1
|
Rajendran D, Goyal S, Chaurasiya DK, Naganathan AN. Determinants of Unfolding Cooperativity and Binding Are Decoupled in a DNA Binding Domain. J Phys Chem B 2024; 128:9341-9352. [PMID: 39310971 DOI: 10.1021/acs.jpcb.4c03895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The relative magnitudes of noncovalent stabilization energies or the coupling free energies in folded proteins are anisotropically distributed, uniquely influencing folding and functional behaviors. In this regard, the fructose repressor (FruR) DBD belonging to the LacR repressor family harbors a three-residue insertion─KQY─between the canonical second and third helices. This sequence insertion promotes a strong Tyr-Tyr stacking interaction that is not observed in related homologues. Combining experiments with simulations, we show that the Tyr-Tyr stacking contributes to a decoupled unfolding due to the localization of a large part of the stabilization energy in this specific structural region. This leads to melting temperatures from different probes spanning nearly 10 K, while concomitantly stabilizing a partially structured intermediate state. Disruption of the aromatic stacking interaction via an alanine mutation promotes a molten-globular state whose native ensemble is replete with non-native interactions while displaying enhanced thermodynamic fluctuations and minimal calorimetric cooperativity. Surprisingly, the molten-globular variant of FruR DBD binds to the operator site on DNA with an affinity similar to that of the wild-type but with altered secondary-structure characteristics in the bound state, underscoring the chaperone-like role of DNA through its large negative electrostatic potential. FruR DBD thus appears to be at the verge of disorder as expected of an entropically destabilizing three-residue insertion but is rescued by the aromatic stacking interaction that distinctly dictates the finer details of stability, cooperativity, and binding.
Collapse
Affiliation(s)
- Divya Rajendran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Saloni Goyal
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Dhruv Kumar Chaurasiya
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
2
|
Natarajan L, De Sciscio ML, Nardi AN, Sekhar A, Del Giudice A, D’Abramo M, Naganathan AN. A finely balanced order-disorder equilibrium sculpts the folding-binding landscape of an antibiotic sequestering protein. Proc Natl Acad Sci U S A 2024; 121:e2318855121. [PMID: 38709926 PMCID: PMC11098121 DOI: 10.1073/pnas.2318855121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/24/2024] [Indexed: 05/08/2024] Open
Abstract
TipA, a MerR family transcription factor from Streptomyces lividans, promotes antibiotic resistance by sequestering broad-spectrum thiopeptide-based antibiotics, thus counteracting their inhibitory effect on ribosomes. TipAS, a minimal binding motif which is expressed as an isoform of TipA, harbors a partially disordered N-terminal subdomain that folds upon binding multiple antibiotics. The extent and nature of the underlying molecular heterogeneity in TipAS that shapes its promiscuous folding-function landscape is an open question and is critical for understanding antibiotic-sequestration mechanisms. Here, combining equilibrium and time-resolved experiments, statistical modeling, and simulations, we show that the TipAS native ensemble exhibits a pre-equilibrium between binding-incompetent and binding-competent substates, with the fully folded state appearing only as an excited state under physiological conditions. The binding-competent state characterized by a partially structured N-terminal subdomain loses structure progressively in the physiological range of temperatures, swells on temperature increase, and displays slow conformational exchange across multiple conformations. Binding to the bactericidal antibiotic thiostrepton follows a combination of induced-fit and conformational-selection-like mechanisms, via partial binding and concomitant stabilization of the binding-competent substate. These ensemble features are evolutionarily conserved across orthologs from select bacteria that infect humans, underscoring the functional role of partial disorder in the native ensemble of antibiotic-sequestering proteins belonging to the MerR family.
Collapse
Affiliation(s)
- Lawanya Natarajan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai600036, India
| | | | | | - Ashok Sekhar
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, Bengaluru560 012, India
| | | | - Marco D’Abramo
- Department of Chemistry, Sapienza University of Rome, Rome00185, Italy
| | - Athi N. Naganathan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai600036, India
| |
Collapse
|
3
|
Kumar A, Madhurima K, Naganathan AN, Vallurupalli P, Sekhar A. Probing excited state 1Hα chemical shifts in intrinsically disordered proteins with a triple resonance-based CEST experiment: Application to a disorder-to-order switch. Methods 2023; 218:198-209. [PMID: 37607621 PMCID: PMC7615522 DOI: 10.1016/j.ymeth.2023.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023] Open
Abstract
Over 40% of eukaryotic proteomes and 15% of bacterial proteomes are predicted to be intrinsically disordered based on their amino acid sequence. Intrinsically disordered proteins (IDPs) exist as heterogeneous ensembles of interconverting conformations and pose a challenge to the structure-function paradigm by apparently functioning without possessing stable structural elements. IDPs play a prominent role in biological processes involving extensive intermolecular interaction networks and their inherently dynamic nature facilitates their promiscuous interaction with multiple structurally diverse partner molecules. NMR spectroscopy has made pivotal contributions to our understanding of IDPs because of its unique ability to characterize heterogeneity at atomic resolution. NMR methods such as Chemical Exchange Saturation Transfer (CEST) and relaxation dispersion have enabled the detection of 'invisible' excited states in biomolecules which are transiently and sparsely populated, yet central for function. Here, we develop a 1Hα CEST pulse sequence which overcomes the resonance overlap problem in the 1Hα-13Cα plane of IDPs by taking advantage of the superior resolution in the 1H-15N correlation spectrum. In this sequence, magnetization is transferred after 1H CEST using a triple resonance coherence transfer pathway from 1Hα (i) to 1HN(i + 1) during which the 15N(t1) and 1HN(t2) are frequency labelled. This approach is integrated with spin state-selective CEST for eliminating spurious dips in CEST profiles resulting from dipolar cross-relaxation. We apply this sequence to determine the excited state 1Hα chemical shifts of the intrinsically disordered DNA binding domain (CytRN) of the bacterial cytidine repressor (CytR), which transiently acquires a functional globally folded conformation. The structure of the excited state, calculated using 1Hα chemical shifts in conjunction with other excited state NMR restraints, is a three-helix bundle incorporating a helix-turn-helix motif that is vital for binding DNA.
Collapse
Affiliation(s)
- Ajith Kumar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Kulkarni Madhurima
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Pramodh Vallurupalli
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500046, India
| | - Ashok Sekhar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka, India.
| |
Collapse
|
4
|
Madhurima K, Nandi B, Munshi S, Naganathan AN, Sekhar A. Functional regulation of an intrinsically disordered protein via a conformationally excited state. SCIENCE ADVANCES 2023; 9:eadh4591. [PMID: 37379390 PMCID: PMC10306299 DOI: 10.1126/sciadv.adh4591] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
A longstanding goal in the field of intrinsically disordered proteins (IDPs) is to characterize their structural heterogeneity and pinpoint the role of this heterogeneity in IDP function. Here, we use multinuclear chemical exchange saturation (CEST) nuclear magnetic resonance to determine the structure of a thermally accessible globally folded excited state in equilibrium with the intrinsically disordered native ensemble of a bacterial transcriptional regulator CytR. We further provide evidence from double resonance CEST experiments that the excited state, which structurally resembles the DNA-bound form of cytidine repressor (CytR), recognizes DNA by means of a "folding-before-binding" conformational selection pathway. The disorder-to-order regulatory switch in DNA recognition by natively disordered CytR therefore operates through a dynamical variant of the lock-and-key mechanism where the structurally complementary conformation is transiently accessed via thermal fluctuations.
Collapse
Affiliation(s)
- Kulkarni Madhurima
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, Bengaluru 560 012, India
| | - Bodhisatwa Nandi
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, Bengaluru 560 012, India
| | - Sneha Munshi
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Athi N. Naganathan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ashok Sekhar
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, Bengaluru 560 012, India
| |
Collapse
|
5
|
Mitra S, Oikawa H, Rajendran D, Kowada T, Mizukami S, Naganathan AN, Takahashi S. Flexible Target Recognition of the Intrinsically Disordered DNA-Binding Domain of CytR Monitored by Single-Molecule Fluorescence Spectroscopy. J Phys Chem B 2022; 126:6136-6147. [PMID: 35969476 PMCID: PMC9422980 DOI: 10.1021/acs.jpcb.2c02791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/03/2022] [Indexed: 11/29/2022]
Abstract
The intrinsically disordered DNA-binding domain of cytidine repressor (CytR-DBD) folds in the presence of target DNA and regulates the expression of multiple genes in E. coli. To explore the conformational rearrangements in the unbound state and the target recognition mechanisms of CytR-DBD, we carried out single-molecule Förster resonance energy transfer (smFRET) measurements. The smFRET data of CytR-DBD in the absence of DNA show one major and one minor population assignable to an expanded unfolded state and a compact folded state, respectively. The population of the folded state increases and decreases upon titration with salt and denaturant, respectively, in an apparent two-state manner. The peak FRET efficiencies of both the unfolded and folded states change continuously with denaturant concentration, demonstrating the intrinsic flexibility of the DNA-binding domain and the deviation from a strict two-state transition. Remarkably, the CytR-DBD exhibits a compact structure when bound to both the specific and nonspecific DNA; however, the peak FRET efficiencies of the two structures are slightly but consistently different. The observed conformational heterogeneity highlights the potential structural changes required for CytR to bind variably spaced operator sequences.
Collapse
Affiliation(s)
- Shrutarshi Mitra
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Hiroyuki Oikawa
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Divya Rajendran
- Department
of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Toshiyuki Kowada
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Shin Mizukami
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Athi N. Naganathan
- Department
of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Satoshi Takahashi
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
6
|
Ooka K, Liu R, Arai M. The Wako-Saitô-Muñoz-Eaton Model for Predicting Protein Folding and Dynamics. Molecules 2022; 27:molecules27144460. [PMID: 35889332 PMCID: PMC9319528 DOI: 10.3390/molecules27144460] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Despite the recent advances in the prediction of protein structures by deep neutral networks, the elucidation of protein-folding mechanisms remains challenging. A promising theory for describing protein folding is a coarse-grained statistical mechanical model called the Wako-Saitô-Muñoz-Eaton (WSME) model. The model can calculate the free-energy landscapes of proteins based on a three-dimensional structure with low computational complexity, thereby providing a comprehensive understanding of the folding pathways and the structure and stability of the intermediates and transition states involved in the folding reaction. In this review, we summarize previous and recent studies on protein folding and dynamics performed using the WSME model and discuss future challenges and prospects. The WSME model successfully predicted the folding mechanisms of small single-domain proteins and the effects of amino-acid substitutions on protein stability and folding in a manner that was consistent with experimental results. Furthermore, extended versions of the WSME model were applied to predict the folding mechanisms of multi-domain proteins and the conformational changes associated with protein function. Thus, the WSME model may contribute significantly to solving the protein-folding problem and is expected to be useful for predicting protein folding, stability, and dynamics in basic research and in industrial and medical applications.
Collapse
Affiliation(s)
- Koji Ooka
- Department of Physics, Graduate School of Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan;
- Komaba Organization for Educational Excellence, College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Runjing Liu
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan;
| | - Munehito Arai
- Department of Physics, Graduate School of Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan;
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan;
- Correspondence:
| |
Collapse
|
7
|
Rajendran D, Mitra S, Oikawa H, Madhurima K, Sekhar A, Takahashi S, Naganathan AN. Quantification of Entropic Excluded Volume Effects Driving Crowding-Induced Collapse and Folding of a Disordered Protein. J Phys Chem Lett 2022; 13:3112-3120. [PMID: 35357183 PMCID: PMC7612738 DOI: 10.1021/acs.jpclett.2c00316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We investigate the conformational properties of the intrinsically disordered DNA-binding domain of CytR in the presence of the polymeric crowder polyethylene glycol (PEG). Integrating circular dichroism, nuclear magnetic resonance, and single-molecule Förster resonance energy transfer measurements, we demonstrate that disordered CytR populates a well-folded minor conformation in its native ensemble, while the unfolded ensemble collapses and folds with an increase in crowder density independent of the crowder size. Employing a statistical-mechanical model, the effective reduction in the accessible conformational space of a residue in the unfolded state is estimated to be 10% at 300 mg/mL PEG8000, relative to dilute conditions. The experimentally consistent PEG-temperature phase diagram thus constructed reveals that entropic effects can stabilize disordered CytR by 10 kJ mol-1, driving the equilibrium toward folded conformations under physiological conditions. Our work highlights the malleable conformational landscape of CytR, the presence of a folded conformation in the disordered ensemble, and proposes a scaling relation for quantifying excluded volume effects on protein stability.
Collapse
Affiliation(s)
- Divya Rajendran
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Shrutarshi Mitra
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Hiroyuki Oikawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Kulkarni Madhurima
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Ashok Sekhar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Satoshi Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
8
|
Subramanian S, Golla H, Divakar K, Kannan A, de Sancho D, Naganathan AN. Slow Folding of a Helical Protein: Large Barriers, Strong Internal Friction, or a Shallow, Bumpy Landscape? J Phys Chem B 2020; 124:8973-8983. [PMID: 32955882 PMCID: PMC7659034 DOI: 10.1021/acs.jpcb.0c05976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The rate at which a protein molecule
folds is determined by opposing
energetic and entropic contributions to the free energy that shape
the folding landscape. Delineating the extent to which they impact
the diffusional barrier-crossing events, including the magnitude of
internal friction and barrier height, has largely been a challenging
task. In this work, we extract the underlying thermodynamic and dynamic
contributions to the folding rate of an unusually slow-folding helical
DNA-binding domain, PurR, which shares the characteristics of ultrafast
downhill-folding proteins but nonetheless appears to exhibit an apparent
two-state equilibrium. We combine equilibrium spectroscopy, temperature-viscosity-dependent
kinetics, statistical mechanical modeling, and coarse-grained simulations
to show that the conformational behavior of PurR is highly heterogeneous
characterized by a large spread in melting temperatures, marginal
thermodynamic barriers, and populated partially structured states.
PurR appears to be at the threshold of disorder arising from frustrated
electrostatics and weak packing that in turn slows down folding due
to a shallow, bumpy landscape and not due to large thermodynamic barriers
or strong internal friction. Our work highlights how a strong temperature
dependence on the pre-exponential could signal a shallow landscape
and not necessarily a slow-folding diffusion coefficient, thus determining
the folding timescales of even millisecond folding proteins and hints
at possible structural origins for the shallow landscape.
Collapse
Affiliation(s)
- Sandhyaa Subramanian
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Hemashree Golla
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Kalivarathan Divakar
- Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, India
| | - Adithi Kannan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - David de Sancho
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, Donostia-San Sebastián 20080, Spain.,Donostia International Physics Center (DIPC), PK 1072, Donostia-San Sebastián 20080, Spain
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
9
|
Gopi S, Aranganathan A, Naganathan AN. Thermodynamics and folding landscapes of large proteins from a statistical mechanical model. Curr Res Struct Biol 2019; 1:6-12. [PMID: 34235463 PMCID: PMC8244504 DOI: 10.1016/j.crstbi.2019.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 01/01/2023] Open
Abstract
Statistical mechanical models that afford an intermediate resolution between macroscopic chemical models and all-atom simulations have been successful in capturing folding behaviors of many small single-domain proteins. However, the applicability of one such successful approach, the Wako-Saitô-Muñoz-Eaton (WSME) model, is limited by the size of the protein as the number of conformations grows exponentially with protein length. In this work, we surmount this size limitation by introducing a novel approximation that treats stretches of 3 or 4 residues as blocks, thus reducing the phase space by nearly three orders of magnitude. The performance of the 'bWSME' model is validated by comparing the predictions for a globular enzyme (RNase H) and a repeat protein (IκBα), against experimental observables and the model without block approximation. Finally, as a proof of concept, we predict the free-energy surface of the 370-residue, multi-domain maltose binding protein and identify an intermediate in good agreement with single-molecule force-spectroscopy measurements. The bWSME model can thus be employed as a quantitative predictive tool to explore the conformational landscapes of large proteins, extract the structural features of putative intermediates, identify parallel folding paths, and thus aid in the interpretation of both ensemble and single-molecule experiments.
Collapse
Affiliation(s)
- Soundhararajan Gopi
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Akashnathan Aranganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
10
|
Munshi S, Rajendran D, Ramesh S, Subramanian S, Bhattacharjee K, Kumar MR, Naganathan AN. Controlling Structure and Dimensions of a Disordered Protein via Mutations. Biochemistry 2019; 59:171-174. [PMID: 31557007 PMCID: PMC7115935 DOI: 10.1021/acs.biochem.9b00678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The dimensions of intrinsically disordered proteins (IDPs) are sensitive to small energetic-entropic differences between intramolecular and protein–solvent interactions. This is commonly observed on modulating solvent composition and temperature. However, the inherently heterogeneous conformational landscape of IDPs is also expected to be influenced by mutations that can (de)stabilize pockets of local and even global structure, native and non-native, and hence the average dimensions. Here, we show experimental evidence for the remarkably tunable landscape of IDPs by employing the DNA-binding domain of CytR, a high-sequence-complexity IDP, as a model system. CytR exhibits a range of structure and compactness upon introducing specific mutations that modulate microscopic terms, including main-chain entropy, hydrophobicity, and electrostatics. The degree of secondary structure, as monitored by far-UV circular dichroism (CD), is strongly correlated to average ensemble dimensions for 14 different mutants of CytR and is consistent with the Uversky–Fink relation. Our experiments highlight how average ensemble dimensions can be controlled via mutations even in the disordered regime, the prevalence of non-native interactions and provide testable controls for molecular simulations.
Collapse
Affiliation(s)
- Sneha Munshi
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Divya Rajendran
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Samyuktha Ramesh
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Sandhyaa Subramanian
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Kabita Bhattacharjee
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Meagha Ramana Kumar
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| |
Collapse
|
11
|
Munshi S, Subramanian S, Ramesh S, Golla H, Kalivarathan D, Kulkarni M, Campos LA, Sekhar A, Naganathan AN. Engineering Order and Cooperativity in a Disordered Protein. Biochemistry 2019; 58:2389-2397. [PMID: 31002232 DOI: 10.1021/acs.biochem.9b00182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Structural disorder in proteins arises from a complex interplay between weak hydrophobicity and unfavorable electrostatic interactions. The extent to which the hydrophobic effect contributes to the unique and compact native state of proteins is, however, confounded by large compensation between multiple entropic and energetic terms. Here we show that protein structural order and cooperativity arise as emergent properties upon hydrophobic substitutions in a disordered system with non-intuitive effects on folding and function. Aided by sequence-structure analysis, equilibrium, and kinetic spectroscopic studies, we engineer two hydrophobic mutations in the disordered DNA-binding domain of CytR that act synergistically, but not in isolation, to promote structure, compactness, and stability. The double mutant, with properties of a fully ordered domain, exhibits weak cooperativity with a complex and rugged conformational landscape. The mutant, however, binds cognate DNA with an affinity only marginally higher than that of the wild type, though nontrivial differences are observed in the binding to noncognate DNA. Our work provides direct experimental evidence of the dominant role of non-additive hydrophobic effects in shaping the molecular evolution of order in disordered proteins and vice versa, which could be generalized to even folded proteins with implications for protein design and functional manipulation.
Collapse
Affiliation(s)
- Sneha Munshi
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Sandhyaa Subramanian
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Samyuktha Ramesh
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Hemashree Golla
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Divakar Kalivarathan
- Department of Biotechnology , National Institute of Technology Warangal , Warangal 506004 , India
| | - Madhurima Kulkarni
- Molecular Biophysics Unit , Indian Institute of Science , Bangalore 560012 , India
| | - Luis A Campos
- National Biotechnology Center , Consejo Superior de Investigaciones Científicas , Darwin 3, Campus de Cantoblanco , 28049 Madrid , Spain
| | - Ashok Sekhar
- Molecular Biophysics Unit , Indian Institute of Science , Bangalore 560012 , India
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| |
Collapse
|
12
|
Modulation of allosteric coupling by mutations: from protein dynamics and packing to altered native ensembles and function. Curr Opin Struct Biol 2018; 54:1-9. [PMID: 30268910 PMCID: PMC6420056 DOI: 10.1016/j.sbi.2018.09.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/13/2018] [Accepted: 09/10/2018] [Indexed: 01/12/2023]
Abstract
A large body of work has gone into understanding the effect of mutations on protein structure and function. Conventional treatments have involved quantifying the change in stability, activity and relaxation rates of the mutants with respect to the wild-type protein. However, it is now becoming increasingly apparent that mutational perturbations consistently modulate the packing and dynamics of a significant fraction of protein residues, even those that are located >10–15 Å from the mutated site. Such long-range modulation of protein features can distinctly tune protein stability and the native conformational ensemble contributing to allosteric modulation of function. In this review, I summarize a series of experimental and computational observations that highlight the incredibly pliable nature of proteins and their response to mutational perturbations manifested via the intra-protein interaction network. I highlight how an intimate understanding of mutational effects could pave the way for integrating stability, folding, cooperativity and even allostery within a single physical framework.
Collapse
|