1
|
Li T, Li W, Guo X, Tan T, Xiang C, Ouyang Z. Unraveling the potential mechanisms of the anti-osteoporotic effects of the Achyranthes bidentata-Dipsacus asper herb pair: a network pharmacology and experimental study. Front Pharmacol 2023; 14:1242194. [PMID: 37849727 PMCID: PMC10577322 DOI: 10.3389/fphar.2023.1242194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/07/2023] [Indexed: 10/19/2023] Open
Abstract
Background: Osteoporosis is a prevalent bone metabolism disease characterized by a reduction in bone density, leading to several complications that significantly affect patients' quality of life. The Achyranthes bidentata-Dipsacus asper (AB-DA) herb pair is commonly used in Traditional Chinese Medicine (TCM) to treat osteoporosis. This study aimed to investigate the therapeutic compounds and potential mechanisms of AB-DA using network pharmacology, molecular docking, molecular dynamics simulation, and experimental verification. Methods: Identified compounds of AB-DA were collected from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Traditional Chinese Medicine Information Database (TCM-ID), TCM@Taiwan Database, BATMAN-TCM, and relevant literature. The main bioactive ingredients were screened based on the criteria of "OB (oral bioavailability) ≥ 30, DL (drug-likeness) ≥ 0.18." Potential targets were predicted using the PharmMapper and SwissTargetPrediction websites, while disease (osteoporosis)-related targets were obtained from the GeneCards, DisGeNET, and OMIM databases. The PPI network and KEGG/GO enrichment analysis were utilized for core targets and pathway screening in the STRING and Metascape databases, respectively. A drug-compound-target-pathway-disease network was constructed using Cytoscape software to display core regulatory mechanisms. Molecular docking and dynamics simulation techniques explored the binding reliability and stability between core compounds and targets. In vitro and in vivo validation experiments were utilized to explore the anti-osteoporosis efficiency and mechanism of sitogluside. Results: A total of 31 compounds with 83 potential targets for AB-DA against osteoporosis were obtained. The PPI analysis revealed several hub targets, including AKT1, CASP3, EGFR, IGF1, MAPK1, MAPK8, and MAPK14. GO/KEGG analysis indicated that the MAPK cascade (ERK/JNK/p38) is the main pathway involved in treating osteoporosis. The D-C-T-P-T network demonstrated therapeutic compounds that mainly consisted of iridoids, steroids, and flavonoids, such as sitogluside, loganic acid, and β-ecdysterone. Molecular docking and dynamics simulation analyses confirmed strong binding affinity and stability between core compounds and targets. Additionally, the validation experiments showed preliminary evidence of antiosteoporosis effects. Conclusion: This study identified iridoids, steroids, and flavonoids as the main therapeutic compounds of AB-DA in treating osteoporosis. The underlying mechanisms may involve targeting core MAPK cascade (ERK/JNK/p38) targets, such as MAPK1, MAPK8, and MAPK14. In vivo experiments preliminarily validated the anti-osteoporosis effect of sitogluside. Further in-depth experimental studies are required to validate the therapeutic value of AB-DA for treating osteoporosis in clinical practice.
Collapse
Affiliation(s)
- Tao Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenzhao Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoning Guo
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tingting Tan
- Department of Immunology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Cheng Xiang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhengxiao Ouyang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Roden A, Engelin MK, Pos KM, Geertsma ER. Membrane-anchored substrate binding proteins are deployed in secondary TAXI transporters. Biol Chem 2023:hsz-2022-0337. [PMID: 36916166 DOI: 10.1515/hsz-2022-0337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/10/2023] [Indexed: 03/16/2023]
Abstract
Substrate-binding proteins (SBPs) are part of solute transport systems and serve to increase substrate affinity and uptake rates. In contrast to primary transport systems, the mechanism of SBP-dependent secondary transport is not well understood. Functional studies have thus far focused on Na+-coupled Tripartite ATP-independent periplasmic (TRAP) transporters for sialic acid. Herein, we report the in vitro functional characterization of TAXIPm-PQM from the human pathogen Proteus mirabilis. TAXIPm-PQM belongs to a TRAP-subfamily using a different type of SBP, designated TRAP-associated extracytoplasmic immunogenic (TAXI) protein. TAXIPm-PQM catalyzes proton-dependent α-ketoglutarate symport and its SBP is an essential component of the transport mechanism. Importantly, TAXIPm-PQM represents the first functionally characterized SBP-dependent secondary transporter that does not rely on a soluble SBP, but uses a membrane-anchored SBP instead.
Collapse
Affiliation(s)
- Anja Roden
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Melanie K Engelin
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Klaas M Pos
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Eric R Geertsma
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany
| |
Collapse
|
3
|
Liao Y, Ding Y, Yu L, Xiang C, Yang M. Exploring the mechanism of Alisma orientale for the treatment of pregnancy induced hypertension and potential hepato-nephrotoxicity by using network pharmacology, network toxicology, molecular docking and molecular dynamics simulation. Front Pharmacol 2022; 13:1027112. [PMID: 36457705 PMCID: PMC9705790 DOI: 10.3389/fphar.2022.1027112] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/18/2022] [Indexed: 10/28/2023] Open
Abstract
Background: Pregnancy-induced Hypertension (PIH) is a disease that causes serious maternal and fetal morbidity and mortality. Alisma Orientale (AO) has a long history of use as traditional Chinese medicine therapy for PIH. This study explores its potential mechanism and biosafety based on network pharmacology, network toxicology, molecular docking and molecular dynamics simulation. Methods: Compounds of AO were screened in TCMSP, TCM-ID, TCM@Taiwan, BATMAN, TOXNET and CTD database; PharmMapper and SwissTargetPrediction, GeneCards, DisGeNET and OMIM databases were used to predict the targets of AO anti-PIH. The protein-protein interaction analysis and the KEGG/GO enrichment analysis were applied by STRING and Metascape databases, respectively. Then, we constructed the "herb-compound-target-pathway-disease" map in Cytoscape software to show the core regulatory network. Finally, molecular docking and molecular dynamics simulation were applied to analyze binding affinity and reliability. The same procedure was conducted for network toxicology to illustrate the mechanisms of AO hepatotoxicity and nephrotoxicity. Results: 29 compounds with 78 potential targets associated with the therapeutic effect of AO on PIH, 10 compounds with 117 and 111 targets associated with AO induced hepatotoxicity and nephrotoxicity were obtained, respectively. The PPI network analysis showed that core therapeutic targets were IGF, MAPK1, AKT1 and EGFR, while PPARG and TNF were toxicity-related targets. Besides, GO/KEGG enrichment analysis showed that AO might modulate the PI3K-AKT and MAPK pathways in treating PIH and mainly interfere with the lipid and atherosclerosis pathways to induce liver and kidney injury. The "herb-compound-target-pathway-disease" network showed that triterpenoids were the main therapeutic compounds, such as Alisol B 23-Acetate and Alisol C, while emodin was the main toxic compounds. The results of molecular docking and molecular dynamics simulation also showed good binding affinity between core compounds and targets. Conclusion: This research illustrated the mechanism underlying the therapeutic effects of AO against PIH and AO induced hepato-nephrotoxicity. However, further experimental verification is warranted for optimal use of AO during clinical practice.
Collapse
Affiliation(s)
- Yilin Liao
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yiling Ding
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ling Yu
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Cheng Xiang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Mengyuan Yang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Galluccio M, Mazza T, Scalise M, Sarubbi MC, Indiveri C. Bacterial over-expression of functionally active human CT2 (SLC22A16) carnitine transporter. Mol Biol Rep 2022; 49:8185-8193. [PMID: 35608746 DOI: 10.1007/s11033-022-07491-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/20/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Escherichia coli is a widely used tool for the over-expression of human proteins for studying structure and function. The toxicity of human proteins for E. coli often hampers the expression. This study aims to find conditions for the expression of a membrane transporter known as the carnitine transporter CT2. The knowledge on this transporter is scarce, thus obtaining the recombinant protein is very important for further studies. METHODS AND RESULTS The cDNAs coding for human CT2 (hCT2) was cloned in the pH6EX3 vector and different transformed E. coli strains were cultured in absence or in presence of glucose. hCT2 expression was obtained. The protein was purified and reconstituted into proteoliposomes in a functionally active state. CONCLUSIONS Using the appropriate IPTG concentration, together with the addition of glucose, hCT2 has been expressed in E. coli. The protein is active and shows capacity to transport carnitine in proteoliposomes. The results have a great interest in basic biochemistry of membrane transporters and applications to human health since hCT2 is involved in human pathology.
Collapse
Affiliation(s)
- Michele Galluccio
- Department DiBEST Biologia, Ecologia, Scienze Della Terra Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci cubo 4C, 87036, Arcavacata di Rende, Italy
| | - Tiziano Mazza
- Department DiBEST Biologia, Ecologia, Scienze Della Terra Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci cubo 4C, 87036, Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- Department DiBEST Biologia, Ecologia, Scienze Della Terra Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci cubo 4C, 87036, Arcavacata di Rende, Italy
| | - Maria Chiara Sarubbi
- Department DiBEST Biologia, Ecologia, Scienze Della Terra Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci cubo 4C, 87036, Arcavacata di Rende, Italy
| | - Cesare Indiveri
- Department DiBEST Biologia, Ecologia, Scienze Della Terra Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci cubo 4C, 87036, Arcavacata di Rende, Italy. .,CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology IBIOM, via Amendola 122/O, 70126, Bari, Italy.
| |
Collapse
|