1
|
Heckenhauer J, Stewart RJ, Ríos-Touma B, Powell A, Dorji T, Frandsen PB, Pauls SU. Characterization of the primary structure of the major silk gene, h-fibroin, across caddisfly (Trichoptera) suborders. iScience 2023; 26:107253. [PMID: 37529107 PMCID: PMC10387566 DOI: 10.1016/j.isci.2023.107253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/05/2023] [Accepted: 06/27/2023] [Indexed: 08/03/2023] Open
Abstract
Larvae of caddisflies (Trichoptera) produce silk to build various underwater structures allowing them to exploit a wide range of aquatic environments. The silk adheres to various substrates underwater and has high tensile strength, extensibility, and toughness and is of interest as a model for biomimetic adhesives. As a step toward understanding how the properties of underwater silk evolved in Trichoptera, we used genomic data to identify full-length sequences and characterize the primary structure of the major silk protein, h-fibroin, across the order. The h-fibroins have conserved termini and basic motif structure with high variation in repeating modules and variation in the percentage of amino acids, mainly proline. This finding might be linked to differences in mechanical properties related to the different silk usage and sets a starting point for future studies to screen and correlate amino acid motifs and other sequence features with quantifiable silk properties.
Collapse
Affiliation(s)
- Jacqueline Heckenhauer
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Hesse 60325, Germany
- Department of Terrestrial Zoology, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Hesse 60325, Germany
| | - Russell J. Stewart
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Blanca Ríos-Touma
- Facultad de Ingenierías y Ciencias Aplicadas, Ingeniería Ambiental, Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud (BIOMAS), Universidad de Las Américas, Quito, EC 170124, Ecuador
| | - Ashlyn Powell
- Department of Plant and Wildlife Science, Brigham Young University, Provo, UT 84602, USA
| | - Tshering Dorji
- Department of Environment and Climate Studies, Royal University of Bhutan, Punakha 13001, Bhutan
| | - Paul B. Frandsen
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Hesse 60325, Germany
- Department of Plant and Wildlife Science, Brigham Young University, Provo, UT 84602, USA
- Data Science Lab, Smithsonian Institution, Washington, DC 20560, USA
| | - Steffen U. Pauls
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Hesse 60325, Germany
- Department of Terrestrial Zoology, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Hesse 60325, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University, Gießen, Hesse 35392; Germany
| |
Collapse
|
2
|
Zhou Y, Wang D, Zhou S, Duan H, Guo J, Yan W. Nutritional Composition, Health Benefits, and Application Value of Edible Insects: A Review. Foods 2022; 11:3961. [PMID: 36553703 PMCID: PMC9777846 DOI: 10.3390/foods11243961] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/17/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
For thousands of years, edible insects have been used as food to alleviate hunger and improve malnutrition. Some insects have also been used as medicines because of their therapeutic properties. This is not only due to the high nutritional value of edible insects, but more importantly, the active substances from edible insects have a variety of biofunctional activities. In this paper, we described and summarized the nutritional composition of edible insects and discussed the biological functions of edible insects and their potential benefits for human health. A summary analysis of the findings for each active function confirms that edible insects have the potential to develop functional foods and medicines that are beneficial to humans. In addition, we analyzed the issues that need to be considered in the application of edible insects and the current status of edible insects in food and pharmaceutical applications. We concluded with a discussion of regulations related to edible insects and an outlook on future research and applications of edible insects. By analyzing the current state of research on edible insects, we aim to raise awareness of the use of edible insects to improve human health and thus promote their better use and development.
Collapse
Affiliation(s)
- Yaxi Zhou
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| | - Diandian Wang
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
| | - Shiqi Zhou
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
| | - Hao Duan
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
| | - Jinhong Guo
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| |
Collapse
|
3
|
Park SJ, Kim KY, Baik MY, Koh YH. Sericulture and the edible-insect industry can help humanity survive: insects are more than just bugs, food, or feed. Food Sci Biotechnol 2022; 31:657-668. [PMID: 35646418 PMCID: PMC9133288 DOI: 10.1007/s10068-022-01090-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/17/2022] [Accepted: 04/18/2022] [Indexed: 11/26/2022] Open
Abstract
The most serious threat which humans face is rapid global climate change, as the Earth shifts rapidly into a regime less hospitable to humans. To address the crisis caused by severe global climate change, it will be necessary to modify humankind's way of life. Because livestock production accounts for more than 14.5% of all greenhouse gas (GHG) emissions, it is critical to reduce the dependence of humans on protein nutrients and calories obtained from livestock. One way to do so is to use insects as food. Compared with typical livestock, farming edible insects (or "mini-livestock") produce fewer GHG emissions, require less space and water, involve shorter life cycles, and have higher feed conversion rates. It has been recently reported that consumption of certain insects can prevent or treat human diseases. This review goes beyond entomophagy to entomotherapy and their application to the food industry.
Collapse
Affiliation(s)
| | - Kee-Young Kim
- National Institute of Agricultural Science, Wanju-Gun, Jeollabuk-do Republic of Korea
| | - Moo-Yeol Baik
- Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University, Yongin, Gyeonggi-do Republic of Korea
- Department of Food Innovation and Health, Kyung Hee University, Yongin, Gyeonggi-do Republic of Korea
| | - Young Ho Koh
- Ilsong Institute of Life Science, Hallym University, Seoul, Republic of Korea
- Department of Biomedical Gerontology, Hallym University Graduate School, Chuncheon, Gangwon-do Republic of Korea
| |
Collapse
|
4
|
Fine structure of the silk spinning system in the caddisworm, Hydatophylax nigrovittatus (Trichoptera: Limnephilidae). Appl Microsc 2020; 50:16. [PMID: 33580455 PMCID: PMC7818296 DOI: 10.1186/s42649-020-00036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/28/2020] [Indexed: 11/10/2022] Open
Abstract
Silk is produced by a variety of insects, but only silk made by terrestrial arthropods has been examined in detail. To fill the gap, this study was designed to understand the silk spinning system of aquatic insect. The larvae of caddis flies, Hydatophylax nigrovittatus produce silk through a pair of labial silk glands and use raw silk to protect themselves in the aquatic environment. The result of this study clearly shows that although silk fibers are made under aquatic conditions, the cellular silk production system is quite similar to that of terrestrial arthropods. Typically, silk production in caddisworm has been achieved by two independent processes in the silk glands. This includes the synthesis of silk fibroin in the posterior region, the production of adhesive glycoproteins in the anterior region, which are ultimately accumulated into functional silk dope and converted to a silk ribbon coated with gluey substances. At the cellular level, each substance of fibroin and glycoprotein is specifically synthesized at different locations, and then transported from the rough ER to the Golgi apparatus as transport vesicles, respectively. Thereafter, the secretory vesicles gradually increase in size by vesicular fusion, forming larger secretory granules containing specific proteins. It was found that these granules eventually migrate to the apical membrane and are exocytosed into the lumen by a mechanism of merocrine secretion.
Collapse
|
5
|
Molecular cloning, gene expression analysis, and recombinant protein expression of novel silk proteins from larvae of a retreat-maker caddisfly, Stenopsyche marmorata. Biochem Biophys Res Commun 2015; 464:814-9. [PMID: 26168724 DOI: 10.1016/j.bbrc.2015.07.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 07/07/2015] [Indexed: 11/23/2022]
Abstract
Retreat-maker larvae of Stenopsyche marmorata, one of the major caddisfly species in Japan, produce silk threads and adhesives to build food capture nets and protective nests in water. Research on these underwater adhesive silk proteins potentially leads to the development of new functional biofiber materials. Recently, we identified four major S. marmorata silk proteins (Smsps), Smsp-1, Smsp-2, Smsp-3, and Smsp-4 from silk glands of S. marmorata larvae. In this study, we cloned full-length cDNAs of Smsp-2, Smsp-3, and Smsp-4 from the cDNA library of the S. marmorata silk glands to reveal the primary sequences of Smsps. Homology search results of the deduced amino acid sequences indicate that Smsp-2 and Smsp-4 are novel proteins. The Smsp-2 sequence [167 amino acids (aa)] has an array of GYD-rich repeat motifs and two (SX)4E motifs. The Smsp-4 sequence (132 aa) contains a number of GW-rich repeat motifs and three (SX)4E motifs. The Smsp-3 sequence (248 aa) exhibits high homology with fibroin light chain of other caddisflies. Gene expression analysis of Smsps by real-time PCR suggested that the gene expression of Smsp-1 and Smsp-3 was relatively stable throughout the year, whereas that of Smsp-2 and Smsp-4 varied seasonally. Furthermore, Smsps recombinant protein expression was successfully performed in Escherichia coli. The study provides new molecular insights into caddisfly aquatic silk and its potential for future applications.
Collapse
|