1
|
Kiliushik D, Goenner C, Law M, Schroeder GM, Srivastava Y, Jenkins JL, Wedekind JE. Knotty is nice: Metabolite binding and RNA-mediated gene regulation by the preQ 1 riboswitch family. J Biol Chem 2024; 300:107951. [PMID: 39486689 PMCID: PMC11625349 DOI: 10.1016/j.jbc.2024.107951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024] Open
Abstract
Riboswitches sense specific cellular metabolites, leading to messenger RNA conformational changes that regulate downstream genes. Here, we review the three known prequeosine1 (preQ1) riboswitch classes, which encompass five gene-regulatory motifs derived from distinct consensus models of folded RNA pseudoknots. Structural and functional analyses reveal multiple gene-regulation strategies ranging from partial occlusion of the ribosome-binding Shine-Dalgarno sequence (SDS), SDS sequestration driven by kinetic or thermodynamic folding pathways, direct preQ1 recognition by the SDS, and complete SDS burial with in the riboswitch architecture. Family members can also induce elemental transcriptional pausing, which depends on ligand-mediated pseudoknot formation. Accordingly, preQ1 family members provide insight into a wide range of gene-regulatory tactics as well as a diverse repertoire of chemical approaches used to recognize the preQ1 metabolite. From a broader perspective, future challenges for the field will include the identification of new riboswitches in mRNAs that do not possess an SDS or those that induce ligand-dependent transcriptional pausing. When choosing an antibacterial target, the field must also consider how well a riboswitch accommodates mutations. Investigation of riboswitches in their natural context will also be critical to elucidate how RNA-mediated gene regulation influences organism fitness, thus providing a firm foundation for antibiotic development.
Collapse
Affiliation(s)
- Daniil Kiliushik
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Coleman Goenner
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Matthew Law
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Griffin M Schroeder
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Yoshita Srivastava
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Jermaine L Jenkins
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Joseph E Wedekind
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
| |
Collapse
|
2
|
Zhang J. Recognition of the tRNA structure: Everything everywhere but not all at once. Cell Chem Biol 2024; 31:36-52. [PMID: 38159570 PMCID: PMC10843564 DOI: 10.1016/j.chembiol.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
tRNAs are among the most abundant and essential biomolecules in cells. These spontaneously folding, extensively structured yet conformationally flexible anionic polymers literally bridge the worlds of RNAs and proteins, and serve as Rosetta stones that decipher and interpret the genetic code. Their ubiquitous presence, functional irreplaceability, and privileged access to cellular compartments and ribosomes render them prime targets for both endogenous regulation and exogenous manipulation. There is essentially no part of the tRNA that is not touched by another interaction partner, either as programmed or imposed by an external adversary. Recent progresses in genetic, biochemical, and structural analyses of the tRNA interactome produced a wealth of new knowledge into their interaction networks, regulatory functions, and molecular interfaces. In this review, I describe and illustrate the general principles of tRNA recognition by proteins and other RNAs, and discuss the underlying molecular mechanisms that deliver affinity, specificity, and functional competency.
Collapse
Affiliation(s)
- Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Schroeder GM, Kiliushik D, Jenkins JL, Wedekind JE. Structure and function analysis of a type III preQ 1-I riboswitch from Escherichia coli reveals direct metabolite sensing by the Shine-Dalgarno sequence. J Biol Chem 2023; 299:105208. [PMID: 37660906 PMCID: PMC10622847 DOI: 10.1016/j.jbc.2023.105208] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023] Open
Abstract
Riboswitches are small noncoding RNAs found primarily in the 5' leader regions of bacterial messenger RNAs where they regulate expression of downstream genes in response to binding one or more cellular metabolites. Such noncoding RNAs are often regulated at the translation level, which is thought to be mediated by the accessibility of the Shine-Dalgarno sequence (SDS) ribosome-binding site. Three classes (I-III) of prequeuosine1 (preQ1)-sensing riboswitches are known that control translation. Class I is divided into three subtypes (types I-III) that have diverse mechanisms of sensing preQ1, which is involved in queuosine biosynthesis. To provide insight into translation control, we determined a 2.30 Å-resolution cocrystal structure of a class I type III preQ1-sensing riboswitch identified in Escherichia coli (Eco) by bioinformatic searches. The Eco riboswitch structure differs from previous preQ1 riboswitch structures because it has the smallest naturally occurring aptamer and the SDS directly contacts the preQ1 metabolite. We validated structural observations using surface plasmon resonance and in vivo gene-expression assays, which showed strong switching in live E. coli. Our results demonstrate that the Eco riboswitch is relatively sensitive to mutations that disrupt noncanonical interactions that form the pseudoknot. In contrast to type II preQ1 riboswitches, a kinetic analysis showed that the type III Eco riboswitch strongly prefers preQ1 over the chemically similar metabolic precursor preQ0. Our results reveal the importance of noncanonical interactions in riboswitch-driven gene regulation and the versatility of the class I preQ1 riboswitch pseudoknot as a metabolite-sensing platform that supports SDS sequestration.
Collapse
Affiliation(s)
- Griffin M Schroeder
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Daniil Kiliushik
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Jermaine L Jenkins
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Joseph E Wedekind
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
| |
Collapse
|
4
|
Wedekind JE. RNA in the loop: Probing T-loop/T-loop receptor interactions as mediators of long-range RNA contacts that influence gene regulation. J Mol Biol 2023; 435:168087. [PMID: 37030650 DOI: 10.1016/j.jmb.2023.168087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|