1
|
Hedger G, Yen HY. The Influence of Phosphoinositide Lipids in the Molecular Biology of Membrane Proteins: Recent Insights from Simulations. J Mol Biol 2025; 437:168937. [PMID: 39793883 DOI: 10.1016/j.jmb.2025.168937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/29/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
The phosphoinositide family of membrane lipids play diverse and critical roles in eukaryotic molecular biology. Much of this biological activity derives from interactions of phosphoinositide lipids with integral and peripheral membrane proteins, leading to modulation of protein structure, function, and cellular distribution. Since the discovery of phosphoinositides in the 1940s, combined molecular biology, biophysical, and structural approaches have made enormous progress in untangling this vast and diverse cellular network of interactions. More recently, in silico approaches such as molecular dynamics simulations have proven to be an asset in prospectively identifying, characterising, explaining the structural basis of these interactions, and in the best cases providing atomic level testable hypotheses on how such interactions control the function of a given membrane protein. This review details a number of recent seminal discoveries in phosphoinositide biology, enabled by advanced biomolecular simulation, and its integration with molecular biology, biophysical, and structural biology approaches. The results of the simulation studies agree well with experimental work, and in a number of notable cases have arrived at the key conclusion several years in advance of the experimental structures. SUMMARY: Hedger and Yen review developments in simulations of phosphoinositides and membrane proteins.
Collapse
Affiliation(s)
- George Hedger
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, UK.
| | - Hsin-Yung Yen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| |
Collapse
|
2
|
Ma X, Yu S, Zhang M, Mei S, Ling Y, Huang X, Dong S, Fan B, Zhao J. PIKFYVE deficiency induces vacuole-like cataract via perturbing late endosome homeostasis. Biochem Biophys Res Commun 2024; 747:151123. [PMID: 39778216 DOI: 10.1016/j.bbrc.2024.151123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/16/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
Phosphoinositide kinase, FYVE-type zinc finger containing (PIKFYVE) was recently identified as a causative gene for cataract. Pikfyve phosphatidylinositol phosphate kinase domain-deficient (pikfyveΔ8) zebrafish lens and PIKFYVE-inhibited human lens epithelial cells developed vacuoles, colocalized with late endosome marker RAB7. In this study, the pikfyveΔ8zebrafish with vacuole-like cataract underwent transcriptomic and proteomic analyses to explore the underlying mechanisms of vacuole formation. PIKFYVE-knockout and PIKFYVE-inhibited human lens epithelial cells with vacuoles further verified these omics results and rescued with Bafilomycin A1(Baf-A1) and U18666A. We discovered no significant differences in lysosomal fusion, but upregulation in acid hydrolase. The composition of late endosomal membrane was changed, and vacuolar ATPase and endosomal sorting complexes required for transport (ESCRT) at late endosome were upregulated. These changes are related with the late endosome homeostasis. Strikingly, vacuoles in human lens epithelial cells could be partially rescued by Baf-A1 and almost completely rescued by U18666A. Collectively, these findings suggest that vacuoles in pikfyveΔ8 zebrafish lens and PIKFYVE-inhibited cells were colocalized with swollen late endosomes, and generated by perturbing late endosome homeostasis due to enhanced ESCRT mechanisms and decreased stability in late endosomal membrane. This study expands our understanding of the mechanisms underlying cataract development and reveals potentially effective therapeutic targets.
Collapse
Affiliation(s)
- Xiaochen Ma
- The Second Clinical Medical College of Jinan University, Department of Ophthalmology, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Sejie Yu
- Department of Ophthalmology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Min Zhang
- The Second Clinical Medical College of Jinan University, Department of Ophthalmology, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Shaoyi Mei
- Shenzhen Eye Institute, Shenzhen Eye Hospital Affiliated to Jinan University, Shenzhen, China
| | - Yunzhi Ling
- Department of Dermatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Xiaosheng Huang
- Shenzhen Eye Institute, Shenzhen Eye Hospital Affiliated to Jinan University, Shenzhen, China
| | - Songguo Dong
- Shenzhen Eye Institute, Shenzhen Eye Hospital Affiliated to Jinan University, Shenzhen, China
| | - Baojian Fan
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Jun Zhao
- Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.
| |
Collapse
|
3
|
Gao J, Li H, Lv H, Cheng X. Mutation of TRPML1 Channel and Pathogenesis of Neurodegeneration in Haimeria. Mol Neurobiol 2024; 61:4992-5001. [PMID: 38157120 DOI: 10.1007/s12035-023-03874-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Neurodegenerative diseases, a group of debilitating disorders, have garnered increasing attention due to their escalating prevalence, particularly among aging populations. Alzheimer's disease (AD) reigns as a prominent exemplar within this category, distinguished by its relentless progression of cognitive impairment and the accumulation of aberrant protein aggregates within the intricate landscape of the brain. While the intricate pathogenesis of neurodegenerative diseases has been the subject of extensive investigation, recent scientific inquiry has unveiled a novel player in this complex scenario-transient receptor potential mucolipin 1 (TRPML1) channels. This comprehensive review embarks on an exploration of the intricate interplay between TRPML1 channels and neurodegenerative diseases, with an explicit spotlight on Alzheimer's disease. It immerses itself in the intricate molecular mechanisms governing TRPML1 channel functionality and elucidates their profound implications for the well-being of neurons. Furthermore, the review ventures into the realm of therapeutic potential, pondering the possibilities and challenges associated with targeting TRPML1 channels as a promising avenue for the amelioration of neurodegenerative disorders. As we traverse this multifaceted terrain of neurodegeneration and the enigmatic role of TRPML1 channels, we embark on a journey that not only broadens our understanding of the intricate machinery governing neuronal health but also holds promise for the development of innovative therapeutic interventions in the relentless battle against neurodegenerative diseases.
Collapse
Affiliation(s)
- Junqing Gao
- Department of Neurology, Shaanxi Provincial People's Hospital, Shaanxi, Xi'an, 710068, China
| | - Huanhuan Li
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Shaanxi, Xi'an, 710038, China
| | - Hua Lv
- Department of Neurology, Shaanxi Provincial People's Hospital, Shaanxi, Xi'an, 710068, China
| | - Xiansong Cheng
- Department of Neurology, Shaanxi Provincial People's Hospital, Shaanxi, Xi'an, 710068, China.
| |
Collapse
|
4
|
Overduin M, Bhat R. Recognition and remodeling of endosomal zones by sorting nexins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184305. [PMID: 38408696 DOI: 10.1016/j.bbamem.2024.184305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 02/28/2024]
Abstract
The proteolipid code determines how cytosolic proteins find and remodel membrane surfaces. Here, we investigate how this process works with sorting nexins Snx1 and Snx3. Both proteins form sorting machines by recognizing membrane zones enriched in phosphatidylinositol 3-phosphate (PI3P), phosphatidylserine (PS) and cholesterol. This co-localized combination forms a unique "lipid codon" or lipidon that we propose is responsible for endosomal targeting, as revealed by structures and interactions of their PX domain-based readers. We outline a membrane recognition and remodeling mechanism for Snx1 and Snx3 involving this code element alongside transmembrane pH gradients, dipole moment-guided docking and specific protein-protein interactions. This generates an initial membrane-protein assembly (memtein) that then recruits retromer and additional PX proteins to recruit cell surface receptors for sorting to the trans-Golgi network (TGN), lysosome and plasma membranes. Post-translational modification (PTM) networks appear to regulate how the sorting machines form and operate at each level. The commonalities and differences between these sorting nexins show how the proteolipid code orchestrates parallel flows of molecular information from ribosome emergence to organelle genesis, and illuminates a universally applicable model of the membrane.
Collapse
Affiliation(s)
- Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Rakesh Bhat
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Luo Z, Liang Y, Tian M, Ruan Z, Su R, Shereen MA, Yin J, Wu K, Guo J, Zhang Q, Li Y, Wu J. Inhibition of PIKFYVE kinase interferes ESCRT pathway to suppress RNA virus replication. J Med Virol 2023; 95:e28527. [PMID: 36695658 DOI: 10.1002/jmv.28527] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/16/2022] [Accepted: 01/14/2023] [Indexed: 01/26/2023]
Abstract
Endosomal sorting complex required for transport (ESCRT) is essential in the functional operation of endosomal transport in envelopment and budding of enveloped RNA viruses. However, in nonenveloped RNA viruses such as enteroviruses of the Picornaviridae family, the precise function of ESCRT pathway in viral replication remains elusive. Here, we initially evaluated that the ESCRT pathway is important for viral replication upon enterovirus 71 (EV71) infection. Furthermore, we discovered that YM201636, a specific inhibitor of phosphoinositide kinase, FYVE finger containing (PIKFYVE) kinase, significantly suppressed EV71 replication and virus-induced inflammation in vitro and in vivo. Mechanistically, YM201636 inhibits PIKFYVE kinase to block the ESCRT pathway and endosomal transport, leading to the disruption of viral entry and replication complex in subcellular components and ultimately repression of intracellular RNA virus replication and virus-induced inflammatory responses. Further studies found that YM201636 broadly represses the replication of other RNA viruses, including coxsackievirus B3 (CVB3), poliovirus 1 (PV1), echovirus 11 (E11), Zika virus (ZIKV), and vesicular stomatitis virus (VSV), rather than DNA viruses, including adenovirus 3 (ADV3) and hepatitis B virus (HBV). Our findings shed light on the mechanism underlying PIKFYVE-modulated ESCRT pathway involved in RNA virus replication, and also provide a prospective antiviral therapy during RNA viruses infections.
Collapse
Affiliation(s)
- Zhen Luo
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China.,Foshan Institute of Medical Microbiology, Foshan, China
| | - Yicong Liang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Mingfu Tian
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhihui Ruan
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China.,Foshan Institute of Medical Microbiology, Foshan, China
| | - Rui Su
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,Henan Key Laboratory of Immunology and Targeted Drug, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Muhammad Adnan Shereen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,Department of Microbiology, Kohsar University Murree, Kashmir Point, Pakistan
| | - Jialing Yin
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jun Guo
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qiwei Zhang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China.,Foshan Institute of Medical Microbiology, Foshan, China
| | - Yongkui Li
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China.,Foshan Institute of Medical Microbiology, Foshan, China
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China.,Foshan Institute of Medical Microbiology, Foshan, China.,Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China.,State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Overduin M, Tran A, Eekels DM, Overduin F, Kervin TA. Transmembrane Membrane Readers form a Novel Class of Proteins That Include Peripheral Phosphoinositide Recognition Domains and Viral Spikes. MEMBRANES 2022; 12:1161. [PMID: 36422153 PMCID: PMC9692390 DOI: 10.3390/membranes12111161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Membrane proteins are broadly classified as transmembrane (TM) or peripheral, with functions that pertain to only a single bilayer at a given time. Here, we explicate a class of proteins that contain both transmembrane and peripheral domains, which we dub transmembrane membrane readers (TMMRs). Their transmembrane and peripheral elements anchor them to one bilayer and reversibly attach them to another section of bilayer, respectively, positioning them to tether and fuse membranes while recognizing signals such as phosphoinositides (PIs) and modifying lipid chemistries in proximity to their transmembrane domains. Here, we analyze full-length models from AlphaFold2 and Rosetta, as well as structures from nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography, using the Membrane Optimal Docking Area (MODA) program to map their membrane-binding surfaces. Eukaryotic TMMRs include phospholipid-binding C1, C2, CRAL-TRIO, FYVE, GRAM, GTPase, MATH, PDZ, PH, PX, SMP, StART and WD domains within proteins including protrudin, sorting nexins and synaptotagmins. The spike proteins of SARS-CoV-2 as well as other viruses are also TMMRs, seeing as they are anchored into the viral membrane while mediating fusion with host cell membranes. As such, TMMRs have key roles in cell biology and membrane trafficking, and include drug targets for diseases such as COVID-19.
Collapse
Affiliation(s)
- Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Anh Tran
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | | - Finn Overduin
- Institute of Nutritional Science, University of Potsdam, 14476 Potsdam, Germany
| | - Troy A. Kervin
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
7
|
Obita T, Inaka K, Kohda D, Maita N. Crystal structure of the PX domain of Vps17p from Saccharomyces cerevisiae. Acta Crystallogr F Struct Biol Commun 2022; 78:210-216. [PMID: 35506766 PMCID: PMC9067373 DOI: 10.1107/s2053230x22004472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/27/2022] [Indexed: 11/10/2022] Open
Abstract
The structure determination of the PX (phox homology) domain of the Saccharomyces cerevisiae Vps17p protein presented a challenging case for molecular replacement because it has noncrystallographic symmetry close to a crystallographic axis. The combination of diffraction-quality crystals grown under microgravity on the International Space Station and a highly accurate template structure predicted by AlphaFold2 provided the key to successful crystal structure determination. Although the structure of the Vps17p PX domain is seen in many PX domains, no basic residues are found around the canonical phosphatidylinositol phosphate (PtdIns-P) binding site, suggesting an inability to bind PtdIns-P molecules.
Collapse
Affiliation(s)
- Takayuki Obita
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Koji Inaka
- Maruwa Foods and Biosciences Inc., Yamatokoriyama, Nara 639-1123, Japan
| | - Daisuke Kohda
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Nobuo Maita
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| |
Collapse
|
8
|
Maxson ME, Abbas YM, Wu JZ, Plumb JD, Grinstein S, Rubinstein JL. Detection and quantification of the vacuolar H+ATPase using the Legionella effector protein SidK. J Biophys Biochem Cytol 2022; 221:212963. [PMID: 35024770 PMCID: PMC8763849 DOI: 10.1083/jcb.202107174] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022] Open
Abstract
Acidification of secretory and endocytic organelles is required for proper receptor recycling, membrane traffic, protein degradation, and solute transport. Proton-pumping vacuolar H+ ATPases (V-ATPases) are responsible for this luminal acidification, which increases progressively as secretory and endocytic vesicles mature. An increasing density of V-ATPase complexes is thought to account for the gradual decrease in pH, but available reagents have not been sufficiently sensitive or specific to test this hypothesis. We introduce a new probe to localize and quantify V-ATPases. The probe is derived from SidK, a Legionella pneumophila effector protein that binds to the V-ATPase A subunit. We generated plasmids encoding fluorescent chimeras of SidK1-278, and labeled recombinant SidK1-278 with Alexa Fluor 568 to visualize and quantify V-ATPases with high specificity in live and fixed cells, respectively. We show that V-ATPases are acquired progressively during phagosome maturation, that they distribute in discrete membrane subdomains, and that their density in lysosomes depends on their subcellular localization.
Collapse
Affiliation(s)
- Michelle E Maxson
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Canada
| | - Yazan M Abbas
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Jing Ze Wu
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Jonathan D Plumb
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Canada
| | - Sergio Grinstein
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - John L Rubinstein
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| |
Collapse
|
9
|
Giridharan SSP, Luo G, Rivero-Rios P, Steinfeld N, Tronchere H, Singla A, Burstein E, Billadeau DD, Sutton MA, Weisman LS. Lipid kinases VPS34 and PIKfyve coordinate a phosphoinositide cascade to regulate Retriever-mediated recycling on endosomes. eLife 2022; 11:69709. [PMID: 35040777 PMCID: PMC8816382 DOI: 10.7554/elife.69709] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Cell-surface receptors control how cells respond to their environment. Many cell-surface receptors recycle from endosomes to the plasma membrane via a recently discovered pathway, which includes sorting-nexin SNX17, Retriever, WASH and CCC complexes. Here, using mammalian cells, we discover that PIKfyve and its upstream PI3-kinase VPS34 positively regulate this pathway. VPS34 produces PI3P, which is the substrate for PIKfyve to generate PI3,5P2. We show that PIKfyve controls recycling of cargoes including integrins, receptors that control cell migration. Furthermore, endogenous PIKfyve colocalizes with SNX17, Retriever, WASH and CCC complexes on endosomes. Importantly, PIKfyve inhibition results displacement of Retriever and CCC from endosomes. In addition, we show that recruitment of SNX17 is an early step and requires VPS34. These discoveries suggest that VPS34 and PIKfyve coordinate an ordered pathway to regulate recycling from endosomes and suggest how PIKfyve functions in cell migration.
Collapse
Affiliation(s)
| | - Guangming Luo
- Department of Cell and Developmental Biology, University of Michigan-Ann Arbor
| | - Pilar Rivero-Rios
- Department of Cell and Developmental Biology, University of Michigan-Ann Arbor
| | - Noah Steinfeld
- Department of Cell and Developmental Biology, University of Michigan-Ann Arbor
| | | | - Amika Singla
- Department of Internal Medicine, The University of Texas Southwestern Medical Center
| | - Ezra Burstein
- Department of Internal Medicine, The University of Texas Southwestern Medical Center
| | | | - Michael A Sutton
- Molecular and Integrative Physiology, University of Michigan-Ann Arbor
| | - Lois S Weisman
- Department of Cell and Developmental Biology, University of Michigan-Ann Arbor
| |
Collapse
|
10
|
Overduin M, Kervin TA. The phosphoinositide code is read by a plethora of protein domains. Expert Rev Proteomics 2021; 18:483-502. [PMID: 34351250 DOI: 10.1080/14789450.2021.1962302] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The proteins that decipher nucleic acid- and protein-based information are well known, however, those that read membrane-encoded information remain understudied. Here we report 70 different human, microbial and viral protein folds that recognize phosphoinositides (PIs), comprising the readers of a vast membrane code. AREAS COVERED Membrane recognition is best understood for FYVE, PH and PX domains, which exemplify hundreds of PI code readers. Comparable lipid interaction mechanisms may be mediated by kinases, adjacent C1 and C2 domains, trafficking arrestin, GAT and VHS modules, membrane-perturbing annexin, BAR, CHMP, ENTH, HEAT, syntaxin and Tubby helical bundles, multipurpose FERM, EH, MATH, PHD, PDZ, PROPPIN, PTB and SH2 domains, as well as systems that regulate receptors, GTPases and actin filaments, transfer lipids and assembled bacterial and viral particles. EXPERT OPINION The elucidation of how membranes are recognized has extended the genetic code to the PI code. Novel discoveries include PIP-stop and MET-stop residues to which phosphates and metabolites are attached to block phosphatidylinositol phosphate (PIP) recognition, memteins as functional membrane protein apparatuses, and lipidons as lipid "codons" recognized by membrane readers. At least 5% of the human proteome senses such membrane signals and allows eukaryotic organelles and pathogens to operate and replicate.
Collapse
Affiliation(s)
- Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Troy A Kervin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
11
|
Kervin TA, Wiseman BC, Overduin M. Phosphoinositide Recognition Sites Are Blocked by Metabolite Attachment. Front Cell Dev Biol 2021; 9:690461. [PMID: 34368138 PMCID: PMC8340361 DOI: 10.3389/fcell.2021.690461] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/18/2021] [Indexed: 12/16/2022] Open
Abstract
Membrane readers take part in trafficking and signaling processes by localizing proteins to organelle surfaces and transducing molecular information. They accomplish this by engaging phosphoinositides (PIs), a class of lipid molecules which are found in different proportions in various cellular membranes. The prototypes are the PX domains, which exhibit a range of specificities for PIs. Our meta-analysis indicates that recognition of membranes by PX domains is specifically controlled by modification of lysine and arginine residues including acetylation, hydroxyisobutyrylation, glycation, malonylation, methylation and succinylation of sidechains that normally bind headgroups of phospholipids including organelle-specific PI signals. Such metabolite-modulated residues in lipid binding elements are named MET-stops here to highlight their roles as erasers of membrane reader functions. These modifications are concentrated in the membrane binding sites of half of all 49 PX domains in the human proteome and correlate with phosphoregulatory sites, as mapped using the Membrane Optimal Docking Area (MODA) algorithm. As these motifs are mutated and modified in various cancers and the responsible enzymes serve as potential drug targets, the discovery of MET-stops as a widespread inhibitory mechanism may aid in the development of diagnostics and therapeutics aimed at the readers, writers and erasers of the PI code.
Collapse
Affiliation(s)
- Troy A Kervin
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Brittany C Wiseman
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.,Molecular and Cellular Biology, MacEwan University, Edmonton, AB, Canada.,SMALP Network, Edmonton, AB, Canada
| | - Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.,SMALP Network, Edmonton, AB, Canada
| |
Collapse
|
12
|
Kervin TA, Overduin M. Regulation of the Phosphoinositide Code by Phosphorylation of Membrane Readers. Cells 2021; 10:cells10051205. [PMID: 34069055 PMCID: PMC8156045 DOI: 10.3390/cells10051205] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
The genetic code that dictates how nucleic acids are translated into proteins is well known, however, the code through which proteins recognize membranes remains mysterious. In eukaryotes, this code is mediated by hundreds of membrane readers that recognize unique phosphatidylinositol phosphates (PIPs), which demark organelles to initiate localized trafficking and signaling events. The only superfamily which specifically detects all seven PIPs are the Phox homology (PX) domains. Here, we reveal that throughout evolution, these readers are universally regulated by the phosphorylation of their PIP binding surfaces based on our analysis of existing and modelled protein structures and phosphoproteomic databases. These PIP-stops control the selective targeting of proteins to organelles and are shown to be key determinants of high-fidelity PIP recognition. The protein kinases responsible include prominent cancer targets, underscoring the critical role of regulated membrane readership.
Collapse
|