1
|
Peng BL, Ran T, Chen X, Ding JC, Wang ZR, Li WJ, Liu W. A CARM1 Inhibitor Potently Suppresses Breast Cancer Both In Vitro and In Vivo. J Med Chem 2024; 67:7921-7934. [PMID: 38713486 PMCID: PMC11129188 DOI: 10.1021/acs.jmedchem.3c02315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/22/2024] [Accepted: 04/25/2024] [Indexed: 05/08/2024]
Abstract
CARM1, belonging to the protein arginine methyltransferase (PRMT) family, is intricately associated with the progression of cancer and is viewed as a promising target for both cancer diagnosis and therapy. However, the number of specific and potent CARM1 inhibitors is limited. We herein discovered a CARM1 inhibitor, iCARM1, that showed better specificity and activity toward CARM1 compared to the known CARM1 inhibitors, EZM2302 and TP-064. Similar to CARM1 knockdown, iCARM1 suppressed the expression of oncogenic estrogen/ERα-target genes, whereas activated type I interferon (IFN) and IFN-induced genes (ISGs) in breast cancer cells. Consequently, iCARM1 potently suppressed breast cancer cell growth both in vitro and in vivo. The combination of iCARM1 with either endocrine therapy drugs or etoposide demonstrated synergistic effects in inhibiting the growth of breast tumors. In summary, targeting CARM1 by iCARM1 effectively suppresses breast tumor growth, offering a promising therapeutic approach for managing breast cancers in clinical settings.
Collapse
Affiliation(s)
- Bing-ling Peng
- Fujian
Provincial Key Laboratory of Innovative Drug Target Research, School
of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- State
Key Laboratory of Cellular Stress Biology, School of Pharmaceutical
Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Xiang
An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty
of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Ting Ran
- Bioland
Laboratory (Guangzhou Regenerative Medicine and Health - Guangdong
Laboratory), KaiYuan
Road, Guangzhou, Guangdong 510530, China
| | - Xue Chen
- Fujian
Provincial Key Laboratory of Innovative Drug Target Research, School
of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- State
Key Laboratory of Cellular Stress Biology, School of Pharmaceutical
Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Xiang
An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty
of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Jian-cheng Ding
- Fujian
Provincial Key Laboratory of Innovative Drug Target Research, School
of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- State
Key Laboratory of Cellular Stress Biology, School of Pharmaceutical
Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Xiang
An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty
of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Zi-rui Wang
- Fujian
Provincial Key Laboratory of Innovative Drug Target Research, School
of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- State
Key Laboratory of Cellular Stress Biology, School of Pharmaceutical
Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Wen-juan Li
- Fujian
Provincial Key Laboratory of Innovative Drug Target Research, School
of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- State
Key Laboratory of Cellular Stress Biology, School of Pharmaceutical
Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Xiang
An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty
of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Wen Liu
- Fujian
Provincial Key Laboratory of Innovative Drug Target Research, School
of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- State
Key Laboratory of Cellular Stress Biology, School of Pharmaceutical
Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Xiang
An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty
of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
| |
Collapse
|
2
|
Marino V, Phromkrasae W, Bertacchi M, Cassini P, Chakrabandhu K, Dell'Orco D, Studer M. Disrupted protein interaction dynamics in a genetic neurodevelopmental disorder revealed by structural bioinformatics and genetic code expansion. Protein Sci 2024; 33:e4953. [PMID: 38511490 PMCID: PMC10955615 DOI: 10.1002/pro.4953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 03/22/2024]
Abstract
Deciphering the structural effects of gene variants is essential for understanding the pathophysiological mechanisms of genetic diseases. Using a neurodevelopmental disorder called Bosch-Boonstra-Schaaf Optic Atrophy Syndrome (BBSOAS) as a genetic disease model, we applied structural bioinformatics and Genetic Code Expansion (GCE) strategies to assess the pathogenic impact of human NR2F1 variants and their binding with known and novel partners. While the computational analyses of the NR2F1 structure delineated the molecular basis of the impact of several variants on the isolated and complexed structures, the GCE enabled covalent and site-specific capture of transient supramolecular interactions in living cells. This revealed the variable quaternary conformations of NR2F1 variants and highlighted the disrupted interplay with dimeric partners and the newly identified co-factor, CRABP2. The disclosed consequence of the pathogenic mutations on the conformation, supramolecular interplay, and alterations in the cell cycle, viability, and sub-cellular localization of the different variants reflect the heterogeneous disease spectrum of BBSOAS and set up novel foundation for unveiling the complexity of neurodevelopmental diseases.
Collapse
Affiliation(s)
- Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological ChemistryUniversity of VeronaVeronaItaly
| | | | | | - Paul Cassini
- University Côte d'Azur, CNRS, Inserm, iBVNiceFrance
| | | | - Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological ChemistryUniversity of VeronaVeronaItaly
| | | |
Collapse
|
3
|
He Y, Guo J, Yu Y, Jin J, Jiang Q, Li Q, Ma S, Pan Q, Lin J, Jiang N, Ma J, Li Y, Hou Y, Zhi X, Jiang L, Qu L, Osto E, Wang X, Wei X, Meng D. BACH1 regulates the differentiation of vascular smooth muscle cells from human embryonic stem cells via CARM1-mediated methylation of H3R17. Cell Rep 2023; 42:113468. [PMID: 37995178 DOI: 10.1016/j.celrep.2023.113468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 10/05/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
The role of BACH1 in the process of vascular smooth muscle cell (VSMC) differentiation from human embryonic stem cells (hESCs) remains unknown. Here, we find that the loss of BACH1 in hESCs attenuates the expression of VSMC marker genes, whereas overexpression of BACH1 after mesoderm induction increases the expression of VSMC markers during in vitro hESC-VSMC differentiation. Mechanistically, BACH1 binds directly to coactivator-associated arginine methyltransferase 1 (CARM1) during in vitro hESC-VSMC differentiation, and this interaction is mediated by the BACH1 bZIP domain. BACH1 recruits CARM1 to VSMC marker gene promoters and promotes VSMC marker expression by increasing H3R17me2 modification, thus facilitating in vitro VSMC differentiation from hESCs after the mesoderm induction. The increased expression of VSMC marker genes by BACH1 overexpression is partially abolished by inhibition of CARM1 or the H3R17me2 inhibitor TBBD in hESC-derived cells. These findings highlight the critical role of BACH1 in hESC differentiation into VSMCs by CARM1-mediated methylation of H3R17.
Collapse
Affiliation(s)
- Yunquan He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, 138 Yixueyuan Road, Xuhui District, Shanghai 200032, China
| | - Jieyu Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, 138 Yixueyuan Road, Xuhui District, Shanghai 200032, China
| | - Yueyang Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, 138 Yixueyuan Road, Xuhui District, Shanghai 200032, China
| | - Jiayu Jin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, 138 Yixueyuan Road, Xuhui District, Shanghai 200032, China
| | - Qingjun Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, 138 Yixueyuan Road, Xuhui District, Shanghai 200032, China; Department of Vascular & Endovascular Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Qinhan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, 138 Yixueyuan Road, Xuhui District, Shanghai 200032, China
| | - Siyu Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, 138 Yixueyuan Road, Xuhui District, Shanghai 200032, China
| | - Qi Pan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, 138 Yixueyuan Road, Xuhui District, Shanghai 200032, China
| | - Jiayi Lin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, 138 Yixueyuan Road, Xuhui District, Shanghai 200032, China
| | - Nan Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, 138 Yixueyuan Road, Xuhui District, Shanghai 200032, China
| | - Jinghua Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, 138 Yixueyuan Road, Xuhui District, Shanghai 200032, China
| | - Yongbo Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, 138 Yixueyuan Road, Xuhui District, Shanghai 200032, China
| | - Yannan Hou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, 138 Yixueyuan Road, Xuhui District, Shanghai 200032, China
| | - Xiuling Zhi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, 138 Yixueyuan Road, Xuhui District, Shanghai 200032, China
| | - Lindi Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, 138 Yixueyuan Road, Xuhui District, Shanghai 200032, China
| | - Lefeng Qu
- Department of Vascular & Endovascular Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Elena Osto
- Division of Physiology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Xinhong Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, 138 Yixueyuan Road, Xuhui District, Shanghai 200032, China.
| | - Xiangxiang Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, 138 Yixueyuan Road, Xuhui District, Shanghai 200032, China; Shanghai Medical College and Zhongshan Hospital Immunotherapy Translational Research Center, 446 Zhaojiabang Road, Xuhui District, Shanghai 200032, China.
| | - Dan Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, 138 Yixueyuan Road, Xuhui District, Shanghai 200032, China.
| |
Collapse
|
4
|
Li JY, Wang TT, Ma L, Zheng LL. CARM1 deficiency inhibits osteoblastic differentiation of bone marrow mesenchymal stem cells and delays osteogenesis in mice. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119544. [PMID: 37468072 DOI: 10.1016/j.bbamcr.2023.119544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
Bone repair remains a clinical challenge due to low osteogenic capacity. Coactivator associated arginine methyltransferase 1 (CARM1) is a protein arginine methyltransferase that mediates arginine methylation and endochondral ossification. However, the roles of CARM1 in osteoblastic differentiation and bone remodeling have not been explored. In our study, heterozygous CARM1-knockout (KO) mice were generated using the CRISPR-Cas9 system and a model of femoral defect was created. At day 7 postsurgery, CARM1-KO mice exhibited obvious bone loss compared with wild type (WT) mice, as evidenced by reduced bone mineral density (BMD), bone volume/total volume (BV/TV), trabecular thickness (Tb.Th), and trabecular number (Tb.N), and increased trabecular separation (Tb.Sp). Deletion of CARM1 in mice lowered synthesis and accumulation of collagen at the injury sites. The alkaline phosphatase (ALP) activity and osteogenic-related gene expression were declined in CARM1-KO mice. To further understand the role of CARM1 in osteoblastic differentiation, bone marrow mesenchymal stem cells (BMSCs) were isolated from the tibia and femur of WT or CARM1-KO mice. CARM1 deletion decreased histone arginine methylation and inhibited osteoblastic differentiation and mineralization. The mRNA sequencing of CARM1-KO BMSCs revealed the possible regulatory molecules by CARM1, which could deepen our understanding of CARM1 regulatory mechanisms. These data could be of interest to basic researchers and provide the direction for future research into bone-related disorders.
Collapse
Affiliation(s)
- Jing-Yi Li
- Department of Medical Cosmetology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Ting-Ting Wang
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Li Ma
- Department of Plastic Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Li-Li Zheng
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
5
|
Jamet S, Ha S, Ho TH, Houghtaling S, Timms A, Yu K, Paquette A, Maga AM, Greene NDE, Beier DR. The arginine methyltransferase Carm1 is necessary for heart development. G3 GENES|GENOMES|GENETICS 2022; 12:6613934. [PMID: 35736367 PMCID: PMC9339313 DOI: 10.1093/g3journal/jkac155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022]
Abstract
To discover genes implicated in human congenital disorders, we performed ENU mutagenesis in the mouse and screened for mutations affecting embryonic development. In this work, we report defects of heart development in mice homozygous for a mutation of coactivator-associated arginine methyltransferase 1 (Carm1). While Carm1 has been extensively studied, it has never been previously associated with a role in heart development. Phenotype analysis combining histology and microcomputed tomography imaging shows a range of cardiac defects. Most notably, many affected midgestation embryos appear to have cardiac rupture and hemorrhaging in the thorax. Mice that survive to late gestation show a variety of cardiac defects, including ventricular septal defects, double outlet right ventricle, and persistent truncus arteriosus. Transcriptome analyses of the mutant embryos by mRNA-seq reveal the perturbation of several genes involved in cardiac morphogenesis and muscle development and function. In addition, we observe the mislocalization of cardiac neural crest cells at E12.5 in the outflow tract. The cardiac phenotype of Carm1 mutant embryos is similar to that of Pax3 null mutants, and PAX3 is a putative target of CARM1. However, our analysis does not support the hypothesis that developmental defects in Carm1 mutant embryos are primarily due to a functional defect of PAX3.
Collapse
Affiliation(s)
- Sophie Jamet
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
| | - Seungshin Ha
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
| | - Tzu-Hua Ho
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
| | - Scott Houghtaling
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
| | - Andrew Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
| | - Kai Yu
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine , Seattle, WA 98195, USA
| | - Alison Paquette
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine , Seattle, WA 98195, USA
| | - Ali Murat Maga
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine , Seattle, WA 98195, USA
| | - Nicholas D E Greene
- Developmental Biology & Cancer Department, UCL Great Ormond Street Institute of Child Health , London WC1N 1EH, UK
| | - David R Beier
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine , Seattle, WA 98195, USA
| |
Collapse
|
6
|
Zhang Z, Guo Z, Xu X, Cao D, Yang H, Li Y, Shi Q, Du Z, Guo X, Wang X, Chen D, Zhang Y, Chen L, Zhou K, Li J, Geng M, Huang X, Xiong B. Structure-Based Discovery of Potent CARM1 Inhibitors for Solid Tumor and Cancer Immunology Therapy. J Med Chem 2021; 64:16650-16674. [PMID: 34781683 DOI: 10.1021/acs.jmedchem.1c01308] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CARM1 is a protein arginine methyltransferase and acts as a transcriptional coactivator regulating multiple biological processes. Aberrant expression of CARM1 has been related to the progression of multiple types of cancers, and therefore CARM1 was considered as a promising drug target. In the present work, we report the structure-based discovery of a series of N1-(3-(pyrimidin-2-yl)benzyl)ethane-1,2-diamines as potent CARM1 inhibitors, in which compound 43 displays high potency and selectivity. With the advantage of excellent tissue distribution, compound 43 demonstrated good in vivo efficacy for solid tumors. Furthermore, from the detailed immuno-oncology study with MC38 C57BL/6J xenograft model, we confirmed that this chemical probe 43 has profound effects in tumor immunity, which paves the way for future studies on the modulation of arginine post-translational modification that could be utilized in solid tumor treatment and cancer immunotherapy.
Collapse
Affiliation(s)
- Zhuqing Zhang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China
| | - Zuhao Guo
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China
| | - Xiaowei Xu
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China
| | - Danyan Cao
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Hong Yang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Yanlian Li
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Qiongyu Shi
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Zhiyan Du
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Xiaobin Guo
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Xin Wang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Danqi Chen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Ying Zhang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China
| | - Lin Chen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Kaixin Zhou
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Jian Li
- College of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Meiyu Geng
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China.,Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, P. R. China
| | - Xun Huang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China.,Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, P. R. China
| | - Bing Xiong
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China
| |
Collapse
|
7
|
Li WJ, He YH, Yang JJ, Hu GS, Lin YA, Ran T, Peng BL, Xie BL, Huang MF, Gao X, Huang HH, Zhu HH, Ye F, Liu W. Profiling PRMT methylome reveals roles of hnRNPA1 arginine methylation in RNA splicing and cell growth. Nat Commun 2021; 12:1946. [PMID: 33782401 PMCID: PMC8007824 DOI: 10.1038/s41467-021-21963-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 02/12/2021] [Indexed: 02/05/2023] Open
Abstract
Numerous substrates have been identified for Type I and II arginine methyltransferases (PRMTs). However, the full substrate spectrum of the only type III PRMT, PRMT7, and its connection to type I and II PRMT substrates remains unknown. Here, we use mass spectrometry to reveal features of PRMT7-regulated methylation. We find that PRMT7 predominantly methylates a glycine and arginine motif; multiple PRMT7-regulated arginine methylation sites are close to phosphorylations sites; methylation sites and proximal sequences are vulnerable to cancer mutations; and methylation is enriched in proteins associated with spliceosome and RNA-related pathways. We show that PRMT4/5/7-mediated arginine methylation regulates hnRNPA1 binding to RNA and several alternative splicing events. In breast, colorectal and prostate cancer cells, PRMT4/5/7 are upregulated and associated with high levels of hnRNPA1 arginine methylation and aberrant alternative splicing. Pharmacological inhibition of PRMT4/5/7 suppresses cancer cell growth and their co-inhibition shows synergistic effects, suggesting them as targets for cancer therapy. Arginine methyltransferases (PRMTs) are involved in the regulation of various physiological and pathological conditions. Using proteomics, the authors here profile the methylation substrates of PRMTs 4, 5 and 7 and characterize the roles of these enzymes in cancer-associated splicing regulation.
Collapse
Affiliation(s)
- Wen-Juan Li
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yao-Hui He
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jing-Jing Yang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Guo-Sheng Hu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yi-An Lin
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ting Ran
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Bing-Ling Peng
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Bing-Lan Xie
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ming-Feng Huang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiang Gao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hai-Hua Huang
- Department of Pathology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Helen He Zhu
- Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Ye
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Fujian, China
| | - Wen Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China. .,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China. .,State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
8
|
Hartley AV, Lu T. Modulating the modulators: regulation of protein arginine methyltransferases by post-translational modifications. Drug Discov Today 2020; 25:1735-1743. [PMID: 32629172 DOI: 10.1016/j.drudis.2020.06.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/14/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023]
Abstract
The therapeutic potential of targeting protein arginine methyltransferases (PRMTs) is inextricably linked to their key roles in various cellular functions, including splicing, proliferation, cell cycle regulation, differentiation, and DNA damage signaling. Unsurprisingly, the development of inhibitors against these enzymes has become a rapidly expanding research area. However, effective targeting of PRMTs requires a deeper understanding of the mechanistic details behind their regulation at multiple levels, involving those mechanisms that alter their activity, interactions, and localization. Recently, post-translational modifications (PTMs) of PRMTs have emerged as another crucial aspect of this regulation. Here, we review the regulatory role of PTMs in the activity and function of PRMTs, with emphasis on the contribution of these PTMs to pathological states, such as cancer.
Collapse
Affiliation(s)
- Antja-Voy Hartley
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; Department of Medicine, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Tao Lu
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; Department of Medical and Molecular Genetics, 975 W. Walnut Street, Indianapolis, IN 46202, USA.
| |
Collapse
|
9
|
Li Y, Peng M, Zeng T, Zheng J, Liao Y, Zhang H, Yang S, Chen L. Protein Arginine Methyltransferase 4 Regulates Adipose Tissue Lipolysis in Type 1 Diabetic Mice. Diabetes Metab Syndr Obes 2020; 13:535-544. [PMID: 32161480 PMCID: PMC7049750 DOI: 10.2147/dmso.s235869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/10/2020] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Hypertriglyceridemia is considered to be driven by increased lipolysis in type 1 diabetes mellitus (T1DM). However, information regarding the transcriptional circuitry that governs lipolysis remains incomplete in T1DM. Protein arginine methyltransferase 4 (PRMT4), a transcriptional coactivation factor, promotes autophagy and may play an important role in lipolysis. We wonder whether activated lipolysis in T1DM is regulated by PRMT4. MATERIALS AND METHODS Recombinant adeno-associated virus was adopted to overexpress PRMT4 in adipose tissue of mice. Streptozotocin (150 mg/kg) was injected intraperitoneally into mice to induce T1DM. Plasma insulin, triglycerides, free fatty acids (FFAs) levels were determined using commercial assay kits. Differentiated adipocytes were applied to verify the regulation of PRMT4 on lipolysis. RESULTS Elevated serum triglycerides and FFAs were observed in PRMT4-overexpressed T1DM mice. We also observed that PRMT4 over-expression induced the decrease of fat pads weights and adipocyte sizes. Moreover, expression levels of lipolysis-related molecules, including ATGL, HSL, and MAGL, and HSL phosphorylation levels were increased in PRMT4-overexpressed mice when compared to those of control mice. In vitro, PRMT4 promoted FFAs release and activated HSL phosphorylation, whereas PRMT4 knockdown inhibited these processes. CONCLUSION PRMT4 promotes lipolysis and increases serum triglyceride in T1DM.
Collapse
Affiliation(s)
- Yuanxiang Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei430022, People’s Republic of China
| | - Miaomiao Peng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei430022, People’s Republic of China
| | - Tianshu Zeng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei430022, People’s Republic of China
| | - Juan Zheng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei430022, People’s Republic of China
| | - Yunfei Liao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei430022, People’s Republic of China
| | - Hao Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei430022, People’s Republic of China
| | - Songtao Yang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei430022, People’s Republic of China
| | - Lulu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei430022, People’s Republic of China
- Correspondence: Lulu Chen Email
| |
Collapse
|