1
|
Du Q, Guo Y, Zhang J, Lu F, Peng C, Zhou C. Predicting Promoters in Multiple Prokaryotes with Prompt. Interdiscip Sci 2024; 16:814-828. [PMID: 39110340 DOI: 10.1007/s12539-024-00637-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 10/27/2024]
Abstract
Promoters are important cis-regulatory elements for the regulation of gene expression, and their accurate predictions are crucial for elucidating the biological functions and potential mechanisms of genes. Many previous prokaryotic promoter prediction methods are encouraging in terms of the prediction performance, but most of them focus on the recognition of promoters in only one or a few bacterial species. Moreover, due to ignoring the promoter sequence motifs, the interpretability of predictions with existing methods is limited. In this work, we present a generalized method Prompt (Promoters in multiple prokaryotes) to predict promoters in 16 prokaryotes and improve the interpretability of prediction results. Prompt integrates three methods including RSK (Regression based on Selected k-mer), CL (Contrastive Learning) and MLP (Multilayer Perception), and employs a voting strategy to divide the datasets into high-confidence and low-confidence categories. Results on the promoter prediction tasks in 16 prokaryotes show that the accuracy (Accuracy, Matthews correlation coefficient) of Prompt is greater than 80% in highly credible datasets of 16 prokaryotes, and is greater than 90% in 12 prokaryotes, and Prompt performs the best compared with other existing methods. Moreover, by identifying promoter sequence motifs, Prompt can improve the interpretability of the predictions. Prompt is freely available at https://github.com/duqimeng/PromptPrompt , and will contribute to the research of promoters in prokaryote.
Collapse
Affiliation(s)
- Qimeng Du
- School of Engineering, Air-Space-Ground Integrated Intelligence and Big Data Application Engineering Research Center of Yunnan Provincial Department of Education, Dali University, Dali, 671003, China
| | - Yixue Guo
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Junpeng Zhang
- School of Engineering, Air-Space-Ground Integrated Intelligence and Big Data Application Engineering Research Center of Yunnan Provincial Department of Education, Dali University, Dali, 671003, China
| | - Fuping Lu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Chong Peng
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Chichun Zhou
- School of Engineering, Air-Space-Ground Integrated Intelligence and Big Data Application Engineering Research Center of Yunnan Provincial Department of Education, Dali University, Dali, 671003, China.
| |
Collapse
|
2
|
Ren R, Yu H, Teng J, Mao S, Bian Z, Tao Y, Yau SST. CAPE: a deep learning framework with Chaos-Attention net for Promoter Evolution. Brief Bioinform 2024; 25:bbae398. [PMID: 39120645 PMCID: PMC11311715 DOI: 10.1093/bib/bbae398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/13/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024] Open
Abstract
Predicting the strength of promoters and guiding their directed evolution is a crucial task in synthetic biology. This approach significantly reduces the experimental costs in conventional promoter engineering. Previous studies employing machine learning or deep learning methods have shown some success in this task, but their outcomes were not satisfactory enough, primarily due to the neglect of evolutionary information. In this paper, we introduce the Chaos-Attention net for Promoter Evolution (CAPE) to address the limitations of existing methods. We comprehensively extract evolutionary information within promoters using merged chaos game representation and process the overall information with modified DenseNet and Transformer structures. Our model achieves state-of-the-art results on two kinds of distinct tasks related to prokaryotic promoter strength prediction. The incorporation of evolutionary information enhances the model's accuracy, with transfer learning further extending its adaptability. Furthermore, experimental results confirm CAPE's efficacy in simulating in silico directed evolution of promoters, marking a significant advancement in predictive modeling for prokaryotic promoter strength. Our paper also presents a user-friendly website for the practical implementation of in silico directed evolution on promoters. The source code implemented in this study and the instructions on accessing the website can be found in our GitHub repository https://github.com/BobYHY/CAPE.
Collapse
Affiliation(s)
- Ruohan Ren
- Zhili College, Tsinghua University, Beijing 100084, China
| | - Hongyu Yu
- Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
| | - Jiahao Teng
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Sihui Mao
- Zhili College, Tsinghua University, Beijing 100084, China
| | - Zixuan Bian
- Weiyang College, Tsinghua University, Beijing 100084, China
| | - Yangtianze Tao
- Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
| | - Stephen S-T Yau
- Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
- Beijing Institute of Mathematical Sciences and Applications (Bimsa), Beijing 101408, China
| |
Collapse
|
3
|
Xia Y, Du X, Liu B, Guo S, Huo YX. Species-specific design of artificial promoters by transfer-learning based generative deep-learning model. Nucleic Acids Res 2024; 52:6145-6157. [PMID: 38783063 PMCID: PMC11194083 DOI: 10.1093/nar/gkae429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/04/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Native prokaryotic promoters share common sequence patterns, but are species dependent. For understudied species with limited data, it is challenging to predict the strength of existing promoters and generate novel promoters. Here, we developed PromoGen, a collection of nucleotide language models to generate species-specific functional promoters, across dozens of species in a data and parameter efficient way. Twenty-seven species-specific models in this collection were finetuned from the pretrained model which was trained on multi-species promoters. When systematically compared with native promoters, the Escherichia coli- and Bacillus subtilis-specific artificial PromoGen-generated promoters (PGPs) were demonstrated to hold all distribution patterns of native promoters. A regression model was developed to score generated either by PromoGen or by another competitive neural network, and the overall score of PGPs is higher. Encouraged by in silico analysis, we further experimentally characterized twenty-two B. subtilis PGPs, results showed that four of tested PGPs reached the strong promoter level while all were active. Furthermore, we developed a user-friendly website to generate species-specific promoters for 27 different species by PromoGen. This work presented an efficient deep-learning strategy for de novo species-specific promoter generation even with limited datasets, providing valuable promoter toolboxes especially for the metabolic engineering of understudied microorganisms.
Collapse
Affiliation(s)
- Yan Xia
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaowen Du
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Bin Liu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Shuyuan Guo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
- Tangshan Research Institute, Beijing Institute of Technology, Hebei 063611, China
| |
Collapse
|
4
|
Ye DX, Yu JW, Li R, Hao YD, Wang TY, Yang H, Ding H. The Prediction of Recombination Hotspot Based on Automated Machine Learning. J Mol Biol 2024:168653. [PMID: 38871176 DOI: 10.1016/j.jmb.2024.168653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/12/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Meiotic recombination plays a pivotal role in genetic evolution. Genetic variation induced by recombination is a crucial factor in generating biodiversity and a driving force for evolution. At present, the development of recombination hotspot prediction methods has encountered challenges related to insufficient feature extraction and limited generalization capabilities. This paper focused on the research of recombination hotspot prediction methods. We explored deep learning-based recombination hotspot prediction and scrutinized the shortcomings of prevalent models in addressing the challenge of recombination hotspot prediction. To addressing these deficiencies, an automated machine learning approach was utilized to construct recombination hotspot prediction model. The model combined sequence information with physicochemical properties by employing TF-IDF-Kmer and DNA composition components to acquire more effective feature data. Experimental results validate the effectiveness of the feature extraction method and automated machine learning technology used in this study. The final model was validated on three distinct datasets and yielded accuracy rates of 97.14%, 79.71%, and 98.73%, surpassing the current leading models by 2%, 2.56%, and 4%, respectively. In addition, we incorporated tools such as SHAP and AutoGluon to analyze the interpretability of black-box models, delved into the impact of individual features on the results, and investigated the reasons behind misclassification of samples. Finally, an application of recombination hotspot prediction was established to facilitate easy access to necessary information and tools for researchers. The research outcomes of this paper underscore the enormous potential of automated machine learning methods in gene sequence prediction.
Collapse
Affiliation(s)
- Dong-Xin Ye
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jun-Wen Yu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Rui Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yu-Duo Hao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Tian-Yu Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hui Yang
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China.
| | - Hui Ding
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
5
|
Ding H, Xing F, Zou L, Zhao L. QSAR analysis of VEGFR-2 inhibitors based on machine learning, Topomer CoMFA and molecule docking. BMC Chem 2024; 18:59. [PMID: 38555462 PMCID: PMC10981835 DOI: 10.1186/s13065-024-01165-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 03/12/2024] [Indexed: 04/02/2024] Open
Abstract
VEGFR-2 kinase inhibitors are clinically approved drugs that can effectively target cancer angiogenesis. However, such inhibitors have adverse effects such as skin toxicity, gastrointestinal reactions and hepatic impairment. In this study, machine learning and Topomer CoMFA, which is an alignment-dependent, descriptor-based method, were employed to build structural activity relationship models of potentially new VEGFR-2 inhibitors. The prediction ac-curacy of the training and test sets of the 2D-SAR model were 82.4 and 80.1%, respectively, with KNN. Topomer CoMFA approach was then used for 3D-QSAR modeling of VEGFR-2 inhibitors. The coefficient of q2 for cross-validation of the model 1 was greater than 0.5, suggesting that a stable drug activity-prediction model was obtained. Molecular docking was further performed to simulate the interactions between the five most promising compounds and VEGFR-2 target protein and the Total Scores were all greater than 6, indicating that they had a strong hydrogen bond interactions were present. This study successfully used machine learning to obtain five potentially novel VEGFR-2 inhibitors to increase our arsenal of drugs to combat cancer.
Collapse
Affiliation(s)
- Hao Ding
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Fei Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Lin Zou
- Medical College of Guangxi University, Nanning, 530004, Guangxi, China
| | - Liang Zhao
- Hepatobiliary and Splenic Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
6
|
Martinez GS, Perez-Rueda E, Kumar A, Dutt M, Maya CR, Ledesma-Dominguez L, Casa PL, Kumar A, de Avila e Silva S, Kelvin DJ. CDBProm: the Comprehensive Directory of Bacterial Promoters. NAR Genom Bioinform 2024; 6:lqae018. [PMID: 38385146 PMCID: PMC10880602 DOI: 10.1093/nargab/lqae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/23/2024] Open
Abstract
The decreasing cost of whole genome sequencing has produced high volumes of genomic information that require annotation. The experimental identification of promoter sequences, pivotal for regulating gene expression, is a laborious and cost-prohibitive task. To expedite this, we introduce the Comprehensive Directory of Bacterial Promoters (CDBProm), a directory of in-silico predicted bacterial promoter sequences. We first identified that an Extreme Gradient Boosting (XGBoost) algorithm would distinguish promoters from random downstream regions with an accuracy of 87%. To capture distinctive promoter signals, we generated a second XGBoost classifier trained on the instances misclassified in our first classifier. The predictor of CDBProm is then fed with over 55 million upstream regions from more than 6000 bacterial genomes. Upon finding potential promoter sequences in upstream regions, each promoter is mapped to the genomic data of the organism, linking the predicted promoter with its coding DNA sequence, and identifying the function of the gene regulated by the promoter. The collection of bacterial promoters available in CDBProm enables the quantitative analysis of a plethora of bacterial promoters. Our collection with over 24 million promoters is publicly available at https://aw.iimas.unam.mx/cdbprom/.
Collapse
Affiliation(s)
- Gustavo Sganzerla Martinez
- Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
- Pediatrics, Izaak Walton Killam (IWK) Health Center. Canadian Center for Vaccinology (CCfV), Halifax, Nova Scotia B3H 4H7, Canada
- BioForge Canada Limited, Halifax, Nova Scotia B3N 3B9, Canada
| | - Ernesto Perez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autonóma de México, Unidad Académica del Estado de Yucatán, Mérida 97302, Yucatán, Mexico
| | - Anuj Kumar
- Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
- Pediatrics, Izaak Walton Killam (IWK) Health Center. Canadian Center for Vaccinology (CCfV), Halifax, Nova Scotia B3H 4H7, Canada
- BioForge Canada Limited, Halifax, Nova Scotia B3N 3B9, Canada
| | - Mansi Dutt
- Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
- Pediatrics, Izaak Walton Killam (IWK) Health Center. Canadian Center for Vaccinology (CCfV), Halifax, Nova Scotia B3H 4H7, Canada
- BioForge Canada Limited, Halifax, Nova Scotia B3N 3B9, Canada
| | - Cinthia Rodríguez Maya
- Facultad de Ciencias e Ingeniería, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico
| | - Leonardo Ledesma-Dominguez
- Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico
| | - Pedro Lenz Casa
- Biotechnology Institute, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul 95070-560, Brazil
| | - Aditya Kumar
- Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam 784028, India
| | - Scheila de Avila e Silva
- Biotechnology Institute, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul 95070-560, Brazil
| | - David J Kelvin
- Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
- Pediatrics, Izaak Walton Killam (IWK) Health Center. Canadian Center for Vaccinology (CCfV), Halifax, Nova Scotia B3H 4H7, Canada
- BioForge Canada Limited, Halifax, Nova Scotia B3N 3B9, Canada
| |
Collapse
|
7
|
Ligeti B, Szepesi-Nagy I, Bodnár B, Ligeti-Nagy N, Juhász J. ProkBERT family: genomic language models for microbiome applications. Front Microbiol 2024; 14:1331233. [PMID: 38282738 PMCID: PMC10810988 DOI: 10.3389/fmicb.2023.1331233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/11/2023] [Indexed: 01/30/2024] Open
Abstract
Background In the evolving landscape of microbiology and microbiome analysis, the integration of machine learning is crucial for understanding complex microbial interactions, and predicting and recognizing novel functionalities within extensive datasets. However, the effectiveness of these methods in microbiology faces challenges due to the complex and heterogeneous nature of microbial data, further complicated by low signal-to-noise ratios, context-dependency, and a significant shortage of appropriately labeled datasets. This study introduces the ProkBERT model family, a collection of large language models, designed for genomic tasks. It provides a generalizable sequence representation for nucleotide sequences, learned from unlabeled genome data. This approach helps overcome the above-mentioned limitations in the field, thereby improving our understanding of microbial ecosystems and their impact on health and disease. Methods ProkBERT models are based on transfer learning and self-supervised methodologies, enabling them to use the abundant yet complex microbial data effectively. The introduction of the novel Local Context-Aware (LCA) tokenization technique marks a significant advancement, allowing ProkBERT to overcome the contextual limitations of traditional transformer models. This methodology not only retains rich local context but also demonstrates remarkable adaptability across various bioinformatics tasks. Results In practical applications such as promoter prediction and phage identification, the ProkBERT models show superior performance. For promoter prediction tasks, the top-performing model achieved a Matthews Correlation Coefficient (MCC) of 0.74 for E. coli and 0.62 in mixed-species contexts. In phage identification, ProkBERT models consistently outperformed established tools like VirSorter2 and DeepVirFinder, achieving an MCC of 0.85. These results underscore the models' exceptional accuracy and generalizability in both supervised and unsupervised tasks. Conclusions The ProkBERT model family is a compact yet powerful tool in the field of microbiology and bioinformatics. Its capacity for rapid, accurate analyses and its adaptability across a spectrum of tasks marks a significant advancement in machine learning applications in microbiology. The models are available on GitHub (https://github.com/nbrg-ppcu/prokbert) and HuggingFace (https://huggingface.co/nerualbioinfo) providing an accessible tool for the community.
Collapse
Affiliation(s)
- Balázs Ligeti
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - István Szepesi-Nagy
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Babett Bodnár
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Noémi Ligeti-Nagy
- Language Technology Research Group, HUN-REN Hungarian Research Centre for Linguistics, Budapest, Hungary
| | - János Juhász
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
8
|
Zulfiqar H, Ahmad RM, Raza A, Shahzad S, Lin H. Promoter Prediction in Agrobacterium tumefaciens Strain C58 by Using Artificial Intelligence Strategies. Methods Mol Biol 2024; 2844:33-44. [PMID: 39068330 DOI: 10.1007/978-1-0716-4063-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Promoters are the genomic regions upstream of genes that RNA polymerase binds in order to initiate gene transcription. Understanding the regulation of gene expression depends on being able to identify promoters, because they are the most important component of gene expression. Agrobacterium tumefaciens (A. tumefaciens) strain C58 was the subject of this study with the goal of creating a machine learning-based model to predict promoters. In this study, nucleotide density (ND), k-mer, and one-hot were used to encode the promoter sequence. Support vector machine (SVM) on fivefold cross-validation with incremental feature selection (IFS) was used to optimize the generated features. These improved characteristics were then used to distinguish promoter sequences by feeding them into the random forest (RF) classifier. Tenfold cross-validation (CV) analysis revealed that the projected model has the ability to produce an accuracy of 84.22%.
Collapse
Affiliation(s)
- Hasan Zulfiqar
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, China.
| | - Ramala Masood Ahmad
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Ali Raza
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, China
| | - Sana Shahzad
- Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Hao Lin
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, China.
| |
Collapse
|
9
|
Zou X, Ren L, Cai P, Zhang Y, Ding H, Deng K, Yu X, Lin H, Huang C. Accurately identifying hemagglutinin using sequence information and machine learning methods. Front Med (Lausanne) 2023; 10:1281880. [PMID: 38020152 PMCID: PMC10644030 DOI: 10.3389/fmed.2023.1281880] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Hemagglutinin (HA) is responsible for facilitating viral entry and infection by promoting the fusion between the host membrane and the virus. Given its significance in the process of influenza virus infestation, HA has garnered attention as a target for influenza drug and vaccine development. Thus, accurately identifying HA is crucial for the development of targeted vaccine drugs. However, the identification of HA using in-silico methods is still lacking. This study aims to design a computational model to identify HA. Methods In this study, a benchmark dataset comprising 106 HA and 106 non-HA sequences were obtained from UniProt. Various sequence-based features were used to formulate samples. By perform feature optimization and inputting them four kinds of machine learning methods, we constructed an integrated classifier model using the stacking algorithm. Results and discussion The model achieved an accuracy of 95.85% and with an area under the receiver operating characteristic (ROC) curve of 0.9863 in the 5-fold cross-validation. In the independent test, the model exhibited an accuracy of 93.18% and with an area under the ROC curve of 0.9793. The code can be found from https://github.com/Zouxidan/HA_predict.git. The proposed model has excellent prediction performance. The model will provide convenience for biochemical scholars for the study of HA.
Collapse
Affiliation(s)
- Xidan Zou
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Liping Ren
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
| | - Peiling Cai
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Yang Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Ding
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Kejun Deng
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaolong Yu
- School of Materials Science and Engineering, Hainan University, Haikou, China
| | - Hao Lin
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Chengbing Huang
- School of Computer Science and Technology, Aba Teachers University, Aba, China
| |
Collapse
|
10
|
Zhu W, Yuan SS, Li J, Huang CB, Lin H, Liao B. A First Computational Frame for Recognizing Heparin-Binding Protein. Diagnostics (Basel) 2023; 13:2465. [PMID: 37510209 PMCID: PMC10377868 DOI: 10.3390/diagnostics13142465] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Heparin-binding protein (HBP) is a cationic antibacterial protein derived from multinuclear neutrophils and an important biomarker of infectious diseases. The correct identification of HBP is of great significance to the study of infectious diseases. This work provides the first HBP recognition framework based on machine learning to accurately identify HBP. By using four sequence descriptors, HBP and non-HBP samples were represented by discrete numbers. By inputting these features into a support vector machine (SVM) and random forest (RF) algorithm and comparing the prediction performances of these methods on training data and independent test data, it is found that the SVM-based classifier has the greatest potential to identify HBP. The model could produce an auROC of 0.981 ± 0.028 on training data using 10-fold cross-validation and an overall accuracy of 95.0% on independent test data. As the first model for HBP recognition, it will provide some help for infectious diseases and stimulate further research in related fields.
Collapse
Affiliation(s)
- Wen Zhu
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou 571158, China
- Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou 571158, China
- School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China
| | - Shi-Shi Yuan
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jian Li
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Cheng-Bing Huang
- School of Computer Science and Technology, ABa Teachers University, Chengdu 623002, China
| | - Hao Lin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Bo Liao
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou 571158, China
- Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou 571158, China
- School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
11
|
Lin H, Zuo Y, Azhagiya Singam ER. Editorial: Computational analysis of promoters in prokaryotic genomes. Front Microbiol 2023; 14:1242139. [PMID: 37492255 PMCID: PMC10364605 DOI: 10.3389/fmicb.2023.1242139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023] Open
Affiliation(s)
- Hao Lin
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yongchun Zuo
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | | |
Collapse
|
12
|
Ali F, Alghamdi W, Almagrabi AO, Alghushairy O, Banjar A, Khalid M. Deep-AGP: Prediction of angiogenic protein by integrating two-dimensional convolutional neural network with discrete cosine transform. Int J Biol Macromol 2023; 243:125296. [PMID: 37301349 DOI: 10.1016/j.ijbiomac.2023.125296] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
Angiogenic proteins (AGPs) play a primary role in the formation of new blood vessels from pre-existing ones. AGPs have diverse applications in cancer, including serving as biomarkers, guiding anti-angiogenic therapies, and aiding in tumor imaging. Understanding the role of AGPs in cardiovascular and neurodegenerative diseases is vital for developing new diagnostic tools and therapeutic approaches. Considering the significance of AGPs, in this research, we first time established a computational model using deep learning for identifying AGPs. First, we constructed a sequence-based dataset. Second, we explored features by designing a novel feature encoder, called position-specific scoring matrix-decomposition-discrete cosine transform (PSSM-DC-DCT) and existing descriptors including Dipeptide Deviation from Expected Mean (DDE) and bigram-position-specific scoring matrix (Bi-PSSM). Third, each feature set is fed into two-dimensional convolutional neural network (2D-CNN) and machine learning classifiers. Finally, the performance of each learning model is validated by 10-fold cross-validation (CV). The experimental results demonstrate that 2D-CNN with proposed novel feature descriptor achieved the highest success rate on both training and testing datasets. In addition to being an accurate predictor for identification of angiogenic proteins, our proposed method (Deep-AGP) might be fruitful in understanding cancer, cardiovascular, and neurodegenerative diseases, development of their novel therapeutic methods and drug designing.
Collapse
Affiliation(s)
- Farman Ali
- Sarhad University of Science and Information Technology Peshawar, Mardan Campus, Pakistan.
| | - Wajdi Alghamdi
- Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alaa Omran Almagrabi
- Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Omar Alghushairy
- Department of Information Systems and Technology, College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia
| | - Ameen Banjar
- Department of Information Systems and Technology, College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia
| | - Majdi Khalid
- Department of Computer Science, College of Computers and Information Systems, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| |
Collapse
|
13
|
Su W, Qian X, Yang K, Ding H, Huang C, Zhang Z. Recognition of outer membrane proteins using multiple feature fusion. Front Genet 2023; 14:1211020. [PMID: 37351347 PMCID: PMC10284346 DOI: 10.3389/fgene.2023.1211020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/24/2023] [Indexed: 06/24/2023] Open
Abstract
Introduction: Outer membrane proteins are crucial in maintaining the structural stability and permeability of the outer membrane. Outer membrane proteins exhibit several functions such as antigenicity and strong immunogenicity, which have potential applications in clinical diagnosis and disease prevention. However, wet experiments for studying OMPs are time and capital-intensive, thereby necessitating the use of computational methods for their identification. Methods: In this study, we developed a computational model to predict outer membrane proteins. The non-redundant dataset consists of a positive set of 208 outer membrane proteins and a negative set of 876 non-outer membrane proteins. In this study, we employed the pseudo amino acid composition method to extract feature vectors and subsequently utilized the support vector machine for prediction. Results and Discussion: In the Jackknife cross-validation, the overall accuracy and the area under receiver operating characteristic curve were observed to be 93.19% and 0.966, respectively. These results demonstrate that our model can produce accurate predictions, and could serve as a valuable guide for experimental research on outer membrane proteins.
Collapse
Affiliation(s)
- Wenxia Su
- College of Science, Inner Mongolia Agriculture University, Hohhot, China
| | - Xiaojun Qian
- School of Life Science and Technology, Center for Information Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Keli Yang
- Nonlinear Research Institute, Baoji University of Arts and Sciences, Baoji, China
| | - Hui Ding
- School of Life Science and Technology, Center for Information Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Chengbing Huang
- School of Computer Science and Technology, Aba Teachers University, Aba, China
| | - Zhaoyue Zhang
- School of Life Science and Technology, Center for Information Biology, University of Electronic Science and Technology of China, Chengdu, China
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
| |
Collapse
|
14
|
Lin Y, Sun M, Zhang J, Li M, Yang K, Wu C, Zulfiqar H, Lai H. Computational identification of promoters in Klebsiella aerogenes by using support vector machine. Front Microbiol 2023; 14:1200678. [PMID: 37250059 PMCID: PMC10215528 DOI: 10.3389/fmicb.2023.1200678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
Promoters are the basic functional cis-elements to which RNA polymerase binds to initiate the process of gene transcription. Comprehensive understanding gene expression and regulation depends on the precise identification of promoters, as they are the most important component of gene expression. This study aimed to develop a machine learning-based model to predict promoters in Klebsiella aerogenes (K. aerogenes). In the prediction model, the promoter sequences in K. aerogenes genome were encoded by pseudo k-tuple nucleotide composition (PseKNC) and position-correlation scoring function (PCSF). Numerical features were obtained and then optimized using mRMR by combining with support vector machine (SVM) and 5-fold cross-validation (CV). Subsequently, these optimized features were inputted into SVM-based classifier to discriminate promoter sequences from non-promoter sequences in K. aerogenes. Results of 10-fold CV showed that the model could yield the overall accuracy of 96.0% and the area under the ROC curve (AUC) of 0.990. We hope that this model will provide help for the study of promoter and gene regulation in K. aerogenes.
Collapse
Affiliation(s)
- Yan Lin
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Meili Sun
- Beidahuang Industry Group General Hospital, Harbin, China
| | - Junjie Zhang
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Mingyan Li
- Chifeng Product Quality Inspection and Testing Centre, Chifeng, China
| | - Keli Yang
- Nonlinear Research Institute, Baoji University of Arts and Sciences, Baoji, China
| | - Chengyan Wu
- Baotou Teacher’s College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Hasan Zulfiqar
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, China
| | - Hongyan Lai
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
| |
Collapse
|
15
|
Zulfiqar H, Ahmed Z, Kissanga Grace-Mercure B, Hassan F, Zhang ZY, Liu F. Computational prediction of promotors in Agrobacterium tumefaciens strain C58 by using the machine learning technique. Front Microbiol 2023; 14:1170785. [PMID: 37125199 PMCID: PMC10133480 DOI: 10.3389/fmicb.2023.1170785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/17/2023] [Indexed: 05/02/2023] Open
Abstract
Promotors are those genomic regions on the upstream of genes, which are bound by RNA polymerase for starting gene transcription. Because it is the most critical element of gene expression, the recognition of promoters is crucial to understand the regulation of gene expression. This study aimed to develop a machine learning-based model to predict promotors in Agrobacterium tumefaciens (A. tumefaciens) strain C58. In the model, promotor sequences were encoded by three different kinds of feature descriptors, namely, accumulated nucleotide frequency, k-mer nucleotide composition, and binary encodings. The obtained features were optimized by using correlation and the mRMR-based algorithm. These optimized features were inputted into a random forest (RF) classifier to discriminate promotor sequences from non-promotor sequences in A. tumefaciens strain C58. The examination of 10-fold cross-validation showed that the proposed model could yield an overall accuracy of 0.837. This model will provide help for the study of promoters in A. tumefaciens C58 strain.
Collapse
Affiliation(s)
- Hasan Zulfiqar
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zahoor Ahmed
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China
| | - Bakanina Kissanga Grace-Mercure
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Farwa Hassan
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhao-Yue Zhang
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Fen Liu
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus), Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Cancer Hospital, Hohhot, China
| |
Collapse
|
16
|
Zulfiqar H, Guo Z, Grace-Mercure BK, Zhang ZY, Gao H, Lin H, Wu Y. Empirical comparison and recent advances of computational prediction of hormone binding proteins using machine learning methods. Comput Struct Biotechnol J 2023; 21:2253-2261. [PMID: 37035551 PMCID: PMC10073991 DOI: 10.1016/j.csbj.2023.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
Hormone binding proteins (HBPs) belong to the group of soluble carrier proteins. These proteins selectively and non-covalently interact with hormones and promote growth hormone signaling in human and other animals. The HBPs are useful in many medical and commercial fields. Thus, the identification of HBPs is very important because it can help to discover more details about hormone binding proteins. Meanwhile, the experimental methods are time-consuming and expensive for hormone binding proteins recognition. Computational prediction methods have played significant roles in the correct recognition of hormone binding proteins with the use of sequence information and ML algorithms. In this review, we compared and assessed the implementation of ML-based tools in recognition of HBPs in a unique way. We hope that this study will give enough awareness and knowledge for research on HBPs.
Collapse
Affiliation(s)
- Hasan Zulfiqar
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang 313001, China
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Computer Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhiling Guo
- Beidahuang Industry Group General Hospital, Harbin, China
| | - Bakanina Kissanga Grace-Mercure
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhao-Yue Zhang
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hui Gao
- School of Computer Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hao Lin
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang 313001, China
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yun Wu
- College of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China
| |
Collapse
|
17
|
Zhu D, Yang W, Xu D, Li H, Zhao Y, Li D. A deep learning based two-layer predictor to identify enhancers and their strength. Methods 2023; 211:23-30. [PMID: 36740001 DOI: 10.1016/j.ymeth.2023.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/03/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The enhancer is a DNA sequence that can increase the activity of promoters and thus speed up the frequency of gene transcription. The enhancer plays an essential role in activating gene expression. Currently, gene sequencing technology has been developed for 30 years from the first generation to the third generation, and a variety of biological sequence data have increased significantly every year. Due to the importance of enhancer functions, it is very expensive to identify enhancers through biochemical experiments. Therefore, we need to study new methods for the identification and classification of enhancers. Based on the K-mer principle this study proposed a feature extraction method that others have not used in convolutional neural networks. Then, we combined it with one-hot encoding to build an efficient one-dimensional convolutional neural network ensemble model for predicting enhancers and their strengths. Finally, we used five commonly used classification problem evaluation indicators to compare with the models proposed by other researchers. The model proposed in this paper has a better performance by using the same independent test dataset as other models.
Collapse
Affiliation(s)
- Di Zhu
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Wen Yang
- International Medical Center, Shenzhen University General Hospital, Shenzhen, China
| | - Dali Xu
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Hongfei Li
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Yuming Zhao
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China.
| | - Dan Li
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China.
| |
Collapse
|
18
|
Explainable artificial intelligence as a reliable annotator of archaeal promoter regions. Sci Rep 2023; 13:1763. [PMID: 36720898 PMCID: PMC9889792 DOI: 10.1038/s41598-023-28571-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/20/2023] [Indexed: 02/02/2023] Open
Abstract
Archaea are a vast and unexplored cellular domain that thrive in a high diversity of environments, having central roles in processes mediating global carbon and nutrient fluxes. For these organisms to balance their metabolism, the appropriate regulation of their gene expression is essential. A key momentum in regulating genes responsible for the life maintenance of archaea is when transcription factor proteins bind to the promoter element. This DNA segment is conserved, which enables its exploration by machine learning techniques. Here, we trained and tested a support vector machine with 3935 known archaeal promoter sequences. All promoter sequences were coded into DNA Duplex Stability. After, we performed a model interpretation task to map the decision pattern of the classification procedure. We also used a dataset of known-promoter sequences for validation. Our results showed that an AT rich region around position - 27 upstream (relative to the start TSS) is the most conserved in the analyzed organisms. In addition, we were able to identify the BRE element (- 33), the PPE (at - 10) and a position at + 3, that provides a more understandable picture of how promoters are organized in all the archaeal organisms. Finally, we used the interpreted model to identify potential promoter sequences of 135 unannotated organisms, delivering regulatory regions annotation of archaea in a scale never accomplished before ( https://pcyt.unam.mx/gene-regulation/ ). We consider that this approach will be useful to understand how gene regulation is achieved in other organisms apart from the already established transcription factor binding sites.
Collapse
|
19
|
Li H, Zhang J, Zhao Y, Yang W. Predicting Corynebacterium glutamicum promoters based on novel feature descriptor and feature selection technique. Front Microbiol 2023; 14:1141227. [PMID: 36937275 PMCID: PMC10018189 DOI: 10.3389/fmicb.2023.1141227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
The promoter is an important noncoding DNA regulatory element, which combines with RNA polymerase to activate the expression of downstream genes. In industry, artificial arginine is mainly synthesized by Corynebacterium glutamicum. Replication of specific promoter regions can increase arginine production. Therefore, it is necessary to accurately locate the promoter in C. glutamicum. In the wet experiment, promoter identification depends on sigma factors and DNA splicing technology, this is a laborious job. To quickly and conveniently identify the promoters in C. glutamicum, we have developed a method based on novel feature representation and feature selection to complete this task, describing the DNA sequences through statistical parameters of multiple physicochemical properties, filtering redundant features by combining analysis of variance and hierarchical clustering, the prediction accuracy of the which is as high as 91.6%, the sensitivity of 91.9% can effectively identify promoters, and the specificity of 91.2% can accurately identify non-promoters. In addition, our model can correctly identify 181 promoters and 174 non-promoters among 400 independent samples, which proves that the developed prediction model has excellent robustness.
Collapse
Affiliation(s)
- HongFei Li
- College of Life Science, Northeast Forestry University, Harbin, China
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Jingyu Zhang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuming Zhao
- College of Life Science, Northeast Forestry University, Harbin, China
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
- *Correspondence: Yuming Zhao, ; Wen Yang,
| | - Wen Yang
- International Medical Center, Shenzhen University General Hospital, Shenzhen, China
- *Correspondence: Yuming Zhao, ; Wen Yang,
| |
Collapse
|
20
|
Su W, Deng S, Gu Z, Yang K, Ding H, Chen H, Zhang Z. Prediction of apoptosis protein subcellular location based on amphiphilic pseudo amino acid composition. Front Genet 2023; 14:1157021. [PMID: 36926588 PMCID: PMC10011625 DOI: 10.3389/fgene.2023.1157021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction: Apoptosis proteins play an important role in the process of cell apoptosis, which makes the rate of cell proliferation and death reach a relative balance. The function of apoptosis protein is closely related to its subcellular location, it is of great significance to study the subcellular locations of apoptosis proteins. Many efforts in bioinformatics research have been aimed at predicting their subcellular location. However, the subcellular localization of apoptotic proteins needs to be carefully studied. Methods: In this paper, based on amphiphilic pseudo amino acid composition and support vector machine algorithm, a new method was proposed for the prediction of apoptosis proteins\x{2019} subcellular location. Results and Discussion: The method achieved good performance on three data sets. The Jackknife test accuracy of the three data sets reached 90.5%, 93.9% and 84.0%, respectively. Compared with previous methods, the prediction accuracies of APACC_SVM were improved.
Collapse
Affiliation(s)
- Wenxia Su
- College of Science, Inner Mongolia Agriculture University, Hohhot, China
| | - Shuyi Deng
- School of Life Science and Technology, Center for Information Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhifeng Gu
- School of Life Science and Technology, Center for Information Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Keli Yang
- Nonlinear Research Institute, Baoji University of Arts and Sciences, Baoji, China
| | - Hui Ding
- School of Life Science and Technology, Center for Information Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hui Chen
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
| | - Zhaoyue Zhang
- School of Life Science and Technology, Center for Information Biology, University of Electronic Science and Technology of China, Chengdu, China.,School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
| |
Collapse
|
21
|
Zhou S, Zheng J, Jia C. SPREAD: An ensemble predictor based on DNA autoencoder framework for discriminating promoters in Pseudomonas aeruginosa. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:13294-13305. [PMID: 36654047 DOI: 10.3934/mbe.2022622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Regulatory elements in DNA sequences, such as promoters, enhancers, terminators and so on, are essential for gene expression in physiological and pathological processes. A promoter is the specific DNA sequence that is located upstream of the coding gene and acts as the "switch" for gene transcriptional regulation. Lots of promoter predictors have been developed for different bacterial species, but only a few are designed for Pseudomonas aeruginosa, a widespread Gram-negative conditional pathogen in nature. In this work, an ensemble model named SPREAD is proposed for the recognition of promoters in Pseudomonas aeruginosa. In SPREAD, the DNA sequence autoencoder model LSTM is employed to extract potential sequence information, and the mean output probability value of CNN and RF is applied as the final prediction. Compared with G4PromFinder, the only state-of-the-art classifier for promoters in Pseudomonas aeruginosa, SPREAD improves the prediction performance significantly, with an accuracy of 0.98, recall of 0.98, precision of 0.98, specificity of 0.97 and F1-score of 0.98.
Collapse
Affiliation(s)
- Shengming Zhou
- School of Science, Dalian Maritime University, Dalian 116026, China
| | - Jia Zheng
- School of Science, Dalian Maritime University, Dalian 116026, China
| | - Cangzhi Jia
- School of Science, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
22
|
Perdas E, Gadzalska K, Hrytsiuk I, Borowiec M, Fendler W, Młynarski W. Case report: Neonatal diabetes mellitus with congenital hypothyroidism as a result of biallelic heterozygous mutations in GLIS3 gene. Pediatr Diabetes 2022; 23:668-674. [PMID: 35394098 DOI: 10.1111/pedi.13341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/25/2022] [Accepted: 04/04/2022] [Indexed: 11/30/2022] Open
Abstract
Neonatal diabetes mellitus with congenital hypothyroidism (NDH) syndrome (MIM# 610199) is a rare disease caused by autosomal recessive mutations in the GLIS3 gene. GLIS3 is an important transcription factor that might acts as both a repressor and activator of transcription. To date, 22 cases of NDH syndrome from 16 families and 11 countries have been described. Herein, we report a child who developed diabetes during the first week of age. Additionally, she suffered from congenital hypothyroidism, cardiac abnormalities, and polycystic kidney disease. Genetic analysis revealed that patient is a carrier of two novel heterozygous mutations, p.Pro444fsdelG (c.1330delC) and p.His647Arg (c.1940A > G) in the GLIS3 gene. Each was inherited from clinically healthy father and mother, respectively. Bioinformatic tools (SIFT, PolyPhen2, PROVEAN and SWISS-MODEL) declared that the p.His647Arg (c.1940A > G) variant has strong detrimental effect and disturbs Kruppel-like zinc finger domain. All but one so far described cases of NDH syndrome have been caused by homozygous of GLIS3, making the described case the second case of pathogenic, compound heterozygosity of GLIS3 worldwide posing substantial clinical novelty and detailing an interesting interplay between the observed variants and GLIS3 expression, which seems to be autoregulated. Hence, the damaging missense mutation may further reduce the expression of any remaining functional alleles. This case report expands our understanding of the clinical phenotype, treatment approaches, and outcome of infants with GLIS3 mutations and indicates the need for further research to deepen our understanding of the role of GLIS3.
Collapse
Affiliation(s)
- Ewelina Perdas
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Karolina Gadzalska
- Department of Clinical and Laboratory Genetics, Medical University of Lodz, Lodz, Poland
| | - Ihor Hrytsiuk
- Western Ukrainian Specialised Children's Medical Centre, Lviv, Ukraine
| | - Maciej Borowiec
- Department of Clinical and Laboratory Genetics, Medical University of Lodz, Lodz, Poland
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Wojciech Młynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
23
|
Genome-Wide Transcription Start Sites Mapping in Methylorubrum Grown with Dichloromethane and Methanol. Microorganisms 2022; 10:microorganisms10071301. [PMID: 35889020 PMCID: PMC9320726 DOI: 10.3390/microorganisms10071301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Dichloromethane (DCM, methylene chloride) is a toxic halogenated volatile organic compound massively used for industrial applications, and consequently often detected in the environment as a major pollutant. DCM biotransformation suggests a sustainable decontamination strategy of polluted sites. Among methylotrophic bacteria able to use DCM as a sole source of carbon and energy for growth, Methylorubrum extorquens DM4 is a longstanding reference strain. Here, the primary 5′-ends of transcripts were obtained using a differential RNA-seq (dRNA-seq) approach to provide the first transcription start site (TSS) genome-wide landscape of a methylotroph using DCM or methanol. In total, 7231 putative TSSs were annotated and classified with respect to their localization to coding sequences (CDSs). TSSs on the opposite strand of CDS (antisense TSS) account for 31% of all identified TSSs. One-third of the detected TSSs were located at a distance to the start codon inferior to 250 nt (average of 84 nt) with 7% of leaderless mRNA. Taken together, the global TSS map for bacterial growth using DCM or methanol will facilitate future studies in which transcriptional regulation is crucial, and efficient DCM removal at polluted sites is limited by regulatory processes.
Collapse
|
24
|
Chen Z, Jiao S, Zhao D, Zou Q, Xu L, Zhang L, Su X. The Characterization of Structure and Prediction for Aquaporin in Tumour Progression by Machine Learning. Front Cell Dev Biol 2022; 10:845622. [PMID: 35178393 PMCID: PMC8844512 DOI: 10.3389/fcell.2022.845622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/17/2022] [Indexed: 11/21/2022] Open
Abstract
Recurrence and new cases of cancer constitute a challenging human health problem. Aquaporins (AQPs) can be expressed in many types of tumours, including the brain, breast, pancreas, colon, skin, ovaries, and lungs, and the histological grade of cancer is positively correlated with AQP expression. Therefore, the identification of aquaporins is an area to explore. Computational tools play an important role in aquaporin identification. In this research, we propose reliable, accurate and automated sequence predictor iAQPs-RF to identify AQPs. In this study, the feature extraction method was 188D (global protein sequence descriptor, GPSD). Six common classifiers, including random forest (RF), NaiveBayes (NB), support vector machine (SVM), XGBoost, logistic regression (LR) and decision tree (DT), were used for AQP classification. The classification results show that the random forest (RF) algorithm is the most suitable machine learning algorithm, and the accuracy was 97.689%. Analysis of Variance (ANOVA) was used to analyse these characteristics. Feature rank based on the ANOVA method and IFS strategy was applied to search for the optimal features. The classification results suggest that the 26th feature (neutral/hydrophobic) and 21st feature (hydrophobic) are the two most powerful and informative features that distinguish AQPs from non-AQPs. Previous studies reported that plasma membrane proteins have hydrophobic characteristics. Aquaporin subcellular localization prediction showed that all aquaporins were plasma membrane proteins with highly conserved transmembrane structures. In addition, the 3D structure of aquaporins was consistent with the localization results. Therefore, these studies confirmed that aquaporins possess hydrophobic properties. Although aquaporins are highly conserved transmembrane structures, the phylogenetic tree shows the diversity of aquaporins during evolution. The PCA showed that positive and negative samples were well separated by 54D features, indicating that the 54D feature can effectively classify aquaporins. The online prediction server is accessible at http://lab.malab.cn/∼acy/iAQP.
Collapse
Affiliation(s)
- Zheng Chen
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen, China.,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Shihu Jiao
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Da Zhao
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen, China.,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.,Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Lijun Zhang
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen, China
| | - Xi Su
- Foshan Maternal and Child Health Hospital, Foshan, China
| |
Collapse
|
25
|
Cai J, Xiao G, Su R. GC6mA-Pred: A deep learning approach to identify DNA N6-methyladenine sites in the rice genome. Methods 2022; 204:14-21. [PMID: 35149214 DOI: 10.1016/j.ymeth.2022.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 12/11/2022] Open
Abstract
MOTIVATION DNA N6-methyladenine (6mA) is a pivotal DNA modification for various biological processes. More accurate prediction of 6mA methylation sites plays an irreplaceable part in grasping the internal rationale of related biological activities. However, the existing prediction methods only extract information from a single dimension, which has some limitations. Therefore, it is very necessary to obtain the information of 6mA sites from different dimensions, so as to establish a reliable prediction method. RESULTS In this study, a neural network based bioinformatics model named GC6mA-Pred is proposed to predict N6-methyladenine modifications in DNA sequences. GC6mA-Pred extracts significant information from both sequence level and graph level. In the sequence level, GC6mA-Pred uses a three-layer convolution neural network (CNN) model to represent the sequence. In the graph level, GC6mA-Pred employs graph neural network (GNN) method to integrate various information contained in the chemical molecular formula corresponding to DNA sequence. In our newly built dataset, GC6mA-Pred shows better performance than other existing models. The results of comparative experiments have illustrated that GC6mA-Pred is capable of producing a marked effect in accurately identifying DNA 6mA modifications.
Collapse
Affiliation(s)
- Jianhua Cai
- Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, College of Computer and Control Engineering, Minjiang University, Fuzhou, China; College of Mathematics and Computer Science, Fuzhou University, Fuzhou, PR China
| | - Guobao Xiao
- Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, College of Computer and Control Engineering, Minjiang University, Fuzhou, China.
| | - Ran Su
- College of Intelligence and Computing, Tianjin University, Tianjin, China.
| |
Collapse
|
26
|
Zulfiqar H, Huang QL, Lv H, Sun ZJ, Dao FY, Lin H. Deep-4mCGP: A Deep Learning Approach to Predict 4mC Sites in Geobacter pickeringii by Using Correlation-Based Feature Selection Technique. Int J Mol Sci 2022; 23:1251. [PMID: 35163174 PMCID: PMC8836036 DOI: 10.3390/ijms23031251] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/15/2022] Open
Abstract
4mC is a type of DNA alteration that has the ability to synchronize multiple biological movements, for example, DNA replication, gene expressions, and transcriptional regulations. Accurate prediction of 4mC sites can provide exact information to their hereditary functions. The purpose of this study was to establish a robust deep learning model to recognize 4mC sites in Geobacter pickeringii. In the anticipated model, two kinds of feature descriptors, namely, binary and k-mer composition were used to encode the DNA sequences of Geobacter pickeringii. The obtained features from their fusion were optimized by using correlation and gradient-boosting decision tree (GBDT)-based algorithm with incremental feature selection (IFS) method. Then, these optimized features were inserted into 1D convolutional neural network (CNN) to classify 4mC sites from non-4mC sites in Geobacter pickeringii. The performance of the anticipated model on independent data exhibited an accuracy of 0.868, which was 4.2% higher than the existing model.
Collapse
Affiliation(s)
| | | | | | | | | | - Hao Lin
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China; (H.Z.); (Q.-L.H.); (H.L.); (Z.-J.S.); (F.-Y.D.)
| |
Collapse
|
27
|
Liu M, Chen H, Gao D, Ma CY, Zhang ZY. Identification of Helicobacter pylori Membrane Proteins Using Sequence-Based Features. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7493834. [PMID: 35069791 PMCID: PMC8769816 DOI: 10.1155/2022/7493834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/16/2021] [Indexed: 11/28/2022]
Abstract
Helicobacter pylori (H. pylori) is the most common risk factor for gastric cancer worldwide. The membrane proteins of the H. pylori are involved in bacterial adherence and play a vital role in the field of drug discovery. Thus, an accurate and cost-effective computational model is needed to predict the uncharacterized membrane proteins of H. pylori. In this study, a reliable benchmark dataset consisted of 114 membrane and 219 nonmembrane proteins was constructed based on UniProt. A support vector machine- (SVM-) based model was developed for discriminating H. pylori membrane proteins from nonmembrane proteins by using sequence information. Cross-validation showed that our method achieved good performance with an accuracy of 91.29%. It is anticipated that the proposed model will be useful for the annotation of H. pylori membrane proteins and the development of new anti-H. pylori agents.
Collapse
Affiliation(s)
- Mujiexin Liu
- Ineye Hospital of Chengdu University of TCM, Chengdu University of TCM, Chengdu 610084, China
| | - Hui Chen
- School of Healthcare Technology, Chengdu Neusoft University, 611844 Chengdu, China
| | - Dong Gao
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Cai-Yi Ma
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhao-Yue Zhang
- School of Healthcare Technology, Chengdu Neusoft University, 611844 Chengdu, China
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
28
|
Li H, Shi L, Gao W, Zhang Z, Zhang L, Wang G. dPromoter-XGBoost: Detecting promoters and strength by combining multiple descriptors and feature selection using XGBoost. Methods 2022; 204:215-222. [PMID: 34998983 DOI: 10.1016/j.ymeth.2022.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 01/02/2022] [Indexed: 12/12/2022] Open
Abstract
Promoters play an irreplaceable role in biological processes and genetics, which are responsible for stimulating the transcription and expression of specific genes. Promoter abnormalities have been found in some diseases, and the level of promoter-binding transcription factors can be used as a marker before a disease occurs. Hence, detecting promoters from DNA sequences has important biological significance, particular, distinguishing strong promoters can help to elucidate differences in gene expression and the mechanisms of specific diseases. With the introduction of third-generation sequencing, it is difficult to match the speed of sequencing to the speed of labeling promoters experimentally. Many computing models have been designed to fill this gap and identify unlabeled DNA. However, their feature representation methods are very singular, which cannot reflect the information contained in the original samples. With the aim of avoiding information loss, we propose a computational model based on multiple descriptors and feature selection to jointly express samples. It is worth mentioning that a new feature descriptor called K-mer word vector is defined. The promoter model of multiple feature descriptors dominated by K-mer word vector achieves similar performance to existing methods, the sensitivity of 85.72% can distinguish the promoter more effectively than other methods. Furthermore, the performance of the promoter strength has surpassed published methods, and accuracy of 77.00% greatly improves the ability to distinguish between strong and weak promoters.
Collapse
Affiliation(s)
- Hongfei Li
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China; Yangtze Delta Region Institute, University of Electronic Science and Technology, Quzhou,China
| | - Lei Shi
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wentao Gao
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Zixiao Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Lichao Zhang
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen, China
| | - Guohua Wang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China.
| |
Collapse
|
29
|
Bhukya R, Kumari A, Amilpur S, Dasari CM. PPred-PCKSM: A multi-layer predictor for identifying promoter and its variants using position based features. Comput Biol Chem 2022; 97:107623. [DOI: 10.1016/j.compbiolchem.2022.107623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/02/2022] [Accepted: 01/05/2022] [Indexed: 11/03/2022]
|
30
|
Li H, Gong Y, Liu Y, Lin H, Wang G. Detection of transcription factors binding to methylated DNA by deep recurrent neural network. Brief Bioinform 2021; 23:6484512. [PMID: 34962264 DOI: 10.1093/bib/bbab533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/23/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022] Open
Abstract
Transcription factors (TFs) are proteins specifically involved in gene expression regulation. It is generally accepted in epigenetics that methylated nucleotides could prevent the TFs from binding to DNA fragments. However, recent studies have confirmed that some TFs have capability to interact with methylated DNA fragments to further regulate gene expression. Although biochemical experiments could recognize TFs binding to methylated DNA sequences, these wet experimental methods are time-consuming and expensive. Machine learning methods provide a good choice for quickly identifying these TFs without experimental materials. Thus, this study aims to design a robust predictor to detect methylated DNA-bound TFs. We firstly proposed using tripeptide word vector feature to formulate protein samples. Subsequently, based on recurrent neural network with long short-term memory, a two-step computational model was designed. The first step predictor was utilized to discriminate transcription factors from non-transcription factors. Once proteins were predicted as TFs, the second step predictor was employed to judge whether the TFs can bind to methylated DNA. Through the independent dataset test, the accuracies of the first step and the second step are 86.63% and 73.59%, respectively. In addition, the statistical analysis of the distribution of tripeptides in training samples showed that the position and number of some tripeptides in the sequence could affect the binding of TFs to methylated DNA. Finally, on the basis of our model, a free web server was established based on the proposed model, which can be available at https://bioinfor.nefu.edu.cn/TFPM/.
Collapse
Affiliation(s)
- Hongfei Li
- College of Information and Computer Engineering at Northeast Forestry University of China
| | - Yue Gong
- College of Information and Computer Engineering at Northeast Forestry University of China
| | - Yifeng Liu
- School of management at Henan Institute of Technology of China
| | - Hao Lin
- Center for Informational Biology at University of Electronic Science and Technology of China
| | - Guohua Wang
- College of Information and Computer Engineering at Northeast Forestry University of China
| |
Collapse
|
31
|
Guo Y, Ju Y, Chen D, Wang L. Research on the Computational Prediction of Essential Genes. Front Cell Dev Biol 2021; 9:803608. [PMID: 34938741 PMCID: PMC8685449 DOI: 10.3389/fcell.2021.803608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/22/2021] [Indexed: 11/19/2022] Open
Abstract
Genes, the nucleotide sequences that encode a polypeptide chain or functional RNA, are the basic genetic unit controlling biological traits. They are the guarantee of the basic structures and functions in organisms, and they store information related to biological factors and processes such as blood type, gestation, growth, and apoptosis. The environment and genetics jointly affect important physiological processes such as reproduction, cell division, and protein synthesis. Genes are related to a wide range of phenomena including growth, decline, illness, aging, and death. During the evolution of organisms, there is a class of genes that exist in a conserved form in multiple species. These genes are often located on the dominant strand of DNA and tend to have higher expression levels. The protein encoded by it usually either performs very important functions or is responsible for maintaining and repairing these essential functions. Such genes are called persistent genes. Among them, the irreplaceable part of the body’s life activities is the essential gene. For example, when starch is the only source of energy, the genes related to starch digestion are essential genes. Without them, the organism will die because it cannot obtain enough energy to maintain basic functions. The function of the proteins encoded by these genes is thought to be fundamental to life. Nowadays, DNA can be extracted from blood, saliva, or tissue cells for genetic testing, and detailed genetic information can be obtained using the most advanced scientific instruments and technologies. The information gained from genetic testing is useful to assess the potential risks of disease, and to help determine the prognosis and development of diseases. Such information is also useful for developing personalized medication and providing targeted health guidance to improve the quality of life. Therefore, it is of great theoretical and practical significance to identify important and essential genes. In this paper, the research status of essential genes and the essential genome database of bacteria are reviewed, the computational prediction method of essential genes based on communication coding theory is expounded, and the significance and practical application value of essential genes are discussed.
Collapse
Affiliation(s)
- Yuxin Guo
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China.,Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China.,Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou, China.,School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Ying Ju
- School of Informatics, Xiamen University, Xiamen, China
| | - Dong Chen
- College of Electrical and Information Engineering, Quzhou University, Quzhou, China
| | - Lihong Wang
- Beidahuang Industry Group General Hospital, Harbin, China
| |
Collapse
|
32
|
Jia Y, Huang S, Zhang T. KK-DBP: A Multi-Feature Fusion Method for DNA-Binding Protein Identification Based on Random Forest. Front Genet 2021; 12:811158. [PMID: 34912382 PMCID: PMC8667860 DOI: 10.3389/fgene.2021.811158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 02/04/2023] Open
Abstract
DNA-binding protein (DBP) is a protein with a special DNA binding domain that is associated with many important molecular biological mechanisms. Rapid development of computational methods has made it possible to predict DBP on a large scale; however, existing methods do not fully integrate DBP-related features, resulting in rough prediction results. In this article, we develop a DNA-binding protein identification method called KK-DBP. To improve prediction accuracy, we propose a feature extraction method that fuses multiple PSSM features. The experimental results show a prediction accuracy on the independent test dataset PDB186 of 81.22%, which is the highest of all existing methods.
Collapse
Affiliation(s)
- Yuran Jia
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Shan Huang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianjiao Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| |
Collapse
|
33
|
Liang Y, Zhang S, Qiao H, Yao Y. iPromoter-ET: Identifying promoters and their strength by extremely randomized trees-based feature selection. Anal Biochem 2021; 630:114335. [PMID: 34389299 DOI: 10.1016/j.ab.2021.114335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/24/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
Promoter is a region of DNA that determines the transcription of a particular gene. There are several σ factors in the RNA polymerase, which has the function of identifying the promoter and facilitating the binding of the RNA polymerase to the promoter. Owing to the importance of promoter in genome research, it is an urgent task to develop computational tool for effectively identifying promoters and their strength facing the avalanche of DNA sequences discovered in the post-genomic age. In this paper, we develop a model named iPromoter-ET using the k-mer nucleotide composition, binary encoding and dinucleotide property matrix-based distance transformation for features extraction, and extremely randomized trees (extra trees) for feature selection. Its 1st layer is used to identify whether a DNA sequence is of promoter or not, while its 2nd layer is to identify promoter samples as being strong or weak promoter. Support vector machine and the five cross-validation are used to perform identification and assess performance, respectively. The results indicate that our model remarkably outperforms the existing models in both the 1st and 2nd layers for accuracy and stability. We anticipate that our proposed model will become a very effective intelligent tool, or at the least, a complementary tool to the existing modes of identifying promoters and their strength. Moreover, the datasets and codes for iPromoter-ET are freely available at https://github.com/shengli0201/iPromoter-ET.
Collapse
Affiliation(s)
- Yunyun Liang
- School of Science, Xi'an Polytechnic University, Xi'an, 710048, PR China.
| | - Shengli Zhang
- School of Mathematics and Statistics, Xidian University, Xi'an, 710071, PR China
| | - Huijuan Qiao
- School of Mathematics and Statistics, Xidian University, Xi'an, 710071, PR China
| | - Yingying Yao
- School of Mathematics and Statistics, Xidian University, Xi'an, 710071, PR China
| |
Collapse
|
34
|
Zulfiqar H, Sun ZJ, Huang QL, Yuan SS, Lv H, Dao FY, Lin H, Li YW. Deep-4mCW2V: A sequence-based predictor to identify N4-methylcytosine sites in Escherichia coli. Methods 2021; 203:558-563. [PMID: 34352373 DOI: 10.1016/j.ymeth.2021.07.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022] Open
Abstract
N4-methylcytosine (4mC) is a type of DNA modification which could regulate several biological progressions such as transcription regulation, replication and gene expressions. Precisely recognizing 4mC sites in genomic sequences can provide specific knowledge about their genetic roles. This study aimed to develop a deep learning-based model to predict 4mC sites in the Escherichia coli. In the model, DNA sequences were encoded by word embedding technique 'word2vec'. The obtained features were inputted into 1-D convolutional neural network (CNN) to discriminate 4mC sites from non-4mC sites in Escherichia coli genome. The examination on independent dataset showed that our model could yield the overall accuracy of 0.861, which was about 4.3% higher than the existing model. To provide convenience to scholars, we provided the data and source code of the model which can be freely download from https://github.com/linDing-groups/Deep-4mCW2V.
Collapse
Affiliation(s)
- Hasan Zulfiqar
- Center for Informational Biology and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zi-Jie Sun
- Center for Informational Biology and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qin-Lai Huang
- Center for Informational Biology and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shi-Shi Yuan
- Center for Informational Biology and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hao Lv
- Center for Informational Biology and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Fu-Ying Dao
- Center for Informational Biology and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hao Lin
- Center for Informational Biology and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Yan-Wen Li
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China; Key Laboratory of Intelligent Information Processing of Jilin Province, Northeast Normal University, Changchun 130117, China; Institute of Computational Biology, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
35
|
Zulfiqar H, Yuan SS, Huang QL, Sun ZJ, Dao FY, Yu XL, Lin H. Identification of cyclin protein using gradient boost decision tree algorithm. Comput Struct Biotechnol J 2021; 19:4123-4131. [PMID: 34527186 PMCID: PMC8346528 DOI: 10.1016/j.csbj.2021.07.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Cyclin proteins are capable to regulate the cell cycle by forming a complex with cyclin-dependent kinases to activate cell cycle. Correct recognition of cyclin proteins could provide key clues for studying their functions. However, their sequences share low similarity, which results in poor prediction for sequence similarity-based methods. Thus, it is urgent to construct a machine learning model to identify cyclin proteins. This study aimed to develop a computational model to discriminate cyclin proteins from non-cyclin proteins. In our model, protein sequences were encoded by seven kinds of features that are amino acid composition, composition of k-spaced amino acid pairs, tri peptide composition, pseudo amino acid composition, geary correlation, normalized moreau-broto autocorrelation and composition/transition/distribution. Afterward, these features were optimized by using analysis of variance (ANOVA) and minimum redundancy maximum relevance (mRMR) with incremental feature selection (IFS) technique. A gradient boost decision tree (GBDT) classifier was trained on the optimal features. Five-fold cross-validated results showed that our model would identify cyclins with an accuracy of 93.06% and AUC value of 0.971, which are higher than the two recent studies on the same data.
Collapse
Affiliation(s)
- Hasan Zulfiqar
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shi-Shi Yuan
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qin-Lai Huang
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zi-Jie Sun
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Fu-Ying Dao
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xiao-Long Yu
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Hao Lin
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
36
|
Zhu W, Guo Y, Zou Q. Prediction of presynaptic and postsynaptic neurotoxins based on feature extraction. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:5943-5958. [PMID: 34517517 DOI: 10.3934/mbe.2021297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A neurotoxin is essentially a protein that mainly acts on the nervous system; it has a selective toxic effect on the central nervous system and neuromuscular nodes, can cause muscle paralysis and respiratory paralysis, and has strong lethality. According to their principle of action, neurotoxins are divided into presynaptic neurotoxins and postsynaptic neurotoxins. Correctly identifying presynaptic and postsynaptic nerve toxins provides important clues for future drug development and the discovery of drug targets. Therefore, a predictive model, Neu_LR, was constructed in this paper. The monoMonokGap method was used to extract the frequency characteristics of presynaptic and postsynaptic neurotoxin sequences and carry out feature selection, then, based on the important features obtained after dimensionality reduction, the prediction model Neu_LR was constructed using a logistic regression algorithm, and ten-fold cross-validation and independent test set validation were used. The final accuracy rates were 99.6078 and 94.1176%, respectively, which proved that the Neu_LR model had good predictive performance and robustness, and could meet the prediction requirements of presynaptic and postsynaptic neurotoxins. The data and source code of the model can be freely download from https://github.com/gyx123681/.
Collapse
Affiliation(s)
- Wen Zhu
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China
- Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou, China
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Yuxin Guo
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China
- Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou, China
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Quan Zou
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| |
Collapse
|
37
|
Zeng R, Cheng S, Liao M. 4mCPred-MTL: Accurate Identification of DNA 4mC Sites in Multiple Species Using Multi-Task Deep Learning Based on Multi-Head Attention Mechanism. Front Cell Dev Biol 2021; 9:664669. [PMID: 34041243 PMCID: PMC8141656 DOI: 10.3389/fcell.2021.664669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/17/2021] [Indexed: 01/10/2023] Open
Abstract
DNA methylation is one of the most extensive epigenetic modifications. DNA 4mC modification plays a key role in regulating chromatin structure and gene expression. In this study, we proposed a generic 4mC computational predictor, namely, 4mCPred-MTL using multi-task learning coupled with Transformer to predict 4mC sites in multiple species. In this predictor, we utilize a multi-task learning framework, in which each task is to train species-specific data based on Transformer. Extensive experimental results show that our multi-task predictive model can significantly improve the performance of the model based on single task and outperform existing methods on benchmarking comparison. Moreover, we found that our model can sufficiently capture better characteristics of 4mC sites as compared to existing commonly used feature descriptors, demonstrating the strong feature learning ability of our model. Therefore, based on the above results, it can be expected that our 4mCPred-MTL can be a useful tool for research communities of interest.
Collapse
Affiliation(s)
- Rao Zeng
- Department of Software Engineering, School of Informatics, Xiamen University, Xiamen, China
| | - Song Cheng
- Department of Thoracic Surgery, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Minghong Liao
- Department of Software Engineering, School of Informatics, Xiamen University, Xiamen, China
| |
Collapse
|
38
|
Casadio R, Lenhard B, Sternberg MJE. Computational Resources for Molecular Biology 2021. J Mol Biol 2021; 433:166962. [PMID: 33774035 DOI: 10.1016/j.jmb.2021.166962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Rita Casadio
- Biocomputing Group, FABIT-University of Bologna, Italy
| | - Boris Lenhard
- Institute of Clinical Sciences, Faculty of Medicine. Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; Computational Regulatory Genomics, MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK
| | - Michael J E Sternberg
- Structural Bioinformatics Group, Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|