1
|
Ghorbani F, de Boer EN, Fokkens MR, de Boer-Bergsma J, Verschuuren-Bemelmans CC, Wierenga E, Kasaei H, Noordermeer D, Verbeek DS, Westers H, van Diemen CC. Identification and Copy Number Variant Analysis of Enhancer Regions of Genes Causing Spinocerebellar Ataxia. Int J Mol Sci 2024; 25:11205. [PMID: 39456985 PMCID: PMC11508295 DOI: 10.3390/ijms252011205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Currently, routine diagnostics for spinocerebellar ataxia (SCA) look for polyQ repeat expansions and conventional variations affecting the proteins encoded by known SCA genes. However, ~40% of the patients still remain without a genetic diagnosis after routine tests. Increasing evidence suggests that variations in the enhancer regions of genes involved in neurodegenerative disorders can also cause disease. Since the enhancers of SCA genes are not yet known, it remains to be determined whether variations in these regions are a cause of SCA. In this pilot project, we aimed to identify the enhancers of the SCA genes ATXN1, ATXN3, TBP and ITPR1 in the human cerebellum using 4C-seq, publicly available datasets, reciprocal 4C-seq, and luciferase assays. We then screened these enhancers for copy number variants (CNVs) in a cohort of genetically undiagnosed SCA patients. We identified two active enhancers for each of the four SCA genes. CNV analysis did not reveal any CNVs in the enhancers of the four SCA genes in the genetically undiagnosed SCA patients. However, in one patient, we noted a CNV deletion with an unknown clinical significance near one of the ITPR1 enhancers. These results not only reveal elements involved in SCA gene regulation but can also lead to the discovery of novel SCA-causing genetic variants. As enhancer variations are being increasingly recognized as a cause of brain disorders, screening the enhancers of ATXN1, ATXN3, TBP and ITPR1 for variations other than CNVs and identifying and screening enhancers of other SCA genes might elucidate the genetic cause in undiagnosed patients.
Collapse
Affiliation(s)
- Fatemeh Ghorbani
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands (H.W.)
| | - Eddy N. de Boer
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands (H.W.)
| | - Michiel R. Fokkens
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands (H.W.)
| | - Jelkje de Boer-Bergsma
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands (H.W.)
| | - Corien C. Verschuuren-Bemelmans
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands (H.W.)
| | - Elles Wierenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands (H.W.)
| | - Hamidreza Kasaei
- Department of Artificial Intelligence, University of Groningen, 9700 AK Groningen, The Netherlands
| | - Daan Noordermeer
- Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Dineke S. Verbeek
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands (H.W.)
| | - Helga Westers
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands (H.W.)
| | - Cleo C. van Diemen
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands (H.W.)
| |
Collapse
|
2
|
Jenni R, Klaa H, Khamessi O, Chikhaoui A, Najjar D, Ghedira K, Kraoua I, Turki I, Yacoub-Youssef H. Clinical and genetic spectrum of Ataxia Telangiectasia Tunisian patients: Bioinformatic analysis unveil mechanisms of ATM variants pathogenicity. Int J Biol Macromol 2024; 278:134444. [PMID: 39098699 DOI: 10.1016/j.ijbiomac.2024.134444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Ataxia Telangiectasia (AT) is a rare multisystemic neurodegenerative disease caused by biallelic mutations in the ATM gene. Few clinical studies on AT disease have been conducted in Tunisia, however, the mutational landscape is still undefined. Our aim is to determine the clinical and genetic spectrum of AT Tunisian patients and to explore the potential underlying mechanism of variant pathogenicity. Sanger sequencing was performed for nine AT patients. A comprehensive computational analysis was conducted to evaluate the possible pathogenic effect of ATM identified variants. Genetic screening of ATM gene has identified nine different variants from which six have not been previously reported. In silico analysis has predicted a pathogenic effect of identified mutations. This was corroborated by a structural bioinformatics study based on molecular modeling and docking for novel missense mutations. Our findings suggest a profound impact of identified mutations not only on the ATM protein stability, but also on the ATM-ligand interactions. Our study characterizes the mutational landscape of AT Tunisian patients which will allow to set up genetic counseling and prenatal diagnosis for families at risk and expand the spectrum of ATM variants worldwide. Furthermore, understanding the mechanism that underpin variant pathogenicity could provide further insights into disease pathogenesis.
Collapse
Affiliation(s)
- Rim Jenni
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis 1002, Tunisia.
| | - Hedia Klaa
- LR18SP04 and Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, 1007 Tunis, Tunisia.
| | - Oussema Khamessi
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (BIMS), Institut Pasteur de Tunis (IPT), University of Tunis El Manar, Tunis, Tunisia; Institut de Biotechnologie de Sidi Thabet, Université de la Manouba, Ariana BP-66, Manouba 2010, Tunisia.
| | - Asma Chikhaoui
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis 1002, Tunisia.
| | - Dorra Najjar
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis 1002, Tunisia.
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (BIMS), Institut Pasteur de Tunis (IPT), University of Tunis El Manar, Tunis, Tunisia.
| | - Ichraf Kraoua
- LR18SP04 and Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, 1007 Tunis, Tunisia.
| | - Ilhem Turki
- LR18SP04 and Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, 1007 Tunis, Tunisia.
| | - Houda Yacoub-Youssef
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis 1002, Tunisia.
| |
Collapse
|
3
|
Stahl F, Evert BO, Han X, Breuer P, Wüllner U. Spinocerebellar Ataxia Type 3 Pathophysiology-Implications for Translational Research and Clinical Studies. Int J Mol Sci 2024; 25:3984. [PMID: 38612794 PMCID: PMC11012515 DOI: 10.3390/ijms25073984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
The spinocerebellar ataxias (SCA) comprise a group of inherited neurodegenerative diseases. Machado-Joseph Disease (MJD) or spinocerebellar ataxia 3 (SCA3) is the most common autosomal dominant form, caused by the expansion of CAG repeats within the ataxin-3 (ATXN3) gene. This mutation results in the expression of an abnormal protein containing long polyglutamine (polyQ) stretches that confers a toxic gain of function and leads to misfolding and aggregation of ATXN3 in neurons. As a result of the neurodegenerative process, SCA3 patients are severely disabled and die prematurely. Several screening approaches, e.g., druggable genome-wide and drug library screenings have been performed, focussing on the reduction in stably overexpressed ATXN3(polyQ) protein and improvement in the resultant toxicity. Transgenic overexpression models of toxic ATXN3, however, missed potential modulators of endogenous ATXN3 regulation. In another approach to identify modifiers of endogenous ATXN3 expression using a CRISPR/Cas9-modified SK-N-SH wild-type cell line with a GFP-T2A-luciferase (LUC) cassette under the control of the endogenous ATXN3 promotor, four statins were identified as potential activators of expression. We here provide an overview of the high throughput screening approaches yet performed to find compounds or genomic modifiers of ATXN3(polyQ) toxicity in different SCA3 model organisms and cell lines to ameliorate and halt SCA3 progression in patients. Furthermore, the putative role of cholesterol in neurodegenerative diseases (NDDs) in general and SCA3 in particular is discussed.
Collapse
Affiliation(s)
- Fabian Stahl
- German Centre for Neurodegenerative Disease (DZNE), 53127 Bonn, Germany;
| | - Bernd O. Evert
- Departments of Neurology and Neurodegenerative Diseases, University of Bonn, 53127 Bonn, Germany; (B.O.E.); (X.H.); (P.B.)
| | - Xinyu Han
- Departments of Neurology and Neurodegenerative Diseases, University of Bonn, 53127 Bonn, Germany; (B.O.E.); (X.H.); (P.B.)
| | - Peter Breuer
- Departments of Neurology and Neurodegenerative Diseases, University of Bonn, 53127 Bonn, Germany; (B.O.E.); (X.H.); (P.B.)
| | - Ullrich Wüllner
- German Centre for Neurodegenerative Disease (DZNE), 53127 Bonn, Germany;
- Departments of Neurology and Neurodegenerative Diseases, University of Bonn, 53127 Bonn, Germany; (B.O.E.); (X.H.); (P.B.)
| |
Collapse
|
4
|
Tang Z, Hu S, Wu Z, He M. Therapeutic effects of engineered exosome-based miR-25 and miR-181a treatment in spinocerebellar ataxia type 3 mice by silencing ATXN3. Mol Med 2023; 29:96. [PMID: 37438701 DOI: 10.1186/s10020-023-00695-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Spinocerebellar ataxia type 3 (SCA3) is the most common autosomal dominant hereditary ataxia worldwide, which is however in a lack of effective treatment. In view of that engineered exosomes are a promising non-invasive gene therapy transporter that can overcome the traditional problem of poor drug delivery, the aim of this study was to evaluate, for the first time, the value of exosome-based microRNA therapy in SCA3 and the therapeutic effects of intravenously administrated ATXN3 targeting microRNAs in transgenic SCA3 mouse models. METHODS The rabies virus glycoprotein (RVG) peptide-modified exosomes loaded with miR-25 or miR-181a were peripherally injected to enable targeted delivery of miRNAs to the brain of SCA3 mice. The behaviors, ATXN3 level, purkinje cell and other neuronal loss, and neuroinflammation were evaluated 4 weeks after initial treatment. RESULTS The targeted and efficient delivery of miR-25 and miR-181a by modified exosomes substantially inhibited the mutant ATXN3 expression, reduced neuron apoptosis and induced motor improvements in SCA3 mouse models without increasing the neuroinflammatory response. CONCLUSIONS Our study confirmed the therapeutic potential of engineered exosome-based miR-25 and miR-181a treatment in substantially reducing ATXN3 aggregation and cytotoxicity by relying on its targeted and efficient drug delivery performance in SCA3 mice. This treatment method shows a promising prospect for future clinical applications in SCA3.
Collapse
Affiliation(s)
- Zhenchu Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
| | - Shenglan Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
| | - Ziwei Wu
- Department of Neurology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
| | - Miao He
- Department of Neurology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China.
| |
Collapse
|
5
|
Petry S, Keraudren R, Nateghi B, Loiselle A, Pircs K, Jakobsson J, Sephton C, Langlois M, St-Amour I, Hébert SS. Widespread alterations in microRNA biogenesis in human Huntington’s disease putamen. Acta Neuropathol Commun 2022; 10:106. [PMID: 35869509 PMCID: PMC9308264 DOI: 10.1186/s40478-022-01407-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/09/2022] [Indexed: 11/18/2022] Open
Abstract
Altered microRNA (miRNA) expression is a common feature of Huntington’s disease (HD) and could participate in disease onset and progression. However, little is known about the underlying causes of miRNA disruption in HD. We and others have previously shown that mutant Huntingtin binds to Ago2, a central component of miRNA biogenesis, and disrupts mature miRNA levels. In this study, we sought to determine if miRNA maturation per se was compromised in HD. Towards this end, we characterized major miRNA biogenesis pathway components and miRNA maturation products (pri-miRNA, pre-miRNA, and mature) in human HD (N = 41, Vonsattel grades HD2-4) and healthy control (N = 25) subjects. Notably, the striatum (putamen) and cortex (BA39) from the same individuals were analyzed in parallel. We show that Ago2, Drosha, and Dicer were strongly downregulated in human HD at the early stages of the disease. Using a panel of HD-related miRNAs (miR-10b, miR-196b, miR-132, miR-212, miR-127, miR-128), we uncovered various types of maturation defects in the HD brain, the most prominent occurring at the pre-miRNA to mature miRNA maturation step. Consistent with earlier findings, we provide evidence that alterations in autophagy could participate in miRNA maturation defects. Notably, most changes occurred in the striatum, which is more prone to HTT aggregation and neurodegeneration. Likewise, we observed no significant alterations in miRNA biogenesis in human HD cortex and blood, strengthening tissue-specific effects. Overall, these data provide important clues into the underlying mechanisms behind miRNA alterations in HD-susceptible tissues. Further investigations are now required to understand the biological, diagnostic, and therapeutic implications of miRNA/RNAi biogenesis defects in HD and related neurodegenerative disorders.
Collapse
|
6
|
Lin YT, Lin YS, Cheng WL, Chang JC, Chao YC, Liu CS, Wei AC. Transcriptomic and Metabolic Network Analysis of Metabolic Reprogramming and IGF-1 Modulation in SCA3 Transgenic Mice. Int J Mol Sci 2021; 22:ijms22157974. [PMID: 34360740 PMCID: PMC8348158 DOI: 10.3390/ijms22157974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/31/2022] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a genetic neurodegenerative disease for which a cure is still needed. Growth hormone (GH) therapy has shown positive effects on the exercise behavior of mice with cerebellar atrophy, retains more Purkinje cells, and exhibits less DNA damage after GH intervention. Insulin-like growth factor 1 (IGF-1) is the downstream mediator of GH that participates in signaling and metabolic regulation for cell growth and modulation pathways, including SCA3-affected pathways. However, the underlying therapeutic mechanisms of GH or IGF-1 in SCA3 are not fully understood. In the present study, tissue-specific genome-scale metabolic network models for SCA3 transgenic mice were proposed based on RNA-seq. An integrative transcriptomic and metabolic network analysis of a SCA3 transgenic mouse model revealed that metabolic signaling pathways were activated to compensate for the metabolic remodeling caused by SCA3 genetic modifications. The effect of IGF-1 intervention on the pathology and balance of SCA3 disease was also explored. IGF-1 has been shown to invoke signaling pathways and improve mitochondrial function and glycolysis pathways to restore cellular functions. As one of the downregulated factors in SCA3 transgenic mice, IGF-1 could be a potential biomarker and therapeutic target.
Collapse
Affiliation(s)
- Yu-Te Lin
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan;
| | - Yong-Shiou Lin
- Institute of ATP, Vascular and Genomic Center, Changhua Christian Hospital, Changhua 50091, Taiwan; (Y.-S.L.); (W.-L.C.); (J.-C.C.)
| | - Wen-Ling Cheng
- Institute of ATP, Vascular and Genomic Center, Changhua Christian Hospital, Changhua 50091, Taiwan; (Y.-S.L.); (W.-L.C.); (J.-C.C.)
| | - Jui-Chih Chang
- Institute of ATP, Vascular and Genomic Center, Changhua Christian Hospital, Changhua 50091, Taiwan; (Y.-S.L.); (W.-L.C.); (J.-C.C.)
| | - Yi-Chun Chao
- Inflammation Research & Drug Development Center, Changhua Christian Hospital, Changhua 50091, Taiwan;
| | - Chin-San Liu
- Institute of ATP, Vascular and Genomic Center, Changhua Christian Hospital, Changhua 50091, Taiwan; (Y.-S.L.); (W.-L.C.); (J.-C.C.)
- Department of Neurology, Changhua Christian Hospital, Changhua 50091, Taiwan
- Graduate Institute of Integrated Medicine College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
- Correspondence: (C.-S.L.); (A.-C.W.); Tel.: +886-4-7238595 (C.-S.L.); +886-2-33668612 (A.-C.W.)
| | - An-Chi Wei
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan;
- Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Correspondence: (C.-S.L.); (A.-C.W.); Tel.: +886-4-7238595 (C.-S.L.); +886-2-33668612 (A.-C.W.)
| |
Collapse
|
7
|
Huntingtin and Its Role in Mechanisms of RNA-Mediated Toxicity. Toxins (Basel) 2021; 13:toxins13070487. [PMID: 34357961 PMCID: PMC8310054 DOI: 10.3390/toxins13070487] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 12/20/2022] Open
Abstract
Huntington’s disease (HD) is caused by a CAG-repeat expansion mutation in the Huntingtin (HTT) gene. It is characterized by progressive psychiatric and neurological symptoms in combination with a progressive movement disorder. Despite the ubiquitous expression of HTT, pathological changes occur quite selectively in the central nervous system. Since the discovery of HD more than 150 years ago, a lot of research on molecular mechanisms contributing to neurotoxicity has remained the focal point. While traditionally, the protein encoded by the HTT gene remained the cynosure for researchers and was extensively reviewed elsewhere, several studies in the last few years clearly indicated the contribution of the mutant RNA transcript to cellular dysfunction as well. In this review, we outline recent studies on RNA-mediated molecular mechanisms that are linked to cellular dysfunction in HD models. These mechanisms include mis-splicing, aberrant translation, deregulation of the miRNA machinery, deregulated RNA transport and abnormal regulation of mitochondrial RNA. Furthermore, we summarize recent therapeutical approaches targeting the mutant HTT transcript. While currently available treatments are of a palliative nature only and do not halt the disease progression, recent clinical studies provide hope that these novel RNA-targeting strategies will lead to better therapeutic approaches.
Collapse
|
8
|
Koscianska E, Kozlowska E, Fiszer A. Regulatory Potential of Competing Endogenous RNAs in Myotonic Dystrophies. Int J Mol Sci 2021; 22:6089. [PMID: 34200099 PMCID: PMC8201210 DOI: 10.3390/ijms22116089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Non-coding RNAs (ncRNAs) have been reported to be implicated in cell fate determination and various human diseases. All ncRNA molecules are emerging as key regulators of diverse cellular processes; however, little is known about the regulatory interaction among these various classes of RNAs. It has been proposed that the large-scale regulatory network across the whole transcriptome is mediated by competing endogenous RNA (ceRNA) activity attributed to both protein-coding and ncRNAs. ceRNAs are considered to be natural sponges of miRNAs that can influence the expression and availability of multiple miRNAs and, consequently, the global mRNA and protein levels. In this review, we summarize the current understanding of the role of ncRNAs in two neuromuscular diseases, myotonic dystrophy type 1 and 2 (DM1 and DM2), and the involvement of expanded CUG and CCUG repeat-containing transcripts in miRNA-mediated RNA crosstalk. More specifically, we discuss the possibility that long repeat tracts present in mutant transcripts can be potent miRNA sponges and may affect ceRNA crosstalk in these diseases. Moreover, we highlight practical information related to innovative disease modelling and studying RNA regulatory networks in cells. Extending knowledge of gene regulation by ncRNAs, and of complex regulatory ceRNA networks in DM1 and DM2, will help to address many questions pertinent to pathogenesis and treatment of these disorders; it may also help to better understand general rules of gene expression and to discover new rules of gene control.
Collapse
Affiliation(s)
- Edyta Koscianska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland; (E.K.); (A.F.)
| | | | | |
Collapse
|
9
|
Misiorek JO, Schreiber AM, Urbanek-Trzeciak MO, Jazurek-Ciesiołka M, Hauser LA, Lynch DR, Napierala JS, Napierala M. A Comprehensive Transcriptome Analysis Identifies FXN and BDNF as Novel Targets of miRNAs in Friedreich's Ataxia Patients. Mol Neurobiol 2020; 57:2639-2653. [PMID: 32291635 PMCID: PMC7253519 DOI: 10.1007/s12035-020-01899-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/09/2020] [Indexed: 12/13/2022]
Abstract
Friedreich's ataxia (FRDA) is a genetic neurodegenerative disease that is caused by guanine-adenine-adenine (GAA) nucleotide repeat expansions in the first intron of the frataxin (FXN) gene. Although present in the intron, this mutation leads to a substantial decrease in protein expression. Currently, no effective treatment is available for FRDA, and, in addition to FXN, other targets with therapeutic potential are continuously sought. As miRNAs can regulate the expression of a broad spectrum of genes, are used as biomarkers, and can serve as therapeutic tools, we decided to identify and characterize differentially expressed miRNAs and their targets in FRDA cells compared to unaffected control (CTRL) cells. In this study, we performed an integrated miRNAseq and RNAseq analysis using the same cohort of primary FRDA and CTRL cells. The results of the transcriptome studies were supported by bioinformatic analyses and validated by qRT-PCR. miRNA interactions with target genes were assessed by luciferase assays, qRT-PCR, and immunoblotting. In silico analysis identified the FXN transcript as a target of five miRNAs upregulated in FRDA cells. Further studies confirmed that miRNA-224-5p indeed targets FXN, resulting in decreases in mRNA and protein levels. We also validated the ability of miRNA-10a-5p to bind and regulate the levels of brain-derived neurotrophic factor (BDNF), an important modulator of neuronal growth. We observed a significant decrease in the levels of miRNA-10a-5p and increase in the levels of BDNF upon correction of FRDA cells via zinc-finger nuclease (ZFN)-mediated excision of expanded GAA repeats. Our comprehensive transcriptome analyses identified miRNA-224-5p and miRNA-10a-5p as negative regulators of the FXN and BDNF expression, respectively. These results emphasize not only the importance of miRNAs in the pathogenesis of FRDA but also their potential as therapeutic targets for this disease.
Collapse
Affiliation(s)
- Julia O. Misiorek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anna M. Schreiber
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham, Birmingham, AL USA
| | | | | | - Lauren A. Hauser
- Department of Pediatrics and Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - David R. Lynch
- Department of Pediatrics and Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Jill S. Napierala
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham, Birmingham, AL USA
| | - Marek Napierala
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|
10
|
|