1
|
Schwarzkopf JMF, Mehner-Breitfeld D, Brüser T. A dimeric holin/antiholin complex controls lysis by phage T4. Front Microbiol 2024; 15:1419106. [PMID: 39309529 PMCID: PMC11413866 DOI: 10.3389/fmicb.2024.1419106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Lytic phages control the timepoint of host cell lysis by timing the holin-mediated release of cell wall-degrading endolysins. In phage T4, the antiholin RI inhibits the holin T, thereby preventing the early release of the T4 endolysin and lysis. The antiholin achieves lysis inhibition (LIN) in response to phage superinfections, thereby increasing the chance for lysis in an environment with a lower phage concentration. The holin T consists of a small N-terminal cytoplasmic domain, a transmembrane helix, and a periplasmic C-terminal domain. The antiholin is targeted to the periplasm by a cleavable signal peptide. Recently, the periplasmic soluble domains of the holin and the antiholin were found to form T2/RI2 tetramers in crystals. To investigate the functional relevance of this complex, we reconstituted LIN in a phage-free system, using only RI, T, and endolysin, and combined targeted mutagenesis with functional analyses. Inactivation of the RI signal peptide cleavage site did not abolish LIN, indicating that RI can function in a membrane-bound state, which argued against the tetramer. This led to analyses showing that only one of the two T/RI interfaces in the tetramer is physiologically relevant, which is also the only interaction site predicted by AlphaFold2. Some holin mutations at this interaction site prevented lysis, suggesting that the RI interaction likely acts by blocking the holin oligomerization required for hole formation. We conclude that LIN is mediated by a dimeric T/RI complex that, unlike the tetramer, can be easily formed when both partners are membrane-anchored.
Collapse
Affiliation(s)
| | | | - Thomas Brüser
- Institute of Microbiology, Leibniz Universität Hannover, Hanover, Germany
| |
Collapse
|
2
|
Li Z, Fan H, Ding W. Solving protein structures by combining structure prediction, molecular replacement and direct-methods-aided model completion. IUCRJ 2024; 11:152-167. [PMID: 38214490 PMCID: PMC10916285 DOI: 10.1107/s2052252523010291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
Highly accurate protein structure prediction can generate accurate models of protein and protein-protein complexes in X-ray crystallography. However, the question of how to make more effective use of predicted models for completing structure analysis, and which strategies should be employed for the more challenging cases such as multi-helical structures, multimeric structures and extremely large structures, both in the model preparation and in the completion steps, remains open for discussion. In this paper, a new strategy is proposed based on the framework of direct methods and dual-space iteration, which can greatly simplify the pre-processing steps of predicted models both in normal and in challenging cases. Following this strategy, full-length models or the conservative structural domains could be used directly as the starting model, and the phase error and the model bias between the starting model and the real structure would be modified in the direct-methods-based dual-space iteration. Many challenging cases (from CASP14) have been tested for the general applicability of this constructive strategy, and almost complete models have been generated with reasonable statistics. The hybrid strategy therefore provides a meaningful scheme for X-ray structure determination using a predicted model as the starting point.
Collapse
Affiliation(s)
- Zengru Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Haifu Fan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Wei Ding
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| |
Collapse
|
3
|
Samir S. Molecular Machinery of the Triad Holin, Endolysin, and Spanin: Key Players Orchestrating Bacteriophage-Induced Cell Lysis and their Therapeutic Applications. Protein Pept Lett 2024; 31:85-96. [PMID: 38258777 DOI: 10.2174/0109298665181166231212051621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 01/24/2024]
Abstract
Phage therapy, a promising alternative to combat multidrug-resistant bacterial infections, harnesses the lytic cycle of bacteriophages to target and eliminate bacteria. Key players in this process are the phage lysis proteins, including holin, endolysin, and spanin, which work synergistically to disrupt the bacterial cell wall and induce lysis. Understanding the structure and function of these proteins is crucial for the development of effective therapies. Recombinant versions of these proteins have been engineered to enhance their stability and efficacy. Recent progress in the field has led to the approval of bacteriophage-based therapeutics as drugs, paving the way for their clinical use. These proteins can be combined in phage cocktails or combined with antibiotics to enhance their activity against bacterial biofilms, a common cause of treatment failure. Animal studies and clinical trials are being conducted to evaluate the safety and efficacy of phage therapy in humans. Overall, phage therapy holds great potential as a valuable tool in the fight against multidrug- resistant bacteria, offering hope for the future of infectious disease treatment.
Collapse
Affiliation(s)
- Safia Samir
- Department of Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
4
|
Herzberg O, Moult J. More than just pattern recognition: Prediction of uncommon protein structure features by AI methods. Proc Natl Acad Sci U S A 2023; 120:e2221745120. [PMID: 37399411 PMCID: PMC10334792 DOI: 10.1073/pnas.2221745120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/01/2023] [Indexed: 07/05/2023] Open
Abstract
The CASP14 experiment demonstrated the extraordinary structure modeling capabilities of artificial intelligence (AI) methods. That result has ignited a fierce debate about what these methods are actually doing. One of the criticisms has been that the AI does not have any sense of the underlying physics but is merely performing pattern recognition. Here, we address that issue by analyzing the extent to which the methods identify rare structural motifs. The rationale underlying the approach is that a pattern recognition machine tends to choose the more frequently occurring motifs, whereas some sense of subtle energetic factors is required to choose infrequently occurring ones. To reduce the possibility of bias from related experimental structures and to minimize the effect of experimental errors, we examined only CASP14 target protein crystal structures determined to a resolution limit better than 2 Å, which lacked significant amino acid sequence homology to proteins of known structure. In those experimental structures and in the corresponding models, we track cis peptides, π-helices, 310-helices, and other small 3D motifs that occur in the PDB database at a frequency of lower than 1% of total amino acid residues. The best-performing AI method, AlphaFold2, captured these uncommon structural elements exquisitely well. All discrepancies appeared to be a consequence of crystal environment effects. We propose that the neural network learned a protein structure potential of mean force, enabling it to correctly identify situations where unusual structural features represent the lowest local free energy because of subtle influences from the atomic environment.
Collapse
Affiliation(s)
- Osnat Herzberg
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD20850
- Chemistry and Biochemistry Department, University of Maryland, Chemistry Building, College Park, MD20742
| | - John Moult
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD20850
- Department of Cell Biology and Molecular Genetics, University of Maryland, Microbiology Building, College Park, MD20742
| |
Collapse
|
5
|
Letarov AV, Letarova MA. The Burden of Survivors: How Can Phage Infection Impact Non-Infected Bacteria? Int J Mol Sci 2023; 24:2733. [PMID: 36769055 PMCID: PMC9917116 DOI: 10.3390/ijms24032733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
The contemporary understanding of complex interactions in natural microbial communities and the numerous mechanisms of bacterial communication challenge the classical concept of bacteria as unicellular organisms. Microbial populations, especially those in densely populated habitats, appear to behave cooperatively, coordinating their reactions in response to different stimuli and behaving as a quasi-tissue. The reaction of such systems to viral infection is likely to go beyond each cell or species tackling the phage attack independently. Bacteriophage infection of a fraction of the microbial community may also exert an influence on the physiological state and/or phenotypic features of those cells that have not yet had direct contact with the virus or are even intrinsically unable to become infected by the particular virus. These effects may be mediated by sensing the chemical signals released by lysing or by infected cells as well as by more indirect mechanisms.
Collapse
Affiliation(s)
- Andrey V. Letarov
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, 119991 Moscow, Russia
| | | |
Collapse
|
6
|
Kim Y, Lee SM, Nong LK, Kim J, Kim SB, Kim D. Characterization of Klebsiella pneumoniae bacteriophages, KP1 and KP12, with deep learning-based structure prediction. Front Microbiol 2023; 13:990910. [PMID: 36762092 PMCID: PMC9902359 DOI: 10.3389/fmicb.2022.990910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/19/2022] [Indexed: 01/26/2023] Open
Abstract
Concerns over Klebsiella pneumoniae resistance to the last-line antibiotic treatment have prompted a reconsideration of bacteriophage therapy in public health. Biotechnological application of phages and their gene products as an alternative to antibiotics necessitates the understanding of their genomic context. This study sequenced, annotated, characterized, and compared two Klebsiella phages, KP1 and KP12. Physiological validations identified KP1 and KP12 as members of Myoviridae family. Both phages showed that their activities were stable in a wide range of pH and temperature. They exhibit a host specificity toward K. pneumoniae with a broad intraspecies host range. General features of genome size, coding density, percentage GC content, and phylogenetic analyses revealed that these bacteriophages are distantly related. Phage lytic proteins (endolysin, anti-/holin, spanin) identified by the local alignment against different databases, were subjected to further bioinformatic analyses including three-dimensional (3D) structure prediction by AlphaFold. AlphaFold models of phage lysis proteins were consistent with the published X-ray crystal structures, suggesting the presence of T4-like and P1/P2-like bacteriophage lysis proteins in KP1 and KP12, respectively. By providing the primary sequence information, this study contributes novel bacteriophages for research and development pipelines of phage therapy that ultimately, cater to the unmet clinical and industrial needs against K. pneumoniae pathogens.
Collapse
Affiliation(s)
- Youngju Kim
- Optipharm Inc., Cheongju-si, Chungcheongbuk-do, Republic of Korea,Department of Microbiology and Molecular Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Sang-Mok Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Linh Khanh Nong
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Jaehyung Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Seung Bum Kim
- Department of Microbiology and Molecular Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea,*Correspondence: Donghyuk Kim,
| |
Collapse
|
7
|
Abeysekera GS, Love MJ, Manners SH, Billington C, Dobson RCJ. Bacteriophage-encoded lethal membrane disruptors: Advances in understanding and potential applications. Front Microbiol 2022; 13:1044143. [PMID: 36345304 PMCID: PMC9636201 DOI: 10.3389/fmicb.2022.1044143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/10/2022] [Indexed: 09/09/2023] Open
Abstract
Holins and spanins are bacteriophage-encoded membrane proteins that control bacterial cell lysis in the final stage of the bacteriophage reproductive cycle. Due to their efficient mechanisms for lethal membrane disruption, these proteins are gaining interest in many fields, including the medical, food, biotechnological, and pharmaceutical fields. However, investigating these lethal proteins is challenging due to their toxicity in bacterial expression systems and the resultant low protein yields have hindered their analysis compared to other cell lytic proteins. Therefore, the structural and dynamic properties of holins and spanins in their native environment are not well-understood. In this article we describe recent advances in the classification, purification, and analysis of holin and spanin proteins, which are beginning to overcome the technical barriers to understanding these lethal membrane disrupting proteins, and through this, unlock many potential biotechnological applications.
Collapse
Affiliation(s)
- Gayan S. Abeysekera
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Michael J. Love
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Health and Environment Group, Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Sarah H. Manners
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Craig Billington
- Health and Environment Group, Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Renwick C. J. Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Interaction between Phage T4 Protein RIII and Host Ribosomal Protein S1 Inhibits Endoribonuclease RegB Activation. Int J Mol Sci 2022; 23:ijms23169483. [PMID: 36012768 PMCID: PMC9409239 DOI: 10.3390/ijms23169483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022] Open
Abstract
Lytic viruses of bacteria (bacteriophages, phages) are intracellular parasites that take over hosts' biosynthetic processes for their propagation. Most of the knowledge on the host hijacking mechanisms has come from the studies of the lytic phage T4, which infects Escherichia coli. The integrity of T4 development is achieved by strict control over the host and phage processes and by adjusting them to the changing infection conditions. In this study, using in vitro and in vivo biochemical methods, we detected the direct interaction between the T4 protein RIII and ribosomal protein S1 of the host. Protein RIII is known as a cytoplasmic antiholin, which plays a role in the lysis inhibition function of T4. However, our results show that RIII also acts as a viral effector protein mainly targeting S1 RNA-binding domains that are central for all the activities of this multifunctional protein. We confirm that the S1-RIII interaction prevents the S1-dependent activation of endoribonuclease RegB. In addition, we propose that by modulating the multiple processes mediated by S1, RIII could act as a regulator of all stages of T4 infection including the lysis inhibition state.
Collapse
|
9
|
El-Sayed D, Elsayed T, Amin N, Al-Shahaby A, Goda H. Evaluating the Phenotypic and Genomic Characterization of Some Egyptian Phages Infecting Shiga Toxin-Producing Escherichia coli O157:H7 for the Prospective Application in Food Bio-Preservation. BIOLOGY 2022; 11:biology11081180. [PMID: 36009807 PMCID: PMC9404725 DOI: 10.3390/biology11081180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/21/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Shiga toxin-producing Escherichia coli (STEC) represents a hazardous health problem because it causes various human gastrointestinal tract diseases, for example, bloody diarrhea and hemorrhagic colitis. The major concern of STEC O157:H7 resulted from its biological characteristics, including low infective dose, ability to express different virulence factors and multidrug resistance of some species. Principally, the human outbreaks of STEC O157:H7 are associated with consumption of undercooked or contaminated bovine dairy and meat products. Treatments of E. coli infections have been increasingly complicated as a result of the development of antibiotic resistance. For this reason, as well as the increasing consumer demand for safe food products, it has become important to apply alternative effective and eco-friendly approaches, such as using lytic phages, to control the growth of pathogenic bacteria in food. This study focused on evaluating the applicability of locally isolated lytic phages specific to Shiga toxin-producing Escherichia coli O157:H7 as prospective biocontrol agents in food. Our findings presented two phages with promising biological and genomic characteristics to be applied in food bio-preservation. Abstract Shiga toxin-producing E. coli (STEC) is considered a worldwide public health and food safety problem. Despite the implementation of various different approaches to control food safety, outbreaks persist. The aim of study is to evaluate the applicability of phages, isolated against STEC O157:H7, as prospective food bio-preservatives. Considering the relatively wide host range and greatest protein diversity, two phages (STEC P2 and P4) from four were furtherly characterized. Complete genome analysis confirmed the absence of toxins and virulence factors—encoding genes. The results confirmed the close relation of STEC P2 to phages of Myoviridae, and STEC P4 to the Podoviridae family. The phages retained higher lytic competence of 90.4 and 92.68% for STEC P2 and P4, respectively with the HTST pasteurization. The strong acidic (pH 1) and alkaline (pH 13) conditions had influential effect on the surviving counts of the two phages. The lowest survivability of 63.37 and 86.36% in STEC P2 and P4 lysate, respectively appeared in 2% bile salt solution after 3 h. The results confirmed the strong effect of simulated gastric fluid (SGF) on the survivability of the two phages comparing with simulated intestinal fluid (SIF). Therefore, the two phages could be applied as a natural alternative for food preservation.
Collapse
|
10
|
Comparative genomics of Acinetobacter baumannii and therapeutic bacteriophages from a patient undergoing phage therapy. Nat Commun 2022; 13:3776. [PMID: 35773283 PMCID: PMC9247103 DOI: 10.1038/s41467-022-31455-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 06/17/2022] [Indexed: 12/12/2022] Open
Abstract
In 2016, a 68-year-old patient with a disseminated multidrug-resistant Acinetobacter baumannii infection was successfully treated using lytic bacteriophages. Here we report the genomes of the nine phages used for treatment and three strains of A. baumannii isolated prior to and during treatment. The phages used in the initial treatment are related, T4-like myophages. Analysis of 19 A. baumannii isolates collected before and during phage treatment shows that resistance to the T4-like phages appeared two days following the start of treatment. We generate complete genomic sequences for three A. baumannii strains (TP1, TP2 and TP3) collected before and during treatment, supporting a clonal relationship. Furthermore, we use strain TP1 to select for increased resistance to five of the phages in vitro, and identify mutations that are also found in phage-insensitive isolates TP2 and TP3 (which evolved in vivo during phage treatment). These results support that in vitro investigations can produce results that are relevant to the in vivo environment.
Collapse
|
11
|
Timsit Y, Grégoire SP. Towards the Idea of Molecular Brains. Int J Mol Sci 2021; 22:ijms222111868. [PMID: 34769300 PMCID: PMC8584932 DOI: 10.3390/ijms222111868] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
How can single cells without nervous systems perform complex behaviours such as habituation, associative learning and decision making, which are considered the hallmark of animals with a brain? Are there molecular systems that underlie cognitive properties equivalent to those of the brain? This review follows the development of the idea of molecular brains from Darwin’s “root brain hypothesis”, through bacterial chemotaxis, to the recent discovery of neuron-like r-protein networks in the ribosome. By combining a structural biology view with a Bayesian brain approach, this review explores the evolutionary labyrinth of information processing systems across scales. Ribosomal protein networks open a window into what were probably the earliest signalling systems to emerge before the radiation of the three kingdoms. While ribosomal networks are characterised by long-lasting interactions between their protein nodes, cell signalling networks are essentially based on transient interactions. As a corollary, while signals propagated in persistent networks may be ephemeral, networks whose interactions are transient constrain signals diffusing into the cytoplasm to be durable in time, such as post-translational modifications of proteins or second messenger synthesis. The duration and nature of the signals, in turn, implies different mechanisms for the integration of multiple signals and decision making. Evolution then reinvented networks with persistent interactions with the development of nervous systems in metazoans. Ribosomal protein networks and simple nervous systems display architectural and functional analogies whose comparison could suggest scale invariance in information processing. At the molecular level, the significant complexification of eukaryotic ribosomal protein networks is associated with a burst in the acquisition of new conserved aromatic amino acids. Knowing that aromatic residues play a critical role in allosteric receptors and channels, this observation suggests a general role of π systems and their interactions with charged amino acids in multiple signal integration and information processing. We think that these findings may provide the molecular basis for designing future computers with organic processors.
Collapse
Affiliation(s)
- Youri Timsit
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016 Paris, France
- Correspondence:
| | - Sergeant-Perthuis Grégoire
- Institut de Mathématiques de Jussieu—Paris Rive Gauche (IMJ-PRG), UMR 7586, CNRS-Université Paris Diderot, 75013 Paris, France;
| |
Collapse
|
12
|
Zhang J, He X, Shen S, Shi M, Zhou Q, Liu J, Wang M, Sun Y. Effects of the Newly Isolated T4-like Phage on Transmission of Plasmid-Borne Antibiotic Resistance Genes via Generalized Transduction. Viruses 2021; 13:v13102070. [PMID: 34696499 PMCID: PMC8538795 DOI: 10.3390/v13102070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/07/2021] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages are the most abundant biological entities on earth and may play an important role in the transmission of antibiotic resistance genes (ARG) from host bacteria. Although the specialized transduction mediated by the temperate phage targeting a specific insertion site is widely explored, the carrying characteristics of “transducing particles” for different ARG subtypes in the process of generalized transduction remains largely unclear. Here, we isolated a new T4-like lytic phage targeting transconjugant Escherichia coli C600 that contained plasmid pHNAH67 (KX246266) and encoded 11 different ARG subtypes. We found that phage AH67C600_Q9 can misload plasmid-borne ARGs and package host DNA randomly. Moreover, for any specific ARG subtype, the carrying frequency was negatively correlated with the multiplicity of infection (MOI). Further, whole genome sequencing (WGS) identified that only 0.338% (4/1183) of the contigs of an entire purified phage population contained ARG sequences; these were floR, sul2, aph(4)-Ia, and fosA. The low coverage indicated that long-read sequencing methods are needed to explore the mechanism of ARG transmission during generalized transduction.
Collapse
Affiliation(s)
- Junxuan Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (X.H.); (S.S.); (M.S.); (Q.Z.); (J.L.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510000, China
| | - Xiaolu He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (X.H.); (S.S.); (M.S.); (Q.Z.); (J.L.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510000, China
| | - Shuqing Shen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (X.H.); (S.S.); (M.S.); (Q.Z.); (J.L.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510000, China
| | - Mengya Shi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (X.H.); (S.S.); (M.S.); (Q.Z.); (J.L.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510000, China
| | - Qin Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (X.H.); (S.S.); (M.S.); (Q.Z.); (J.L.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510000, China
| | - Junlin Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (X.H.); (S.S.); (M.S.); (Q.Z.); (J.L.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510000, China
| | - Mianzhi Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Correspondence: (M.W.); (Y.S.); Tel.: +86-159-5270-4257 (M.W.); +86-135-0304-8309 (Y.S.)
| | - Yongxue Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (X.H.); (S.S.); (M.S.); (Q.Z.); (J.L.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510000, China
- Correspondence: (M.W.); (Y.S.); Tel.: +86-159-5270-4257 (M.W.); +86-135-0304-8309 (Y.S.)
| |
Collapse
|
13
|
Mehner-Breitfeld D, Schwarzkopf JMF, Young R, Kondabagil K, Brüser T. The Phage T4 Antiholin RI Has a Cleavable Signal Peptide, Not a SAR Domain. Front Microbiol 2021; 12:712460. [PMID: 34456892 PMCID: PMC8385771 DOI: 10.3389/fmicb.2021.712460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/16/2021] [Indexed: 11/13/2022] Open
Abstract
Holin/endolysin-mediated lysis of phage T4 of Escherichia coli is tightly regulated by the antiholins RI and RIII. While regulation by the cytoplasmic RIII plays a minor role, the periplasmic antiholin RI binds tightly to the holin T and is believed to directly sense periplasmic phage DNA from superinfections as a trigger for the inhibition of lysis. RI has been reported to contain a non-cleavable signal peptide that anchors the protein to the membrane. Lysis is believed to be induced at some stage by a membrane depolarization that causes a release of RI into the periplasm without cleavage of the signal anchor. For the current model of phage lysis induction, it is thus a fundamental assumption that the N-terminal trans-membrane domain (TMD) of RI is such a signal anchor release (SAR) domain. Here we show that, in contrast to previous reports, this domain of RI is a cleavable signal peptide. RI is processed and released into the periplasm as a mature protein, and inactivation of its signal peptidase cleavage site blocks processing and membrane release. The signal peptide of RI can also mediate the normal translocation of a well-characterized Sec substrate, PhoA, into the periplasm. This simplifies the current view of phage lysis regulation and suggests a fundamentally different interpretation of the recently published structure of the soluble domains of the RI–T complex.
Collapse
Affiliation(s)
| | | | - Ry Young
- Department of Biochemistry & Biophysics, Center of Phage Technology, Texas A&M University, College Station, TX, United States
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Thomas Brüser
- Institute of Microbiology, Leibniz Universität Hannover, Hanover, Germany
| |
Collapse
|
14
|
Ghosh S, Shaw R, Sarkar A, Gupta SKD. Evidence of positive regulation of mycobacteriophage D29 early gene expression obtained from an investigation using a temperature-sensitive mutant of the phage. FEMS Microbiol Lett 2021; 367:5942866. [PMID: 33119086 DOI: 10.1093/femsle/fnaa176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/24/2020] [Indexed: 12/11/2022] Open
Abstract
Mycobacteriophages are phages that infect and kill Mycobacteria, several of which, Mycobacterium tuberculosis (Mtb), for example, cause the disease tuberculosis. Although genomes of many such phages have been sequenced, we have very little insight into how they express their genes in a controlled manner. To address this issue, we have raised a temperature-sensitive (ts) mutant of phage D29 that can grow at 37°C but not at 42°C and used it to perform differential gene expression and proteome analysis studies. Our analysis results indicate that expression of genes located in the right arm, considered to be early expressed, was lowered as the temperature was shifted from 37°C to 42°C. In contrast, expression of those on the left, the late genes were only marginally affected. Thus, we conclude that transcription of genes from the two arms takes place independently of each other and that a specific factor must be controlling the expression of the right arm genes. We also observe that within the right arm itself; there exists a mechanism to ensure high-level synthesis of Gp48, a thymidylate synthase X. Enhanced presence of this protein in infected cells results in delayed lysis and higher phage yields.
Collapse
Affiliation(s)
- Shrestha Ghosh
- Department of Microbiology, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata-700054, India
| | - Rahul Shaw
- Department of Microbiology, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata-700054, India
| | - Apurba Sarkar
- Department of Microbiology, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata-700054, India
| | - Sujoy K Das Gupta
- Department of Microbiology, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata-700054, India
| |
Collapse
|
15
|
Grabowski Ł, Łepek K, Stasiłojć M, Kosznik-Kwaśnicka K, Zdrojewska K, Maciąg-Dorszyńska M, Węgrzyn G, Węgrzyn A. Bacteriophage-encoded enzymes destroying bacterial cell membranes and walls, and their potential use as antimicrobial agents. Microbiol Res 2021; 248:126746. [PMID: 33773329 DOI: 10.1016/j.micres.2021.126746] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 01/22/2023]
Abstract
Appearance of pathogenic bacteria resistant to most, if not all, known antibiotics is currently one of the most significant medical problems. Therefore, development of novel antibacterial therapies is crucial for efficient treatment of bacterial infections in the near future. One possible option is to employ enzymes, encoded by bacteriophages, which cause destruction of bacterial cell membranes and walls. Bacteriophages use such enzymes to destroy bacterial host cells at the final stage of their lytic development, in order to ensure effective liberation of progeny virions. Nevertheless, to use such bacteriophage-encoded proteins in medicine and/or biotechnology, it is crucial to understand details of their biological functions and biochemical properties. Therefore, in this review article, we will present and discuss our current knowledge on the processes of bacteriophage-mediated bacterial cell lysis, with special emphasis on enzymes involved in them. Regulation of timing of the lysis is also discussed. Finally, possibilities of the practical use of these enzymes as antibacterial agents will be underlined and perspectives of this aspect will be presented.
Collapse
Affiliation(s)
- Łukasz Grabowski
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdansk, Poland.
| | - Krzysztof Łepek
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Małgorzata Stasiłojć
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Katarzyna Kosznik-Kwaśnicka
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdansk, Poland.
| | - Karolina Zdrojewska
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Monika Maciąg-Dorszyńska
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdansk, Poland.
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Alicja Węgrzyn
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdansk, Poland.
| |
Collapse
|