1
|
Gradișteanu-Pircalabioru G, Negut I, Dinu M, Parau AC, Bita B, Duta L, Ristoscu C, Sava B. Enhancing orthopaedic implant efficacy: the development of cerium-doped bioactive glass and polyvinylpyrrolidone composite coatings via MAPLE technique. Biomed Mater 2024; 20:015019. [PMID: 39612575 DOI: 10.1088/1748-605x/ad98d5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/29/2024] [Indexed: 12/01/2024]
Abstract
This study investigates the potential of combining Cerium-doped bioactive glass (BBGi) with Polyvinylpyrrolidone (PVP) to enhance the properties of titanium (Ti) implant surfaces using the Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technique. The primary focus is on improving osseointegration, corrosion resistance, and evaluating the cytotoxicity of the developed thin films towards host cells. The innovative approach involves synthesizing a composite thin film comprising BBGi and PVP, leveraging the distinct benefits of both materials: BBGi's biocompatibility and osteoinductive capabilities, and PVP's film-forming and biocompatible properties. Results demonstrate that the BBGi + PVP coatings significantly enhance hydrophilicity, indicating improved cell-material interaction potential. The electrochemical analysis reveals superior corrosion resistance of the BBGi + PVP films compared to BBGi alone, which is critical for long-term implant stability. The mechanical adherence tests confirm the robust attachment of the coatings to Ti substrates, surpassing the ISO standards for implant materials. Biocompatibility tests show promising cell viability and negligible cytotoxic effects, with a controlled inflammatory response, underscoring the potential of BBGi + PVP coatings for orthopedic applications. The study concludes that the synergistic combination of BBGi and PVP, applied through the MAPLE technique, offers a promising route to fabricate bioactive and corrosion-resistant coatings for Ti implants, potentially enhancing osseointegration and longevity in clinical settings.
Collapse
Affiliation(s)
- Gratiela Gradișteanu-Pircalabioru
- eBio-Hub Research Center, University Politehnica of Bucharest-CAMPUS, 6 Iuliu Maniu Boulevard, 061344 Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Str., District 5, 050044 Bucharest, Romania
| | - Irina Negut
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG 36, 077125 Magurele, Romania
| | - Mihaela Dinu
- National Institute of Research and Development for Optoelectronics-INOE2000, 409 Atomistilor St., 077125, Magurele, Romania
| | - Anca Constantina Parau
- National Institute of Research and Development for Optoelectronics-INOE2000, 409 Atomistilor St., 077125, Magurele, Romania
| | - Bogdan Bita
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG 36, 077125 Magurele, Romania
- Faculty of Physics, University of Bucharest, 077125 Magurele, Romania
| | - Liviu Duta
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG 36, 077125 Magurele, Romania
| | - Carmen Ristoscu
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG 36, 077125 Magurele, Romania
| | - Bogdan Sava
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG 36, 077125 Magurele, Romania
- University Politehnica of Bucharest, 313 Splaiul Independentei, sector 6, Bucharest, Romania
| |
Collapse
|
2
|
Fernandes H, Kannan S, Alam M, Stan G, Popa A, Buczyński R, Gołębiewski P, Ferreira J. Two decades of continuous progresses and breakthroughs in the field of bioactive ceramics and glasses driven by CICECO-hub scientists. Bioact Mater 2024; 40:104-147. [PMID: 39659434 PMCID: PMC11630650 DOI: 10.1016/j.bioactmat.2024.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 12/12/2024] Open
Abstract
Over the past two decades, the CICECO-hub scientists have devoted substantial efforts to advancing bioactive inorganic materials based on calcium phosphates and alkali-free bioactive glasses. A key focus has been the deliberate incorporation of therapeutic ions like Mg, Sr, Zn, Mn, or Ga to enhance osteointegration and vascularization, confer antioxidant properties, and impart antimicrobial effects, marking significant contributions to the field of biomaterials and bone tissue engineering. Such an approach is expected to circumvent the uncertainties posed by methods relying on growth factors, such as bone morphogenetic proteins, parathyroid hormone, and platelet-rich plasma, along with their associated high costs and potential adverse side effects. This comprehensive overview of CICECO-hub's significant contributions to the forefront inorganic biomaterials across all research aspects and dimensionalities (powders, granules, thin films, bulk materials, and porous structures), follows a unified approach rooted in a cohesive conceptual framework, including synthesis, characterization, and testing protocols. Tangible outcomes [injectable cements, durable implant coatings, and bone graft substitutes (scaffolds) featuring customized porous architectures for implant fixation, osteointegration, accelerated bone regeneration in critical-sized bone defects] were achieved. The manuscript showcases specific biofunctional examples of successful biomedical applications and effective translations to the market of bone grafts for advanced therapies.
Collapse
Affiliation(s)
- H.R. Fernandes
- Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| | - S. Kannan
- Centre for Nanoscience and Technology, Pondicherry University, 605014, Puducherry, India
| | - M. Alam
- Centre for Nanoscience and Technology, Pondicherry University, 605014, Puducherry, India
| | - G.E. Stan
- National Institute of Materials Physics, 077125, Magurele, Romania
| | - A.C. Popa
- National Institute of Materials Physics, 077125, Magurele, Romania
| | - R. Buczyński
- Łukasiewicz Research Network – Institute of Microelectronics and Photonics, Al. Lotników 32/46, 02–668, Warsaw, Poland
| | - P. Gołębiewski
- Łukasiewicz Research Network – Institute of Microelectronics and Photonics, Al. Lotników 32/46, 02–668, Warsaw, Poland
| | - J.M.F. Ferreira
- Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
- Łukasiewicz Research Network – Institute of Microelectronics and Photonics, Al. Lotników 32/46, 02–668, Warsaw, Poland
| |
Collapse
|
3
|
Garg R, Gonuguntla S, Sk S, Iqbal MS, Dada AO, Pal U, Ahmadipour M. Sputtering thin films: Materials, applications, challenges and future directions. Adv Colloid Interface Sci 2024; 330:103203. [PMID: 38820883 DOI: 10.1016/j.cis.2024.103203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/11/2024] [Accepted: 05/20/2024] [Indexed: 06/02/2024]
Abstract
Sputtering is an effective technique for producing ultrathin films with diverse applications. The review begins by providing an in-depth overview of the background, introducing the early development of sputtering and its principles. Consequently, progress in advancements made in recent decades highlights the renaissance of sputtering as a powerful technology for creating thin films with varied compositions, structures, and properties. For the first time, we have discussed a thorough overview of several sputtered thin film materials based on metal and metal oxide, metal nitride, alloys, carbon, and ceramic-based thin film along with their properties and their applicability in various fields. We further delve into the applications of sputter-coated thin films, specifically emphasizing their relevance in environmental sustainability, energy and electronics, and biomedical fields. We critically examine the recent advancements in developing sputter-coated catalysts for eliminating water pollutants andhydrogen generation. Additionally, the review sheds light on advantages, shortcomings, and future directions for developing sputter-coated thin films utilized in biodegradable metals and alloys with enhanced corrosion resistance and biocompatibility. This review is a comprehensive integration of recent literature, covering diverse sputtering thin film applications. We delve deeply into various material types and emphasize critical analysis of recent advancements, particularly in environmental, energy, and biomedical fields. By offering insights into both advancements and limitations, the review provides a nuanced understanding essential for practical utilization.
Collapse
Affiliation(s)
- Renuka Garg
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah, PO Box 26666, United Arab Emirates
| | - Spandana Gonuguntla
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Saddam Sk
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muhammad Saqlain Iqbal
- Department of Chemistry, COMSATS University Islamabad, Lahore campus, 54000 Lahore, Pakistan
| | - Adewumi Oluwasogo Dada
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Industrial Chemistry Programme, Nanotechnology Laboratory, Department of Physical Sciences, Landmark University, P.M.B.1001, Omu-Aran, Kwara, Nigeria
| | - Ujjwal Pal
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Mohsen Ahmadipour
- Institute of Power Engineering, Universiti Tenaga Nasional, Serdang, Malaysia.
| |
Collapse
|
4
|
Liang J, Lu X, Zheng X, Li YR, Geng X, Sun K, Cai H, Jia Q, Jiang HB, Liu K. Modification of titanium orthopedic implants with bioactive glass: a systematic review of in vivo and in vitro studies. Front Bioeng Biotechnol 2023; 11:1269223. [PMID: 38033819 PMCID: PMC10686101 DOI: 10.3389/fbioe.2023.1269223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/18/2023] [Indexed: 12/02/2023] Open
Abstract
Bioactive glasses (BGs) are ideal biomaterials in the field of bio-restoration due to their excellent biocompatibility. Titanium alloys are widely used as a bone graft substitute material because of their excellent corrosion resistance and mechanical properties; however, their biological inertness makes them prone to clinical failure. Surface modification of titanium alloys with bioactive glass can effectively combine the superior mechanical properties of the substrate with the biological properties of the coating material. In this review, the relevant articles published from 2013 to the present were searched in four databases, namely, Web of Science, PubMed, Embase, and Scopus, and after screening, 49 studies were included. We systematically reviewed the basic information and the study types of the included studies, which comprise in vitro experiments, animal tests, and clinical trials. In addition, we summarized the applied coating technologies, which include pulsed laser deposition (PLD), electrophoretic deposition, dip coating, and magnetron sputtering deposition. The superior biocompatibility of the materials in terms of cytotoxicity, cell activity, hemocompatibility, anti-inflammatory properties, bioactivity, and their good bioactivity in terms of osseointegration, osteogenesis, angiogenesis, and soft tissue adhesion are discussed. We also analyzed the advantages of the existing materials and the prospects for further research. Even though the current research status is not extensive enough, it is still believed that BG-coated Ti implants have great clinical application prospects.
Collapse
Affiliation(s)
- Jin Liang
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China
| | - XinYue Lu
- The CONVERSATIONALIST Club and Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China
| | - XinRu Zheng
- The CONVERSATIONALIST Club and Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China
| | - Yu Ru Li
- The CONVERSATIONALIST Club and Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China
| | - XiaoYu Geng
- The CONVERSATIONALIST Club and Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China
| | - KeXin Sun
- The CONVERSATIONALIST Club and Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China
| | - HongXin Cai
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Qi Jia
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Heng Bo Jiang
- The CONVERSATIONALIST Club and Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China
| | - Kai Liu
- School of Basic Medicine, Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
5
|
Dorcioman G, Grumezescu V, Stan GE, Chifiriuc MC, Gradisteanu GP, Miculescu F, Matei E, Popescu-Pelin G, Zgura I, Craciun V, Oktar FN, Duta L. Hydroxyapatite Thin Films of Marine Origin as Sustainable Candidates for Dental Implants. Pharmaceutics 2023; 15:pharmaceutics15041294. [PMID: 37111781 PMCID: PMC10142946 DOI: 10.3390/pharmaceutics15041294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Novel biomaterials with promising bone regeneration potential, derived from rich, renewable, and cheap sources, are reported. Thus, thin films were synthesized from marine-derived (i.e., from fish bones and seashells) hydroxyapatite (MdHA) by pulsed laser deposition (PLD) technique. Besides the physical-chemical and mechanical investigations, the deposited thin films were also evaluated in vitro using dedicated cytocompatibility and antimicrobial assays. The morphological examination of MdHA films revealed the fabrication of rough surfaces, which were shown to favor good cell adhesion, and furthermore could foster the in-situ anchorage of implants. The strong hydrophilic behavior of the thin films was evidenced by contact angle (CA) measurements, with values in the range of 15-18°. The inferred bonding strength adherence values were superior (i.e., ~49 MPa) to the threshold established by ISO regulation for high-load implant coatings. After immersion in biological fluids, the growth of an apatite-based layer was noted, which indicated the good mineralization capacity of the MdHA films. All PLD films exhibited low cytotoxicity on osteoblast, fibroblast, and epithelial cells. Moreover, a persistent protective effect against bacterial and fungal colonization (i.e., 1- to 3-log reduction of E. coli, E. faecalis, and C. albicans growth) was demonstrated after 48 h of incubation, with respect to the Ti control. The good cytocompatibility and effective antimicrobial activity, along with the reduced fabrication costs from sustainable sources (available in large quantities), should, therefore, recommend the MdHA materials proposed herein as innovative and viable solutions for the development of novel coatings for metallic dental implants.
Collapse
Affiliation(s)
- Gabriela Dorcioman
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - George E Stan
- National Institute of Materials Physics, 077125 Magurele, Romania
| | - Mariana Carmen Chifiriuc
- Department of Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
- Earth, Environmental and Life Sciences Division, Research Institute of the University of Bucharest (ICUB), 060101 Bucharest, Romania
- Romanian Academy, 010071 Bucharest, Romania
| | - Gratiela Pircalabioru Gradisteanu
- Earth, Environmental and Life Sciences Division, Research Institute of the University of Bucharest (ICUB), 060101 Bucharest, Romania
- Academy of Romanian Scientists, 051157 Bucharest, Romania
| | - Florin Miculescu
- Faculty of Materials Science and Engineering, Politehnica University of Bucharest, 060042 Bucharest, Romania
| | - Elena Matei
- National Institute of Materials Physics, 077125 Magurele, Romania
| | - Gianina Popescu-Pelin
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Irina Zgura
- National Institute of Materials Physics, 077125 Magurele, Romania
| | - Valentin Craciun
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Faik Nüzhet Oktar
- Department of Bioengineering, Faculty of Engineering, University of Marmara, 34722 Istanbul, Turkey
- Advanced Nanomaterials Research Laboratory (ANRL), University of Marmara, 34722 Istanbul, Turkey
| | - Liviu Duta
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| |
Collapse
|
6
|
Tian J, Wu Z, Wang Y, Han C, Zhou Z, Guo D, Lin Y, Ye Z, Fu J. Multifunctional dental resin composite with antibacterial and remineralization properties containing nMgO-BAG. J Mech Behav Biomed Mater 2023; 141:105783. [PMID: 36996527 DOI: 10.1016/j.jmbbm.2023.105783] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/15/2023]
Abstract
The inherent characteristics of resin composite can lead to micro-leakage after polymerization shrinkage. The bacteria invasion through edge micro-leakage and attachment onto the material surface can cause secondary caries, reducing the service life of resin composites. In this study, magnesium oxide nanoparticles (nMgO) as an inorganic antimicrobial agent and bioactive glass (BAG) as a remineralization agent were simultaneously incorporated into the resin composite. With the addition of both nMgO and BAG, the resin composite showed an excellent antimicrobial effect compared to the resin composite with nMgO or BAG only. The remineralization capacity of demineralized dentin increased with the increasing content of BAG. Vickers hardness, compressive strength, and flexural strength of the resin composite with nMgO-BAG were not significantly affected compared to the ones with the same total filler amount but with BAG only. The depth of cure and water sorption values of the resin composite showed an increasing trend with the increasing total amount of nMgO and BAG fillers. This developed multifunctional resin composite is expected to reduce bacterial invasion and promote remineralization of early caries damage.
Collapse
Affiliation(s)
- Jing Tian
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China; School of Stomatology, Qingdao University, Qingdao, China
| | - Zhongyuan Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuan Wang
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China; School of Stomatology, Qingdao University, Qingdao, China
| | - Chunhua Han
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zixuan Zhou
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China; School of Stomatology, Qingdao University, Qingdao, China
| | - Di Guo
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China; School of Stomatology, Qingdao University, Qingdao, China
| | - Yifan Lin
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, China
| | - Zhou Ye
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, China.
| | - Jing Fu
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China; School of Stomatology, Qingdao University, Qingdao, China.
| |
Collapse
|
7
|
Barrak FN, Li S, Mohammed AA, Myant C, Jones JR. Anti-inflammatory properties of S53P4 bioactive glass implant material. J Dent 2022; 127:104296. [PMID: 36116542 DOI: 10.1016/j.jdent.2022.104296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES To assess whether the dissolution products of S53P4 bioactive glass (BG) affect cellular response of macrophages and clinically relevant peri‑implant cell populations to dental implant particles in vitro. Cells chosen were human gingival fibroblasts (HGFs), osteoblasts and bone marrow derived stromal cells (HBMSCs). METHODS Melt-derived S53P4 bioactive glass were prepared. HGFs, Saos-2 human osteoblastic cell line, HBMSCs and macrophages, derived from THP-1 human monocytic cell line, were cultured in the presence of particles from commercially pure titanium (Ti-CP4), grade 5 titanium alloy (Ti-6Al-4V), titanium-zirconium alloy (Ti-15Zr) or zirconia (Zr) (with respective diameters of 34.1 ± 3.8, 33.3 ± 4.4, 97.8 ± 8.2 and 71.3 ± 6.1 µm) with or without S53P4 dissolution products (conditioned media contained 327.30 ± 2.01 ppm Ca, 51.34 ± 0.41 ppm P and 61.48 ± 1.17 ppm Si, pH 8.01 ± 0.21). Inflammatory and macrophage polarisation markers including TNF-ɑ, IL-1, IL-6 and CD206 were quantified using enzyme-linked immunosorbent assay (ELISA). RESULTS The presence of Ti-6Al-4V implant particles significantly induced the expression of pro-inflammatory markers in all tested cell types. S53P4 BG dissolution products regressed the particle induced up-regulation of pro-inflammatory markers and, appeared to suppress M1 macrophage polarisation. CONCLUSIONS Implant particles, Ti-6Al-4V in particular, resulted in significant inflammatory responses from cells. S53P4 BG may possess anti-inflammatory properties and potentially mediate macrophage polarisation behaviour. CLINICAL SIGNIFICANCE The findings highlight that the use and benefits of BG is a promising field of study. Authors believe more collective efforts are required to fully understand the reliability, efficiency and exact mechanisms of action of BG in the search for new generation of treatment modalities in dentistry.
Collapse
Affiliation(s)
- Fadi N Barrak
- Department of Materials, Imperial College London, SW7 2AZ, United Kingdom; Visiting Specialist Services Academy Ltd, Office 6.072 6th Floor, First Central 200, 2 Lakeside Drive, London NW10 7FQ, United Kingdom
| | - Siwei Li
- Department of Materials, Imperial College London, SW7 2AZ, United Kingdom; Visiting Specialist Services Academy Ltd, Office 6.072 6th Floor, First Central 200, 2 Lakeside Drive, London NW10 7FQ, United Kingdom
| | - Ali A Mohammed
- Dyson School of Design Engineering, Imperial College London, SW7 2AZ, United Kingdom
| | - Connor Myant
- Dyson School of Design Engineering, Imperial College London, SW7 2AZ, United Kingdom
| | - Julian R Jones
- Department of Materials, Imperial College London, SW7 2AZ, United Kingdom.
| |
Collapse
|
8
|
Lalzawmliana V, Mukherjee P, Roy S, Roy M, Nandi SK. Ceramic Biomaterials in Advanced Biomedical Applications. FUNCTIONAL BIOMATERIALS 2022:371-408. [DOI: 10.1007/978-981-16-7152-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Abstract
Diseases or complications that are caused by bone tissue damage affect millions of patients every year. Orthopedic and dental implants have become important treatment options for replacing and repairing missing or damaged parts of bones and teeth. In order to use a material in the manufacture of implants, the material must meet several requirements, such as mechanical stability, elasticity, biocompatibility, hydrophilicity, corrosion resistance, and non-toxicity. In the 1970s, a biocompatible glassy material called bioactive glass was discovered. At a later time, several glass materials with similar properties were developed. This material has a big potential to be used in formulating medical devices, but its fragility is an important disadvantage. The use of bioactive glasses in the form of coatings on metal substrates allows the combination of the mechanical hardness of the metal and the biocompatibility of the bioactive glass. In this review, an extensive study of the literature was conducted regarding the preparation methods of bioactive glass and the different techniques of coating on various substrates, such as stainless steel, titanium, and their alloys. Furthermore, the main doping agents that can be used to impart special properties to the bioactive glass coatings are described.
Collapse
|
10
|
Structural and Biomedical Properties of Common Additively Manufactured Biomaterials: A Concise Review. METALS 2020. [DOI: 10.3390/met10121677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biomaterials are in high demand due to the increasing geriatric population and a high prevalence of cardiovascular and orthopedic disorders. The combination of additive manufacturing (AM) and biomaterials is promising, especially towards patient-specific applications. With AM, unique and complex structures can be manufactured. Furthermore, the direct link to computer-aided design and digital scans allows for a direct replicable product. However, the appropriate selection of biomaterials and corresponding AM methods can be challenging but is a key factor for success. This article provides a concise material selection guide for the AM biomedical field. After providing a general description of biomaterial classes—biotolerant, bioinert, bioactive, and biodegradable—we give an overview of common ceramic, polymeric, and metallic biomaterials that can be produced by AM and review their biomedical and mechanical properties. As the field of load-bearing metallic implants experiences rapid growth, we dedicate a large portion of this review to this field and portray interesting future research directions. This article provides a general overview of the field, but it also provides possibilities for deepening the knowledge in specific aspects as it comprises comprehensive tables including materials, applications, AM techniques, and references.
Collapse
|
11
|
Synthesis of bioactive glass-based coating by plasma electrolytic oxidation: Untangling a new deposition pathway toward titanium implant surfaces. J Colloid Interface Sci 2020; 579:680-698. [PMID: 32652323 DOI: 10.1016/j.jcis.2020.06.102] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/06/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023]
Abstract
HYPOTHESIS Although bioactive glass (BG) particle coatings were previously developed by different methods, poor particle adhesion to surfaces and reduced biological effects because of glass crystallization have limited their biomedical applications. To overcome this problem, we have untangled, for the first time, plasma electrolytic oxidation (PEO) as a new pathway for the synthesis of bioactive glass-based coating (PEO-BG) on titanium (Ti) materials. EXPERIMENTS Electrolyte solution with bioactive elements (Na2SiO3-5H2O, C4H6O4Ca, NaNO3, and C3H7Na2O6P) was used as a precursor source to obtain a 45S5 bioglass-like composition on a Ti surface by PEO. Subsequently, the PEO-BG coating was investigated with respect to its surface, mechanical, tribological, electrochemical, microbiological, and biological properties, compared with those of machined and sandblasted/acid-etched control surfaces. FINDINGS PEO treatment produced a coating with complex surface topography, Ti crystalline phases, superhydrophilic status, chemical composition, and oxide layer similar to that of 45S5-BG (~45.0Si, 24.5 Ca, 24.5Na, 6.0P w/v%). PEO-BG enhanced Ti mechanical and tribological properties with higher corrosion resistance. Furthermore, PEO-BG had a positive influence in polymicrobial biofilms, by reducing pathogenic bacterial associated with biofilm-related infections. PEO-BG also showed higher adsorption of blood plasma proteins without cytotoxic effects on human cells, and thus may be considered a promising biocompatible approach for biomedical implants.
Collapse
|
12
|
Animal Origin Bioactive Hydroxyapatite Thin Films Synthesized by RF-Magnetron Sputtering on 3D Printed Cranial Implants. METALS 2019. [DOI: 10.3390/met9121332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ti6Al4V cranial prostheses in the form of patterned meshes were 3D printed by selective laser melting in an argon environment; using a CO2 laser source and micron-sized Ti6Al4V powder as the starting material. The size and shape of prostheses were chosen based on actual computer tomography images of patient skull fractures supplied in the framework of a collaboration with a neurosurgery clinic. After optimizations of scanning speed and laser parameters, the printed material was defect-free (as shown by metallographic analyses) and chemically homogeneous, without elemental segregation or depletion. The prostheses were coated by radio-frequency magnetron sputtering (RF-MS) with a bioactive thin layer of hydroxyapatite using a bioceramic powder derived from biogenic resources (Bio-HA). Initially amorphous, the films were converted to fully-crystalline form by applying a post-deposition thermal-treatment at 500 °C/1 h in air. The X-ray diffraction structural investigations indicated the phase purity of the deposited films composed solely of a hexagonal hydroxyapatite-like compound. On the other hand, the Fourier transform infrared spectroscopic investigations revealed that the biological carbonatation of the bone mineral phase was well-replicated in the case of crystallized Bio-HA RF-MS implant coatings. The in vitro acellular assays, performed in both the fully inorganic Kokubo’s simulated body fluid and the biomimetic organic–inorganic McCoy’s 5A cell culture medium up to 21 days, emphasized both the good resistance to degradation and the biomineralization capacity of the films. Further in vitro tests conducted in SaOs-2 osteoblast-like cells showed a positive proliferation rate on the Bio-HA RF-MS coating along with a good adhesion developed on the biomaterial surface by elongated membrane protrusions.
Collapse
|
13
|
Skallevold HE, Rokaya D, Khurshid Z, Zafar MS. Bioactive Glass Applications in Dentistry. Int J Mol Sci 2019; 20:E5960. [PMID: 31783484 PMCID: PMC6928922 DOI: 10.3390/ijms20235960] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 12/27/2022] Open
Abstract
At present, researchers in the field of biomaterials are focusing on the oral hard and soft tissue engineering with bioactive ingredients by activating body immune cells or different proteins of the body. By doing this natural ground substance, tissue component and long-lasting tissues grow. One of the current biomaterials is known as bioactive glass (BAG). The bioactive properties make BAG applicable to several clinical applications involving the regeneration of hard tissues in medicine and dentistry. In dentistry, its uses include dental restorative materials, mineralizing agents, as a coating material for dental implants, pulp capping, root canal treatment, and air-abrasion, and in medicine it has its applications from orthopedics to soft-tissue restoration. This review aims to provide an overview of promising and current uses of bioactive glasses in dentistry.
Collapse
Affiliation(s)
| | - Dinesh Rokaya
- Informetrics Research Group, Ton Duc Thang University, Ho Chi Minh City 7000, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 7000, Vietnam
| | - Zohaib Khurshid
- Prosthodontic and Dental Implantology Department, College of Dentistry, King Faisal University, Al-Hofuf, Al-Ahsa 31982, Saudi Arabia;
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia;
- Islamic International Dental College, Riphah International University Islamabad 44000, Pakistan
| |
Collapse
|
14
|
Albulescu R, Popa AC, Enciu AM, Albulescu L, Dudau M, Popescu ID, Mihai S, Codrici E, Pop S, Lupu AR, Stan GE, Manda G, Tanase C. Comprehensive In Vitro Testing of Calcium Phosphate-Based Bioceramics with Orthopedic and Dentistry Applications. MATERIALS 2019; 12:ma12223704. [PMID: 31717621 PMCID: PMC6888321 DOI: 10.3390/ma12223704] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023]
Abstract
Recently, a large spectrum of biomaterials emerged, with emphasis on various pure, blended, or doped calcium phosphates (CaPs). Although basic cytocompatibility testing protocols are referred by International Organization for Standardization (ISO) 10993 (parts 1-22), rigorous in vitro testing using cutting-edge technologies should be carried out in order to fully understand the behavior of various biomaterials (whether in bulk or low-dimensional object form) and to better gauge their outcome when implanted. In this review, current molecular techniques are assessed for the in-depth characterization of angiogenic potential, osteogenic capability, and the modulation of oxidative stress and inflammation properties of CaPs and their cation- and/or anion-substituted derivatives. Using such techniques, mechanisms of action of these compounds can be deciphered, highlighting the signaling pathway activation, cross-talk, and modulation by microRNA expression, which in turn can safely pave the road toward a better filtering of the truly functional, application-ready innovative therapeutic bioceramic-based solutions.
Collapse
Affiliation(s)
- Radu Albulescu
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
- Department Pharmaceutical Biotechnology, National Institute for Chemical-Pharmaceutical R&D, 031299, Bucharest, Romania
| | - Adrian-Claudiu Popa
- National Institute of Materials Physics, 077125 Magurele, Romania (G.E.S.)
- Army Centre for Medical Research, 010195 Bucharest, Romania
| | - Ana-Maria Enciu
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050047 Bucharest, Romania
| | - Lucian Albulescu
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Maria Dudau
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050047 Bucharest, Romania
| | - Ionela Daniela Popescu
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Simona Mihai
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Elena Codrici
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Sevinci Pop
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Andreea-Roxana Lupu
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
- Cantacuzino National Medico-Military Institute for Research and Development, 050096 Bucharest, Romania
| | - George E. Stan
- National Institute of Materials Physics, 077125 Magurele, Romania (G.E.S.)
| | - Gina Manda
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Cristiana Tanase
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
- Cajal Institute, Titu Maiorescu University, 004051 Bucharest, Romania
- Correspondence:
| |
Collapse
|
15
|
Fernandes HR, Gaddam A, Rebelo A, Brazete D, Stan GE, Ferreira JMF. Bioactive Glasses and Glass-Ceramics for Healthcare Applications in Bone Regeneration and Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E2530. [PMID: 30545136 PMCID: PMC6316906 DOI: 10.3390/ma11122530] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022]
Abstract
The discovery of bioactive glasses (BGs) in the late 1960s by Larry Hench et al. was driven by the need for implant materials with an ability to bond to living tissues, which were intended to replace inert metal and plastic implants that were not well tolerated by the body. Among a number of tested compositions, the one that later became designated by the well-known trademark of 45S5 Bioglass® excelled in its ability to bond to bone and soft tissues. Bonding to living tissues was mediated through the formation of an interfacial bone-like hydroxyapatite layer when the bioglass was put in contact with biological fluids in vivo. This feature represented a remarkable milestone, and has inspired many other investigations aiming at further exploring the in vitro and in vivo performances of this and other related BG compositions. This paradigmatic example of a target-oriented research is certainly one of the most valuable contributions that one can learn from Larry Hench. Such a goal-oriented approach needs to be continuously stimulated, aiming at finding out better performing materials to overcome the limitations of the existing ones, including the 45S5 Bioglass®. Its well-known that its main limitations include: (i) the high pH environment that is created by its high sodium content could turn it cytotoxic; (ii) and the poor sintering ability makes the fabrication of porous three-dimensional (3D) scaffolds difficult. All of these relevant features strongly depend on a number of interrelated factors that need to be well compromised. The selected chemical composition strongly determines the glass structure, the biocompatibility, the degradation rate, and the ease of processing (scaffolds fabrication and sintering). This manuscript presents a first general appraisal of the scientific output in the interrelated areas of bioactive glasses and glass-ceramics, scaffolds, implant coatings, and tissue engineering. Then, it gives an overview of the critical issues that need to be considered when developing bioactive glasses for healthcare applications. The aim is to provide knowledge-based tools towards guiding young researchers in the design of new bioactive glass compositions, taking into account the desired functional properties.
Collapse
Affiliation(s)
- Hugo R Fernandes
- Department of Materials and Ceramic Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Anuraag Gaddam
- Department of Materials and Ceramic Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Avito Rebelo
- Department of Materials and Ceramic Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Daniela Brazete
- Department of Materials and Ceramic Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - George E Stan
- National Institute of Materials Physics, RO-077125 Magurele, Romania.
| | - José M F Ferreira
- Department of Materials and Ceramic Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
16
|
Tite T, Popa AC, Balescu LM, Bogdan IM, Pasuk I, Ferreira JMF, Stan GE. Cationic Substitutions in Hydroxyapatite: Current Status of the Derived Biofunctional Effects and Their In Vitro Interrogation Methods. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E2081. [PMID: 30355975 PMCID: PMC6266948 DOI: 10.3390/ma11112081] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/13/2018] [Accepted: 10/19/2018] [Indexed: 12/13/2022]
Abstract
High-performance bioceramics are required for preventing failure and prolonging the life-time of bone grafting scaffolds and osseous implants. The proper identification and development of materials with extended functionalities addressing socio-economic needs and health problems constitute important and critical steps at the heart of clinical research. Recent findings in the realm of ion-substituted hydroxyapatite (HA) could pave the road towards significant developments in biomedicine, with an emphasis on a new generation of orthopaedic and dentistry applications, since such bioceramics are able to mimic the structural, compositional and mechanical properties of the bone mineral phase. In fact, the fascinating ability of the HA crystalline lattice to allow for the substitution of calcium ions with a plethora of cationic species has been widely explored in the recent period, with consequent modifications of its physical and chemical features, as well as its functional mechanical and in vitro and in vivo biological performance. A comprehensive inventory of the progresses achieved so far is both opportune and of paramount importance, in order to not only gather and summarize information, but to also allow fellow researchers to compare with ease and filter the best solutions for the cation substitution of HA-based materials and enable the development of multi-functional biomedical designs. The review surveys preparation and synthesis methods, pinpoints all the explored cation dopants, and discloses the full application range of substituted HA. Special attention is dedicated to the antimicrobial efficiency spectrum and cytotoxic trade-off concentration values for various cell lines, highlighting new prophylactic routes for the prevention of implant failure. Importantly, the current in vitro biological tests (widely employed to unveil the biological performance of HA-based materials), and their ability to mimic the in vivo biological interactions, are also critically assessed. Future perspectives are discussed, and a series of recommendations are underlined.
Collapse
Affiliation(s)
- Teddy Tite
- National Institute of Materials Physics, RO-077125 Magurele, Romania.
| | - Adrian-Claudiu Popa
- National Institute of Materials Physics, RO-077125 Magurele, Romania.
- Army Centre for Medical Research, RO-010195 Bucharest, Romania.
| | | | | | - Iuliana Pasuk
- National Institute of Materials Physics, RO-077125 Magurele, Romania.
| | - José M F Ferreira
- Department of Materials and Ceramics Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - George E Stan
- National Institute of Materials Physics, RO-077125 Magurele, Romania.
| |
Collapse
|
17
|
Stuart BW, Grant CA, Stan GE, Popa AC, Titman JJ, Grant DM. Gallium incorporation into phosphate based glasses: Bulk and thin film properties. J Mech Behav Biomed Mater 2018; 82:371-382. [PMID: 29656232 DOI: 10.1016/j.jmbbm.2018.03.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 12/27/2022]
Abstract
The osteogenic ions Ca2+, P5+, Mg2+, and antimicrobial ion Ga3+ were homogenously dispersed into a 1.45 µm thick phosphate glass coating by plasma assisted sputtering onto commercially pure grade titanium. The objective was to deliver therapeutic ions in orthopaedic/dental implants such as cementeless endoprostheses or dental screws. The hardness 4.7 GPa and elastic modulus 69.7 GPa, of the coating were comparable to plasma sprayed hydroxyapatite/dental enamel, whilst superseding femoral cortical bone. To investigate the manufacturing challenge of translation from a target to vapour condensed coating, structural/compositional properties of the target (P51MQ) were compared to the coating (P40PVD) and a melt-quenched equivalent (P40MQ). Following condensation from P51MQ to P40PVD, P2O5 content reduced from 48.9 to 40.5 mol%. This depolymerisation and reduction in the P-O-P bridging oxygen content as determined by 31P NMR, FTIR and Raman spectroscopy techniques was attributed to a decrease in the P2O5 network former and increases in alkali/alkali-earth cations. P40PVD appeared denser (3.47 vs. 2.70 g cm-3) and more polymerised than it's compositionally equivalent P40MQ, showing that structure/ mechanical properties were affected by manufacturing route.
Collapse
Affiliation(s)
- Bryan W Stuart
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, UK.
| | - Colin A Grant
- School of Chemistry and Biosciences, University of Bradford, BD7 1DP, UK
| | - George E Stan
- National Institute of Materials Physics, Magurele, Ilfov, Romania
| | - Adrian C Popa
- National Institute of Materials Physics, Magurele, Ilfov, Romania; Army Centre for Medical Research, RO-010195 Bucharest, Romania
| | | | - David M Grant
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, UK
| |
Collapse
|
18
|
Rehman M, Madni A, Webster TJ. The era of biofunctional biomaterials in orthopedics: what does the future hold? Expert Rev Med Devices 2018; 15:193-204. [DOI: 10.1080/17434440.2018.1430569] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Mubashar Rehman
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
- Nanobiotechnology Group, National Institute of Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Asadullah Madni
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
- Nanobiotechnology Group, National Institute of Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
19
|
Antibacterial Properties and Corrosion Resistance of the Newly Developed Biomaterial, Ti–12Nb–1Ag Alloy. METALS 2017. [DOI: 10.3390/met7120566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Popa AC, Stan GE, Husanu MA, Mercioniu I, Santos LF, Fernandes HR, Ferreira JMF. Bioglass implant-coating interactions in synthetic physiological fluids with varying degrees of biomimicry. Int J Nanomedicine 2017; 12:683-707. [PMID: 28176941 PMCID: PMC5268334 DOI: 10.2147/ijn.s123236] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Synthetic physiological fluids are currently used as a first in vitro bioactivity assessment for bone grafts. Our understanding about the interactions taking place at the fluid-implant interface has evolved remarkably during the last decade, and does not comply with the traditional International Organization for Standardization/final draft International Standard 23317 protocol in purely inorganic simulated body fluid. The advances in our knowledge point to the need of a true paradigm shift toward testing physiological fluids with enhanced biomimicry and a better understanding of the materials' structure-dissolution behavior. This will contribute to "upgrade" our vision of entire cascades of events taking place at the implant surfaces upon immersion in the testing media or after implantation. Starting from an osteoinductive bioglass composition with the ability to alleviate the oxidative stress, thin bioglass films with different degrees of polymerization were deposited onto titanium substrates. Their biomineralization activity in simulated body fluid and in a series of new inorganic-organic media with increasing biomimicry that more closely simulated the human intercellular environment was compared. A comprehensive range of advanced characterization tools (scanning electron microscopy; grazing-incidence X-ray diffraction; Fourier-transform infrared, micro-Raman, energy-dispersive, X-ray photoelectron, and surface-enhanced laser desorption/ionization time-of-flight mass spectroscopies; and cytocompatibility assays using mesenchymal stem cells) were used. The information gathered is very useful to biologists, biophysicists, clinicians, and material scientists with special interest in teaching and research. By combining all the analyses, we propose herein a step forward toward establishing an improved unified protocol for testing the bioactivity of implant materials.
Collapse
Affiliation(s)
- AC Popa
- National Institute of Materials Physics, Măgurele
- Army Centre for Medical Research, Bucharest, Romania
| | - GE Stan
- National Institute of Materials Physics, Măgurele
| | - MA Husanu
- National Institute of Materials Physics, Măgurele
| | - I Mercioniu
- National Institute of Materials Physics, Măgurele
| | - LF Santos
- Centro de Química Estrutural, Instituto Superior Técnico (CQE-IST), University of Lisbon, Lisbon
| | - HR Fernandes
- Department of Materials and Ceramics Engineering, Centre for Research in Ceramics and Composite Materials (CICECO), University of Aveiro, Aveiro, Portugal
| | - JMF Ferreira
- Department of Materials and Ceramics Engineering, Centre for Research in Ceramics and Composite Materials (CICECO), University of Aveiro, Aveiro, Portugal
| |
Collapse
|
21
|
Waugh DG, Hussain I, Lawrence J, Smith GC, Cosgrove D, Toccaceli C. In vitro mesenchymal stem cell response to a CO2 laser modified polymeric material. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:727-736. [PMID: 27287173 DOI: 10.1016/j.msec.2016.05.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/21/2016] [Accepted: 05/15/2016] [Indexed: 11/25/2022]
Abstract
With an ageing world population it is becoming significantly apparent that there is a need to produce implants and platforms to manipulate stem cell growth on a pharmaceutical scale. This is needed to meet the socio-economic demands of many countries worldwide. This paper details one of the first ever studies in to the manipulation of stem cell growth on CO2 laser surface treated nylon 6,6 highlighting its potential as an inexpensive platform to manipulate stem cell growth on a pharmaceutical scale. Through CO2 laser surface treatment discrete changes to the surfaces were made. That is, the surface roughness of the nylon 6,6 was increased by up to 4.3μm, the contact angle was modulated by up to 5° and the surface oxygen content increased by up to 1atom %. Following mesenchymal stem cell growth on the laser treated samples, it was identified that CO2 laser surface treatment gave rise to an enhanced response with an increase in viable cell count of up to 60,000cells/ml when compared to the as-received sample. The effect of surface parameters modified by the CO2 laser surface treatment on the mesenchymal stem cell response is also discussed along with potential trends that could be identified to govern the mesenchymal stem cell response.
Collapse
Affiliation(s)
- D G Waugh
- Laser Engineering and Manufacturing Research Centre, Faculty of Science and Engineering, University of Chester, Chester CH1 4BJ, UK.
| | - I Hussain
- School of Life Sciences, Brayford Pool, University of Lincoln, Lincoln LN6 7TS, UK
| | - J Lawrence
- Laser Engineering and Manufacturing Research Centre, Faculty of Science and Engineering, University of Chester, Chester CH1 4BJ, UK
| | - G C Smith
- Laser Engineering and Manufacturing Research Centre, Faculty of Science and Engineering, University of Chester, Chester CH1 4BJ, UK
| | - D Cosgrove
- School of Life Sciences, Brayford Pool, University of Lincoln, Lincoln LN6 7TS, UK
| | - C Toccaceli
- Laser Engineering and Manufacturing Research Centre, Faculty of Science and Engineering, University of Chester, Chester CH1 4BJ, UK
| |
Collapse
|
22
|
Singh RK, Awasthi S, Dhayalan A, Ferreira JMF, Kannan S. Deposition, structure, physical and invitro characteristics of Ag-doped β-Ca3(PO4)2/chitosan hybrid composite coatings on Titanium metal. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:692-701. [PMID: 26952474 DOI: 10.1016/j.msec.2016.02.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/28/2016] [Accepted: 02/03/2016] [Indexed: 01/06/2023]
Abstract
Pure and five silver-doped (0-5Ag) β-tricalcium phosphate [β-TCP, β-Ca3(PO4)2]/chitosan composite coatings were deposited on Titanium (Ti) substrates and their properties that are relevant for applications in hard tissue replacements were assessed. Silver, β-TCP and chitosan were combined to profit from their salient and complementary antibacterial and biocompatible features.The β-Ca3(PO4)2 powders were synthesized by co-precipitation. The characterization results confirmed the Ag(+) occupancy at the crystal lattice of β-Ca3(PO4)2. The Ag-dopedβ-Ca3(PO4)2/chitosan composite coatings deposited by electrophoresis showed good antibacterial activity and exhibited negative cytotoxic effects towards the human osteosarcoma cell line MG-63. The morphology of the coatings was observed by SEM and their efficiency against corrosion of metallic substrates was determined through potentiodynamic polarization tests.
Collapse
Affiliation(s)
- Ram Kishore Singh
- Centre for Nanoscience and Technology, Pondicherry University, Puducherry605 014, India
| | - Sharad Awasthi
- Department of Biotechnology, Pondicherry University, Puducherry605 014, India
| | - Arunkumar Dhayalan
- Department of Biotechnology, Pondicherry University, Puducherry605 014, India
| | - J M F Ferreira
- Department of Materials and Ceramics Engineering, University of Aveiro, CICECO, Aveiro3810 193, Portugal
| | - S Kannan
- Centre for Nanoscience and Technology, Pondicherry University, Puducherry605 014, India.
| |
Collapse
|