nephrology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
6
|
Wilkinson NA, Mnuskin KS, Ashton NW, Woodgate R. Ubiquitin and Ubiquitin-Like Proteins Are Essential Regulators of DNA Damage Bypass. Cancers (Basel) 2020; 12:cancers12102848. [PMID: 33023096 PMCID: PMC7600381 DOI: 10.3390/cancers12102848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Ubiquitin and ubiquitin-like proteins are conjugated to many other proteins within the cell, to regulate their stability, localization, and activity. These modifications are essential for normal cellular function and the disruption of these processes contributes to numerous cancer types. In this review, we discuss how ubiquitin and ubiquitin-like proteins regulate the specialized replication pathways of DNA damage bypass, as well as how the disruption of these processes can contribute to cancer development. We also discuss how cancer cell survival relies on DNA damage bypass, and how targeting the regulation of these pathways by ubiquitin and ubiquitin-like proteins might be an effective strategy in anti-cancer therapies. Abstract Many endogenous and exogenous factors can induce genomic instability in human cells, in the form of DNA damage and mutations, that predispose them to cancer development. Normal cells rely on DNA damage bypass pathways such as translesion synthesis (TLS) and template switching (TS) to replicate past lesions that might otherwise result in prolonged replication stress and lethal double-strand breaks (DSBs). However, due to the lower fidelity of the specialized polymerases involved in TLS, the activation and suppression of these pathways must be tightly regulated by post-translational modifications such as ubiquitination in order to limit the risk of mutagenesis. Many cancer cells rely on the deregulation of DNA damage bypass to promote carcinogenesis and tumor formation, often giving them heightened resistance to DNA damage from chemotherapeutic agents. In this review, we discuss the key functions of ubiquitin and ubiquitin-like proteins in regulating DNA damage bypass in human cells, and highlight ways in which these processes are both deregulated in cancer progression and might be targeted in cancer therapy.
Collapse
Affiliation(s)
| | | | - Nicholas W. Ashton
- Correspondence: (N.W.A.); (R.W.); Tel.: +1-301-435-1115 (N.W.A.); +1-301-435-0740 (R.W.)
| | - Roger Woodgate
- Correspondence: (N.W.A.); (R.W.); Tel.: +1-301-435-1115 (N.W.A.); +1-301-435-0740 (R.W.)
| |
Collapse
|
7
|
Abstract
DNA contains information that must be safeguarded, but also accessed for transcription and replication. To perform replication, eukaryotic cells use the B-family DNA polymerase enzymes Polδ and Polɛ, which are optimized for accuracy, speed, and processivity. The molecular basis of these high-performance characteristics causes these replicative polymerases to fail at sites of DNA damage (lesions), which would lead to genomic instability and cell death. To avoid this, cells possess additional DNA polymerases such as the Y-family of polymerases and the B-family member Polζ that can replicate over sites of DNA damage in a process called translesion synthesis (TLS). While able to replicate over DNA lesions, the TLS polymerases exhibit low-fidelity on undamaged DNA and, consequently, must be prevented from replicating DNA under normal circumstances and recruited only when necessary. The replicative bypass of most types of DNA lesions requires the consecutive action of these specialized TLS polymerases assembled into a dynamic multiprotein complex called the Rev1/Polζ mutasome. To this end, posttranslational modifications and a network of protein-protein interactions mediated by accessory domains/subunits of the TLS polymerases control the assembly and rearrangements of the Rev1/Polζ mutasome and recruitment of TLS proteins to sites of DNA damage. This chapter focuses on the structures and interactions that control these processes underlying the function of the Rev1/Polζ mutasome, as well as the development of small molecule inhibitors of the Rev1/Polζ-dependent TLS holding promise as a potential anticancer therapy.
Collapse
Affiliation(s)
- Alessandro A Rizzo
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, United States
| | - Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, United States.
| |
Collapse
|