1
|
Garbuzynskiy SO, Marchenkov VV, Marchenko NY, Semisotnov GV, Finkelstein AV. How proteins manage to fold and how chaperones manage to assist the folding. Phys Life Rev 2024; 52:66-79. [PMID: 39709754 DOI: 10.1016/j.plrev.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 12/24/2024]
Abstract
This review presents the current understanding of (i) spontaneous self-organization of spatial structures of protein molecules, and (ii) possible ways of chaperones' assistance to this process. Specifically, we overview the most important features of spontaneous folding of proteins (mostly, of the single-domain water-soluble globular proteins): the choice of the unique protein structure among zillions of alternatives, the nucleation of the folding process, and phase transitions within protein molecules. We consider the main experimental facts on protein folding, both in vivo and in vitro, of both kinetic and thermodynamic nature. We discuss the famous Levinthal's paradox of protein folding and its solution, theoretical models of protein folding and unfolding, and the dependence of the rates of these processes on the protein chain length. Special attention is paid to relatively small, single-domain, and water-soluble globular proteins whose structure and folding are much better studied and understood than those of large proteins, especially membrane or fibrous proteins. Lastly, we describe the chaperone-assisted protein folding with an emphasis on the chaperones' ability to prevent proteins from their irreversible aggregation. Since the possible assistance mechanisms connected with chaperones are still debatable, experimental data useful in selecting the most likely mechanisms of chaperone-assisted protein folding are presented.
Collapse
Affiliation(s)
- Sergiy O Garbuzynskiy
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation
| | - Victor V Marchenkov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation
| | - Natalia Y Marchenko
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation
| | - Gennady V Semisotnov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation.
| | - Alexei V Finkelstein
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation.
| |
Collapse
|
2
|
Aguilar Rangel M, Stein K, Frydman J. A machine learning approach uncovers principles and determinants of eukaryotic ribosome pausing. SCIENCE ADVANCES 2024; 10:eado0738. [PMID: 39423268 PMCID: PMC11488575 DOI: 10.1126/sciadv.ado0738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 09/13/2024] [Indexed: 10/21/2024]
Abstract
Nonuniform local translation speed dictates diverse protein biogenesis outcomes. To unify known and uncover unknown principles governing eukaryotic elongation rate, we developed a machine learning pipeline to analyze RiboSeq datasets. We find that the chemical nature of the incoming amino acid determines how codon optimality influences elongation rate, with hydrophobic residues more dependent on transfer RNA (tRNA) levels than charged residues. Unexpectedly, we find that wobble interactions exert a widespread effect on elongation pausing, with wobble-mediated decoding being slower than Watson-Crick decoding, irrespective of tRNA levels. Applying our ribosome pausing principles to ribosome collisions reveals that disomes arise upon apposition of fast-decoding and slow-decoding signatures. We conclude that codon choice and tRNA pools are evolutionarily constrained to harmonize elongation rate with cotranslational folding while minimizing wobble pairing and deleterious stalling.
Collapse
Affiliation(s)
| | - Kevin Stein
- Department of Biology, Stanford University; Stanford, CA 94305, USA
| | - Judith Frydman
- Department of Biology, Stanford University; Stanford, CA 94305, USA
| |
Collapse
|
3
|
Rodriguez A, Diehl JD, Wright GS, Bonar CD, Lundgren TJ, Moss MJ, Li J, Milenkovic T, Huber PW, Champion MM, Emrich SJ, Clark PL. Synonymous codon substitutions modulate transcription and translation of a divergent upstream gene by modulating antisense RNA production. Proc Natl Acad Sci U S A 2024; 121:e2405510121. [PMID: 39190361 PMCID: PMC11388325 DOI: 10.1073/pnas.2405510121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
Synonymous codons were originally viewed as interchangeable, with no phenotypic consequences. However, substantial evidence has now demonstrated that synonymous substitutions can perturb a variety of gene expression and protein homeostasis mechanisms, including translational efficiency, translational fidelity, and cotranslational folding of the encoded protein. To date, most studies of synonymous codon-derived perturbations have focused on effects within a single gene. Here, we show that synonymous codon substitutions made far within the coding sequence of Escherichia coli plasmid-encoded chloramphenicol acetyltransferase (cat) can significantly increase expression of the divergent upstream tetracycline resistance gene, tetR. In four out of nine synonymously recoded cat sequences tested, expression of the upstream tetR gene was significantly elevated due to transcription of a long antisense RNA (asRNA) originating from a transcription start site within cat. Surprisingly, transcription of this asRNA readily bypassed the native tet transcriptional repression mechanism. Even more surprisingly, accumulation of the TetR protein correlated with the level of asRNA, rather than total tetR RNA. These effects of synonymous codon substitutions on transcription and translation of a neighboring gene suggest that synonymous codon usage in bacteria may be under selection to both preserve the amino acid sequence of the encoded gene and avoid DNA sequence elements that can significantly perturb expression of neighboring genes. Avoiding such sequences may be especially important in plasmids and prokaryotic genomes, where genes and regulatory elements are often densely packed. Similar considerations may apply to the design of genetic circuits for synthetic biology applications.
Collapse
Affiliation(s)
- Anabel Rodriguez
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Jacob D. Diehl
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Gabriel S. Wright
- Department of Computer Science & Engineering, University of Notre Dame, Notre Dame, IN46556
| | - Christopher D. Bonar
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Taylor J. Lundgren
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - McKenze J. Moss
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Jun Li
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN46556
| | - Tijana Milenkovic
- Department of Computer Science & Engineering, University of Notre Dame, Notre Dame, IN46556
| | - Paul W. Huber
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Matthew M. Champion
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Scott J. Emrich
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN37996
| | - Patricia L. Clark
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN46556
| |
Collapse
|
4
|
Tanoz I, Timsit Y. Protein Fold Usages in Ribosomes: Another Glance to the Past. Int J Mol Sci 2024; 25:8806. [PMID: 39201491 PMCID: PMC11354259 DOI: 10.3390/ijms25168806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
The analysis of protein fold usage, similar to codon usage, offers profound insights into the evolution of biological systems and the origins of modern proteomes. While previous studies have examined fold distribution in modern genomes, our study focuses on the comparative distribution and usage of protein folds in ribosomes across bacteria, archaea, and eukaryotes. We identify the prevalence of certain 'super-ribosome folds,' such as the OB fold in bacteria and the SH3 domain in archaea and eukaryotes. The observed protein fold distribution in the ribosomes announces the future power-law distribution where only a few folds are highly prevalent, and most are rare. Additionally, we highlight the presence of three copies of proto-Rossmann folds in ribosomes across all kingdoms, showing its ancient and fundamental role in ribosomal structure and function. Our study also explores early mechanisms of molecular convergence, where different protein folds bind equivalent ribosomal RNA structures in ribosomes across different kingdoms. This comparative analysis enhances our understanding of ribosomal evolution, particularly the distinct evolutionary paths of the large and small subunits, and underscores the complex interplay between RNA and protein components in the transition from the RNA world to modern cellular life. Transcending the concept of folds also makes it possible to group a large number of ribosomal proteins into five categories of urfolds or metafolds, which could attest to their ancestral character and common origins. This work also demonstrates that the gradual acquisition of extensions by simple but ordered folds constitutes an inexorable evolutionary mechanism. This observation supports the idea that simple but structured ribosomal proteins preceded the development of their disordered extensions.
Collapse
Affiliation(s)
- Inzhu Tanoz
- Aix-Marseille Université, Université de Toulon, IRD, CNRS, Mediterranean Institute of Oceanography (MIO), UM 110, 13288 Marseille, France;
| | - Youri Timsit
- Aix-Marseille Université, Université de Toulon, IRD, CNRS, Mediterranean Institute of Oceanography (MIO), UM 110, 13288 Marseille, France;
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 Rue Michel-Ange, 75016 Paris, France
| |
Collapse
|
5
|
Sun J, Hwang P, Sakkas ED, Zhou Y, Perez L, Dave I, Kwon JB, McMahon AE, Wichman M, Raval M, Scopino K, Krizanc D, Thayer KM, Weir MP. GNN Codon Adjacency Tunes Protein Translation. Int J Mol Sci 2024; 25:5914. [PMID: 38892101 PMCID: PMC11172435 DOI: 10.3390/ijms25115914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
The central dogma treats the ribosome as a molecular machine that reads one mRNA codon at a time as it adds each amino acid to its growing peptide chain. However, this and previous studies suggest that ribosomes actually perceive pairs of adjacent codons as they take three-nucleotide steps along the mRNA. We examined GNN codons, which we find are surprisingly overrepresented in eukaryote protein-coding open reading frames (ORFs), especially immediately after NNU codons. Ribosome profiling experiments in yeast revealed that ribosomes with NNU at their aminoacyl (A) site have particularly elevated densities when NNU is immediately followed (3') by a GNN codon, indicating slower mRNA threading of the NNU codon from the ribosome's A to peptidyl (P) sites. Moreover, if the assessment was limited to ribosomes that have only recently arrived at the next codon, by examining 21-nucleotide ribosome footprints (21-nt RFPs), elevated densities were observed for multiple codon classes when followed by GNN. This striking translation slowdown at adjacent 5'-NNN GNN codon pairs is likely mediated, in part, by the ribosome's CAR surface, which acts as an extension of the A-site tRNA anticodon during ribosome translocation and interacts through hydrogen bonding and pi stacking with the GNN codon. The functional consequences of 5'-NNN GNN codon adjacency are expected to influence the evolution of protein coding sequences.
Collapse
Affiliation(s)
- Joyce Sun
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA; (J.S.); (P.H.); (E.D.S.); (Y.Z.); (L.P.); (I.D.); (J.B.K.); (A.E.M.); (M.W.); (M.R.)
| | - Pete Hwang
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA; (J.S.); (P.H.); (E.D.S.); (Y.Z.); (L.P.); (I.D.); (J.B.K.); (A.E.M.); (M.W.); (M.R.)
| | - Eric D. Sakkas
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA; (J.S.); (P.H.); (E.D.S.); (Y.Z.); (L.P.); (I.D.); (J.B.K.); (A.E.M.); (M.W.); (M.R.)
| | - Yancheng Zhou
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA; (J.S.); (P.H.); (E.D.S.); (Y.Z.); (L.P.); (I.D.); (J.B.K.); (A.E.M.); (M.W.); (M.R.)
| | - Luis Perez
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA; (J.S.); (P.H.); (E.D.S.); (Y.Z.); (L.P.); (I.D.); (J.B.K.); (A.E.M.); (M.W.); (M.R.)
| | - Ishani Dave
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA; (J.S.); (P.H.); (E.D.S.); (Y.Z.); (L.P.); (I.D.); (J.B.K.); (A.E.M.); (M.W.); (M.R.)
| | - Jack B. Kwon
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA; (J.S.); (P.H.); (E.D.S.); (Y.Z.); (L.P.); (I.D.); (J.B.K.); (A.E.M.); (M.W.); (M.R.)
| | - Audrey E. McMahon
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA; (J.S.); (P.H.); (E.D.S.); (Y.Z.); (L.P.); (I.D.); (J.B.K.); (A.E.M.); (M.W.); (M.R.)
| | - Mia Wichman
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA; (J.S.); (P.H.); (E.D.S.); (Y.Z.); (L.P.); (I.D.); (J.B.K.); (A.E.M.); (M.W.); (M.R.)
| | - Mitsu Raval
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA; (J.S.); (P.H.); (E.D.S.); (Y.Z.); (L.P.); (I.D.); (J.B.K.); (A.E.M.); (M.W.); (M.R.)
| | - Kristen Scopino
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA; (J.S.); (P.H.); (E.D.S.); (Y.Z.); (L.P.); (I.D.); (J.B.K.); (A.E.M.); (M.W.); (M.R.)
| | - Daniel Krizanc
- Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT 06459, USA; (D.K.); (K.M.T.)
- College of Integrative Sciences, Wesleyan University, Middletown, CT 06459, USA
| | - Kelly M. Thayer
- Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT 06459, USA; (D.K.); (K.M.T.)
- College of Integrative Sciences, Wesleyan University, Middletown, CT 06459, USA
- Department of Chemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Michael P. Weir
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA; (J.S.); (P.H.); (E.D.S.); (Y.Z.); (L.P.); (I.D.); (J.B.K.); (A.E.M.); (M.W.); (M.R.)
- College of Integrative Sciences, Wesleyan University, Middletown, CT 06459, USA
| |
Collapse
|
6
|
Ji H, Liu J, Chen Y, Yu X, Luo C, Sang L, Zhou J, Liao H. Bioinformatic Analysis of Codon Usage Bias of HSP20 Genes in Four Cruciferous Species. PLANTS (BASEL, SWITZERLAND) 2024; 13:468. [PMID: 38498447 PMCID: PMC10892267 DOI: 10.3390/plants13040468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 03/20/2024]
Abstract
Heat shock protein 20 (HSP20) serves as a chaperone and plays roles in numerous biological processes, but the codon usage bias (CUB) of its genes has remained unexplored. This study identified 140 HSP20 genes from four cruciferous species, Arabidopsis thaliana, Brassica napus, Brassica rapa, and Camelina sativa, that were identified from the Ensembl plants database, and we subsequently investigated their CUB. As a result, the base composition analysis revealed that the overall GC content of HSP20 genes was below 50%. The overall GC content significantly correlated with the constituents at three codon positions, implying that both mutation pressure and natural selection might contribute to the CUB. The relatively high ENc values suggested that the CUB of the HSP20 genes in four cruciferous species was relatively weak. Subsequently, ENc exhibited a negative correlation with gene expression levels. Analyses, including ENc-plot analysis, neutral analysis, and PR2 bias, revealed that natural selection mainly shaped the CUB patterns of HSP20 genes in these species. In addition, a total of 12 optimal codons (ΔRSCU > 0.08 and RSCU > 1) were identified across the four species. A neighbor-joining phylogenetic analysis based on coding sequences (CDS) showed that the 140 HSP20 genes were strictly and distinctly clustered into 12 subfamilies. Principal component analysis and cluster analysis based on relative synonymous codon usage (RSCU) values supported the fact that the CUB pattern was consistent with the genetic relationship at the gene level and (or) species levels. These results will not only enrich the HSP20 gene resource but also advance our understanding of the CUB of HSP20 genes, which may underlie the theoretical basis for exploration of their genetic and evolutionary pattern.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiayu Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (H.J.); (J.L.); (Y.C.); (X.Y.); (C.L.); (L.S.)
| | - Hai Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (H.J.); (J.L.); (Y.C.); (X.Y.); (C.L.); (L.S.)
| |
Collapse
|