1
|
Petre DG, Leeuwenburgh SCG. The Use of Fibers in Bone Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:141-159. [PMID: 33375900 DOI: 10.1089/ten.teb.2020.0252] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Bone tissue engineering aims to restore and maintain the function of bone by means of biomaterial-based scaffolds. This review specifically focuses on the use of fibers in biomaterials used for bone tissue engineering as suitable environment for bone tissue repair and regeneration. We present a bioinspired rationale behind the use of fibers in bone tissue engineering and provide an overview of the most common fiber fabrication methods, including solution, melt, and microfluidic spinning. Subsequently, we provide a brief overview of the composition of fibers that are used in bone tissue engineering, including fibers composed of (i) natural polymers (e.g., cellulose, collagen, gelatin, alginate, chitosan, and silk, (ii) synthetic polymers (e.g., polylactic acid [PLA], polycaprolactone, polyglycolic acid [PGA], polyethylene glycol, and polymer blends of PLA and PGA), (iii) ceramic fibers (e.g., aluminium oxide, titanium oxide, and zinc oxide), (iv) metallic fibers (e.g., titanium and its alloys, copper and magnesium), and (v) composite fibers. In addition, we review the most relevant fiber modification strategies that are used to enhance the (bio)functionality of these fibers. Finally, we provide an overview of the applicability of fibers in biomaterials for bone tissue engineering, with a specific focus on mechanical, pharmaceutical, and biological properties of fiber-functionalized biomaterials for bone tissue engineering. Impact statement Natural bone is a complex composite material composed of an extracellular matrix of mineralized fibers containing living cells and bioactive molecules. Consequently, the use of fibers in biomaterial-based scaffolds offers a wide variety of opportunities to replicate the functional performance of bone. This review provides an overview of the use of fibers in biomaterials for bone tissue engineering, thereby contributing to the design of novel fiber-functionalized bone-substituting biomaterials of improved functionality regarding their mechanical, pharmaceutical, and biological properties.
Collapse
Affiliation(s)
- Daniela Geta Petre
- Department of Dentistry-Regenerative Biomaterials, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Sander C G Leeuwenburgh
- Department of Dentistry-Regenerative Biomaterials, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Kinne RW, Gunnella F, Kunisch E, Heinemann S, Nies B, Maenz S, Horbert V, Illerhaus B, Huber R, Firkowska-Boden I, Bossert J, Jandt KD, Sachse A, Bungartz M, Brinkmann O. Performance of Calcium Phosphate Cements in the Augmentation of Sheep Vertebrae-An Ex Vivo Study. MATERIALS 2021; 14:ma14143873. [PMID: 34300793 PMCID: PMC8307240 DOI: 10.3390/ma14143873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 11/25/2022]
Abstract
Oil-based calcium phosphate cement (Paste-CPC) shows not only prolonged shelf life and injection times, but also improved cohesion and reproducibility during application, while retaining the advantages of fast setting, mechanical strength, and biocompatibility. In addition, poly(L-lactide-co-glycolide) (PLGA) fiber reinforcement may decrease the risk for local extrusion. Bone defects (diameter 5 mm; depth 15 mm) generated ex vivo in lumbar (L) spines of female Merino sheep (2–4 years) were augmented using: (i) water-based CPC with 10% PLGA fiber reinforcement (L3); (ii) Paste-CPC (L4); or (iii) clinically established polymethylmethacrylate (PMMA) bone cement (L5). Untouched (L1) and empty vertebrae (L2) served as controls. Cement performance was analyzed using micro-computed tomography, histology, and biomechanical testing. Extrusion was comparable for Paste-CPC(-PLGA) and PMMA, but significantly lower for CPC + PLGA. Compressive strength and Young’s modulus were similar for Paste-CPC and PMMA, but significantly higher compared to those for empty defects and/or CPC + PLGA. Expectedly, all experimental groups showed significantly or numerically lower compressive strength and Young’s modulus than those of untouched controls. Ready-to-use Paste-CPC demonstrates a performance similar to that of PMMA, but improved biomechanics compared to those of water-based CPC + PLGA, expanding the therapeutic arsenal for bone defects. O, significantly lower extrusion of CPC + PLGA fibers into adjacent lumbar spongiosa may help to reduce the risk of local extrusion in spinal surgery.
Collapse
Affiliation(s)
- Raimund W. Kinne
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany; (F.G.); (E.K.); (V.H.); (A.S.); (M.B.); (O.B.)
- Correspondence: ; Tel.: +49-36691-81228
| | - Francesca Gunnella
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany; (F.G.); (E.K.); (V.H.); (A.S.); (M.B.); (O.B.)
| | - Elke Kunisch
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany; (F.G.); (E.K.); (V.H.); (A.S.); (M.B.); (O.B.)
| | - Sascha Heinemann
- INNOTERE GmbH, Meissner Str. 191, 01445 Radebeul, Germany; (S.H.); (B.N.)
| | - Berthold Nies
- INNOTERE GmbH, Meissner Str. 191, 01445 Radebeul, Germany; (S.H.); (B.N.)
| | - Stefan Maenz
- Chair of Materials Science, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany; (S.M.); (I.F.-B.); (J.B.); (K.D.J.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
| | - Victoria Horbert
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany; (F.G.); (E.K.); (V.H.); (A.S.); (M.B.); (O.B.)
| | - Bernhard Illerhaus
- BAM Bundesanstalt für Materialforschung und –Prüfung (BAM), 12205 Berlin, Germany;
| | - René Huber
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany;
| | - Izabela Firkowska-Boden
- Chair of Materials Science, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany; (S.M.); (I.F.-B.); (J.B.); (K.D.J.)
| | - Jörg Bossert
- Chair of Materials Science, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany; (S.M.); (I.F.-B.); (J.B.); (K.D.J.)
| | - Klaus D. Jandt
- Chair of Materials Science, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany; (S.M.); (I.F.-B.); (J.B.); (K.D.J.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena School for Microbial Communication (JSMC), Friedrich Schiller University Jena, Neugasse 23, 07743 Jena, Germany
| | - André Sachse
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany; (F.G.); (E.K.); (V.H.); (A.S.); (M.B.); (O.B.)
- Orthopedic Professorship, Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany
| | - Matthias Bungartz
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany; (F.G.); (E.K.); (V.H.); (A.S.); (M.B.); (O.B.)
- Orthopedic Professorship, Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany
| | - Olaf Brinkmann
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany; (F.G.); (E.K.); (V.H.); (A.S.); (M.B.); (O.B.)
- Orthopedic Professorship, Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany
| |
Collapse
|
3
|
Moussa H, El Hadad A, Sarrigiannidis S, Saad A, Wang M, Taqi D, Al-Hamed FS, Salmerón-Sánchez M, Cerruti M, Tamimi F. High toughness resorbable brushite-gypsum fiber-reinforced cements. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112205. [PMID: 34225857 DOI: 10.1016/j.msec.2021.112205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/18/2021] [Accepted: 05/19/2021] [Indexed: 12/27/2022]
Abstract
The ideal bone substitute material should be mechanically strong, biocompatible with a resorption rate matching the rate of new bone formation. Brushite (dicalcium phosphate dihydrate) cement is a promising bone substitute material but with limited resorbability and mechanical properties. To improve the resorbability and mechanical performance of brushite cements, we incorporated gypsum (calcium sulfate dihydrate) and diazonium-treated polyglactin fibers which are well-known for their biocompatibility and bioresorbability. Here we show that by combining brushite and gypsum, we were able to fabricate biocompatible composite cements with high fracture toughness (0.47 MPa·m1/2) and a resorption rate that matched the rate of new bone formation. Adding functionalized polyglactin fibers to this composite cement further improved the fracture toughness up to 1.00 MPa·m1/2. XPS and SEM revealed that the improvement in fracture toughness is due to the strong interfacial bonding between the functionalized fibers and the cement matrix. This study shows that adding gypsum and functionalized polyglactin fibers to brushite cements results in composite biomaterials that combine high fracture toughness, resorbability, and biocompatibility, and have great potential for bone regeneration.
Collapse
Affiliation(s)
- Hanan Moussa
- Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada; Faculty of Dentistry, Benghazi University, Benghazi 9504, Libya
| | - Amir El Hadad
- Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada; Physics Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | | | - Ahmed Saad
- Department of Mining and Materials Engineering, McGill University, Montreal, QC H3A 0C5, Canada
| | - Min Wang
- Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada; Department of Oral Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Doaa Taqi
- Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada
| | | | | | - Marta Cerruti
- Department of Mining and Materials Engineering, McGill University, Montreal, QC H3A 0C5, Canada
| | - Faleh Tamimi
- Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada; College of Dental Medicine, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
4
|
Biopolymer surface modification of PLGA fibers enhances interfacial shear strength and supports immobilization of rhGDF-5 in fiber-reinforced brushite cement. J Mech Behav Biomed Mater 2020; 115:104285. [PMID: 33360485 DOI: 10.1016/j.jmbbm.2020.104285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/19/2020] [Accepted: 12/14/2020] [Indexed: 11/22/2022]
Abstract
Incorporation of biodegradable poly(lactic-co-glycolic acid; PLGA) fibers into calcium phosphate cements (CPCs) has proven beneficial for their mechanical properties and the targeted delivery of bone morphogenetic proteins (BMPs). However, the deficiency of functional groups on the PLGA surface results in poor fiber-matrix interfacial strength (ISS), limiting the mechanical improvement, and insufficient surface charge to immobilize therapeutic amounts of BMPs. The present study therefore focused on the: i) functionalization of PLGA fibers using polyelectrolyte multilayers (PEMs) of biopolymers; ii) analysis of their impact on the mechanical properties of the CPC in multifilament fiber pull-out tests; and iii) testing of their applicability as carriers for BMPs using chemical-free adsorption of biotinylated recombinant human growth factor (rhGDF-5) and colorimetric assays. The PEMs were created from chitosan (Chi), hyaluronic acid (HA), and gelatin (Gel) via layer-by-layer (LbL) deposition. Four PEM nanocoatings consisting of alternating Chi/Gel and Chi/HA bilayers with a terminating layer of Chi, Gel or HA were tested. Nanocoating of the PLGA fibers with PEMs significantly enhanced the ISS with the CPC matrix to max. 3.55 ± 1.05 MPa (2.2-fold). The increase in ISS, ascribed to enhanced electrostatic interactions between PLGA and calcium phosphate, was reflected in significant improvement of the composites' flexural strength compared to CPC containing untreated fibers. However, only minor effects on the composites' work of fracture were observed. The adsorption of rhGDF-5 on the PLGA surface was supported by PEMs terminating with either positive or negative charges, without significant differences among the nanocoatings. This proof-of-principle rhGDF-5 immobilization study, together with the augmented ISS of the composites, demonstrates that surface modification of PLGA fibers with biopolymers is a promising approach for targeted delivery of BMPs and improved mechanical properties of the fiber-reinforced CPC.
Collapse
|
5
|
Kucko NW, Petre DG, de Ruiter M, Herber RP, Leeuwenburgh SC. Micro- and macromechanical characterization of the influence of surface-modification of poly(vinyl alcohol) fibers on the reinforcement of calcium phosphate cements. J Mech Behav Biomed Mater 2020; 109:103776. [DOI: 10.1016/j.jmbbm.2020.103776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/02/2019] [Accepted: 04/04/2020] [Indexed: 01/08/2023]
|
6
|
Singh VA, Wei CC, Haseeb A, Shanmugam R, Ju CS. JectOS® versus PMMA vancomycin-loaded cement: The biomechanical and antimicrobial properties. J Orthop Surg (Hong Kong) 2020; 27:2309499018822247. [PMID: 30798727 DOI: 10.1177/2309499018822247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
PURPOSE Bone cement is commonly used as a void filler for bone defects. Antibiotics can be added to bone cement to increase local drug delivery in eradicating infection. After antibiotic elution, nonbiodegradable material becomes an undesirable agent. The purpose of this study was to evaluate effects of addition of vancomycin on the compressive strength of injectable synthetic bone substitute, JectOS®. JectOS, a partially biodegradable cement that over time dissolves and is replaced by bone, could be potentially used as a biodegradable antibiotic carrier. METHODS Vancomycin at various concentrations was added to JectOS and polymethyl methacrylate (PMMA). Then, the cement was molded into standardized dimensions for in vitro testing. Cylindrical vancomycin-JectOS samples were subjected to compressive strength. The results obtained were compared to PMMA-vancomycin compressive strength data attained from historical controls. The zone of inhibition was carried out using vancomycin-JectOS and vancomycin-PMMA disk on methicillin-resistant strain culture agar. RESULTS With the addition of 2.5%, 5%, and 10% vancomycin, the average compressive strengths reduced to 8.01 ± 0.95 MPa (24.6%), 7.52 ± 0.71 MPa (29.2%), and 7.23 ± 1.34 MPa (31.9%). Addition of vancomycin significantly weakened biomechanical properties of JectOS, but there was no significant difference in the compressive strength at increasing concentrations. The average diameters of zone of inhibition for JectOS-vancomycin were 24.7 ± 1.44 (2.5%) mm, 25.9 ± 0.85 mm (5%), and 26.8 ± 1.81 mm (10%), which outperformed PMMA. CONCLUSION JectOS has poor mechanical performance but superior elution property. JectOS-vancomycin cement is suitable as a void filler delivering high local concentration of vancomycin. We recommended using it for contained bone defects that do not require mechanical strength.
Collapse
Affiliation(s)
- Vivek Ajit Singh
- 1 Department of Orthopaedic Surgery, National Orthopaedic Center of Excellence for Research & Learning, University of Malaya, Kuala Lumpur, Malaysia
| | - Chang Chee Wei
- 1 Department of Orthopaedic Surgery, National Orthopaedic Center of Excellence for Research & Learning, University of Malaya, Kuala Lumpur, Malaysia
| | - Amber Haseeb
- 1 Department of Orthopaedic Surgery, National Orthopaedic Center of Excellence for Research & Learning, University of Malaya, Kuala Lumpur, Malaysia
| | - Rukmanikanthan Shanmugam
- 1 Department of Orthopaedic Surgery, National Orthopaedic Center of Excellence for Research & Learning, University of Malaya, Kuala Lumpur, Malaysia
| | - Cindy Shuan Ju
- 2 Department of Medical Microbiology, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Grafting of calcium chelating functionalities onto PLA monofilament fiber surfaces. Biointerphases 2020; 15:011006. [PMID: 32085677 DOI: 10.1116/1.5129989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Polymer surface grafting is widely used in the field of bone regeneration to increase calcium phosphate (CaP) adhesion, with the intent of improving mechanical properties of CaP-polymer composite cements. Reinforcement can be achieved using multiple combined functional groups and/or complex surface geometries that, however, concurrently influence multiple effects such as wetting, roughness, and interfacial strengthening. This study focused on the influence of a chelating group, namely aspartic acid, on the adsorption of divalent ions such as Ba2+ or Ca2+ onto poly-l-lactic acid (PLA) films. The films were analyzed using contact angle measurements and X-ray photoelectron spectroscopy. The adsorption of CaP and its interfacial mechanical properties were investigated using functionalized PLA monofilaments whose surface roughness was analyzed using white light interferometry. Mechanical analysis was conducted by performing pull-out tests. The surfaces were analyzed using scanning electron microscopy and energy dispersive X-ray spectroscopy. Using aspartic acid as a chelating group resulted in a 50 % increased adsorption of barium, an almost threefold increase in calcium coverage of the fiber compared to the control group and a twofold increase in interfacial stiffness. No significant increase in interfacial strength was determined, most likely due to the weakness of the CaP matrix, which was partially visible as residues on the monofilaments in the postfracture imaging. This study shows the potential of surfaces functionalized with aspartic acid as a simple alternative to complex polypeptide based functional groups for the adsorption of divalent ions such as calcium on poly-lactic acid in bone regenerating applications.
Collapse
|
8
|
Gunnella F, Kunisch E, Horbert V, Maenz S, Bossert J, Jandt KD, Plöger F, Kinne RW. In Vitro Release of Bioactive Bone Morphogenetic Proteins (GDF5, BB-1, and BMP-2) from a PLGA Fiber-Reinforced, Brushite-Forming Calcium Phosphate Cement. Pharmaceutics 2019; 11:pharmaceutics11090455. [PMID: 31484306 PMCID: PMC6781330 DOI: 10.3390/pharmaceutics11090455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 08/06/2019] [Accepted: 08/23/2019] [Indexed: 12/17/2022] Open
Abstract
Bone regeneration of sheep lumbar osteopenia is promoted by targeted delivery of bone morphogenetic proteins (BMPs) via a biodegradable, brushite-forming calcium-phosphate-cement (CPC) with stabilizing poly(l-lactide-co-glycolide) acid (PLGA) fibers. The present study sought to quantify the release and bioactivity of BMPs from a specific own CPC formulation successfully used in previous in vivo studies. CPC solid bodies with PLGA fibers (0%, 5%, 10%) containing increasing dosages of GDF5, BB-1, and BMP-2 (2 to 1000 µg/mL) were ground and extracted in phosphate-buffered saline (PBS) or pure sheep serum/cell culture medium containing 10% fetal calf serum (FCS; up to 30/31 days). Released BMPs were quantified by ELISA, bioactivity was determined via alkaline phosphatase (ALP) activity after 3-day exposure of different osteogenic cell lines (C2C12; C2C12BRlb with overexpressed BMP-receptor-1b; MCHT-1/26; ATDC-5) and via the influence of the extracts on the expression of osteogenic/chondrogenic genes and proteins in human adipose tissue-derived mesenchymal stem cells (hASCs). There was hardly any BMP release in PBS, whereas in medium + FCS or sheep serum the cumulative release over 30/31 days was 11-34% for GDF5 and 6-17% for BB-1; the release of BMP-2 over 14 days was 25.7%. Addition of 10% PLGA fibers significantly augmented the 14-day release of GDF5 and BMP-2 (to 22.6% and 43.7%, respectively), but not of BB-1 (13.2%). All BMPs proved to be bioactive, as demonstrated by increased ALP activity in several cell lines, with partial enhancement by 10% PLGA fibers, and by a specific, early regulation of osteogenic/chondrogenic genes and proteins in hASCs. Between 10% and 45% of bioactive BMPs were released in vitro from CPC + PLGA fibers over a time period of 14 days, providing a basis for estimating and tailoring therapeutically effective doses for experimental and human in vivo studies.
Collapse
Affiliation(s)
- Francesca Gunnella
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany
| | - Elke Kunisch
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany
| | - Victoria Horbert
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany
| | - Stefan Maenz
- Chair of Materials Science, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Jörg Bossert
- Chair of Materials Science, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Klaus D Jandt
- Chair of Materials Science, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena School for Microbial Communication (JSMC), Friedrich Schiller University Jena, 07743 Jena, Germany
| | | | - Raimund W Kinne
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany.
| |
Collapse
|
9
|
Kunisch E, Gunnella F, Wagner S, Dees F, Maenz S, Bossert J, Jandt KD, Kinne RW. The poly (l-lactid-co-glycolide; PLGA) fiber component of brushite-forming calcium phosphate cement induces the osteogenic differentiation of human adipose tissue-derived stem cells. ACTA ACUST UNITED AC 2019; 14:055012. [PMID: 31465298 DOI: 10.1088/1748-605x/ab3544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A brushite-forming calcium phosphate cement (CPC) was mechanically stabilized by addition of poly (l-lactid-co-glycolide; PLGA) fibers (≤10% w/w). It proved highly biocompatible and its fiber component enhanced bone formation in a sheep lumbar vertebroplasty model. However, possible effects on the osteogenic differentiation of resident mesenchymal stem cells (MSCs) remained unexplored. The present study used a novel approach, simultaneously analyzing the influence of a solid CPC scaffold and its relatively low PLGA proportion (a mimicry of natural bone) on osteogenic, chondrogenic, and adipogenic differentiation, as well as the pluripotency of human adipose tissue-derived mesenchymal stem cells (hASCs). hASCs were cultured on CPC discs with/without PLGA fibers (5% and 10%) in the absence of osteogenic medium for 3, 7, and 14 d. Gene expression of osteogenic markers (Runx2, osterix, alkaline phosphatase, collagen I, osteonectin, osteopontin, osteocalcin), chondrogenic markers (collagen II, Sox9, aggrecan), adipogenic markers (PPARG, Leptin, and FABP4), and pluripotency markers (Nanog, Tert, Rex) was analyzed by RT-PCR. The ability of hASCs to synthesize alkaline phosphatase was also evaluated. Cell number and viability were determined by fluorescein diacetate/propidium iodide staining. Compared to pure CPC, cultivation of hASCs on fiber-reinforced CPC transiently induced the gene expression of Runx2 and osterix (day 3), and long-lastingly augmented the expression of alkaline phosphatase (and its enzyme activity), collagen I, and osteonectin (until day 14). In contrast, augmented expression of all chondrogenic, adipogenic, and pluripotency markers was limited to day 3, followed by significant downregulation. Cultivation of hASCs on fiber-reinforced CPC reduced the cell number, but not the proportion of viable cells (viability > 95%). The PLGA component of fiber-reinforced, brushite-forming CPC supports long-lasting osteogenic differentiation of hASCs, whereas chondrogenesis, adipogenesis, and pluripotency are initially augmented, but subsequently suppressed. In view of parallel animal results, PLGA fibers may represent an interesting clinical target for future improvement of CPC- based bone regeneration.
Collapse
Affiliation(s)
- Elke Kunisch
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, Eisenberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Petre DG, Nadar R, Tu Y, Paknahad A, Wilson DA, Leeuwenburgh SCG. Thermoresponsive Brushes Facilitate Effective Reinforcement of Calcium Phosphate Cements. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26690-26703. [PMID: 31246399 PMCID: PMC6676411 DOI: 10.1021/acsami.9b08311] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 06/27/2019] [Indexed: 05/04/2023]
Abstract
Calcium phosphate ceramics are frequently applied to stimulate regeneration of bone in view of their excellent biological compatibility with bone tissue. Unfortunately, these bioceramics are also highly brittle. To improve their toughness, fibers can be incorporated as the reinforcing component for the calcium phosphate cements. Herein, we functionalize the surface of poly(vinyl alcohol) fibers with thermoresponsive poly(N-isopropylacrylamide) brushes of tunable thickness to improve simultaneously fiber dispersion and fiber-matrix affinity. These brushes shift from hydrophilic to hydrophobic behavior at temperatures above their lower critical solution temperature of 32 °C. This dual thermoresponsive shift favors fiber dispersion throughout the hydrophilic calcium phosphate cements (at 21 °C) and toughens these cements when reaching their hydrophobic state (at 37 °C). The reinforcement efficacy of these surface-modified fibers was almost double at 37 versus 21 °C, which confirms the strong potential of thermoresponsive fibers for reinforcement of calcium phosphate cements.
Collapse
Affiliation(s)
- Daniela-Geta Petre
- Department
of Regenerative Biomaterials, Radboud University
Medical Center, 6525 EX Nijmegen, The Netherlands
| | - Robin Nadar
- Department
of Regenerative Biomaterials, Radboud University
Medical Center, 6525 EX Nijmegen, The Netherlands
| | - Yingfeng Tu
- Department
of Systems Chemistry, Radboud University, 6525 AJ Nijmegen, The Netherlands
- School
of Pharmaceutical Science, Guangdong Provincial Key Laboratory of
New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Ali Paknahad
- Department
of Regenerative Biomaterials, Radboud University
Medical Center, 6525 EX Nijmegen, The Netherlands
- Department
of Computational Mechanics, Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628 CN Delft, The Netherlands
| | - Daniela A. Wilson
- Department
of Systems Chemistry, Radboud University, 6525 AJ Nijmegen, The Netherlands
- School
of Pharmaceutical Science, Guangdong Provincial Key Laboratory of
New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Sander C. G. Leeuwenburgh
- Department
of Regenerative Biomaterials, Radboud University
Medical Center, 6525 EX Nijmegen, The Netherlands
| |
Collapse
|
11
|
Kucko NW, de Lacerda Schickert S, Sobral Marques T, Herber RP, van den Beuken JJJP, Zuo Y, Leeuwenburgh SCG. Tough and Osteocompatible Calcium Phosphate Cements Reinforced with Poly(vinyl alcohol) Fibers. ACS Biomater Sci Eng 2019; 5:2491-2505. [DOI: 10.1021/acsbiomaterials.9b00226] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nathan W. Kucko
- Department of Regenerative Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25 6525 EX, Nijmegen, The Netherlands
- CAM Bioceramics B.V., Zernikedreef 6 2333 CL, Leiden, The Netherlands
| | - Sónia de Lacerda Schickert
- Department of Regenerative Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25 6525 EX, Nijmegen, The Netherlands
| | - Tomás Sobral Marques
- Department of Regenerative Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25 6525 EX, Nijmegen, The Netherlands
| | - Ralf-Peter Herber
- CAM Bioceramics B.V., Zernikedreef 6 2333 CL, Leiden, The Netherlands
| | - Jeroen J. J. P. van den Beuken
- Department of Regenerative Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25 6525 EX, Nijmegen, The Netherlands
| | - Yi Zuo
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University 610064 Chengdu, China
| | - Sander C. G. Leeuwenburgh
- Department of Regenerative Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25 6525 EX, Nijmegen, The Netherlands
| |
Collapse
|
12
|
Horbert V, Lange M, Reuter T, Hoffmann M, Bischoff S, Borowski J, Schubert H, Driesch D, Mika J, Hurschler C, Kinne RW. Comparison of Near-Infrared Spectroscopy with Needle Indentation and Histology for the Determination of Cartilage Thickness in the Large Animal Model Sheep. Cartilage 2019; 10:173-185. [PMID: 28980486 PMCID: PMC6425542 DOI: 10.1177/1947603517731851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The suitability of near-infrared spectroscopy (NIRS) for non-destructive measurement of cartilage thickness was compared with the gold standard needle indentation. A combination of NIRS and biomechanical indentation (NIRS-B) was used to address the influence of varying loads routinely applied for hand-guided NIRS during real-life surgery on the accuracy of NIRS-based thickness prediction. NIRS-B was performed under three different loading conditions in 40 osteochondral cylinders from the load-bearing area of the medial and lateral femur condyle of 20 cadaver joints (left stifle joints; female Merino sheep; 6.1 ± 0.6 years, mean ± standard error of the mean). The cartilage thickness measured by needle indentation within the region analyzed by NIRS-B was then compared with cartilage thickness prediction based on NIRS spectral data using partial least squares regression. NIRS-B repeat measurements yielded highly reproducible values concerning force and absorbance. Separate or combined models for the three loading conditions (the latter simulating load-independent measurements) resulted in models with optimized quality parameters (e.g., coefficients of determination R2 between 92.3 and 94.7) and a prediction accuracy of < 0.1 mm. NIRS appears well suited to determine cartilage thickness (possibly in a hand-guided, load-independent fashion), as shown by high reproducibility in repeat measurements and excellent reliability compared with tissue-destructive needle indentation. This may provide the basis for non-destructive, intra-operative assessment of cartilage status quo and fine-tuning of repair procedures.
Collapse
Affiliation(s)
- Victoria Horbert
- Experimental Rheumatology Unit,
Department of Orthopedics, Jena University Hospital, Waldkrankenhaus “Rudolf Elle”,
Eisenberg, Germany
| | - Matthias Lange
- fzmb GmbH, Research Centre for Medical
Technology and Biotechnology, Bad Langensalza, Germany
| | - Thomas Reuter
- fzmb GmbH, Research Centre for Medical
Technology and Biotechnology, Bad Langensalza, Germany
| | - Martin Hoffmann
- Department of Electrical Engineering and
Information Technology, University of Applied Sciences, Jena, Germany
| | - Sabine Bischoff
- Institute of Laboratory Animal Sciences
and Welfare, Jena University Hospital, Jena, Germany
| | - Juliane Borowski
- Experimental Rheumatology Unit,
Department of Orthopedics, Jena University Hospital, Waldkrankenhaus “Rudolf Elle”,
Eisenberg, Germany
| | - Harald Schubert
- Institute of Laboratory Animal Sciences
and Welfare, Jena University Hospital, Jena, Germany
| | | | - Joerg Mika
- Department of Trauma Surgery, University
Hospital Giessen and Marburg, Giessen, Germany,Laboratory of Experimental Trauma
Surgery, Justus-Liebig University, Giessen, Germany
| | - Christof Hurschler
- Laboratory for Biomechanics and
Biomaterials, Orthopaedic Surgery Department, Hannover Medical School, Hannover,
Germany
| | - Raimund W. Kinne
- Experimental Rheumatology Unit,
Department of Orthopedics, Jena University Hospital, Waldkrankenhaus “Rudolf Elle”,
Eisenberg, Germany,Raimund W. Kinne, MD, Experimental
Rheumatology Unit, Department of Orthopedics, Jena University Hospital,
Waldkrankenhaus “Rudolf Elle”, Klosterlausnitzer Straße 81, 07607 Eisenberg,
Germany.
| |
Collapse
|
13
|
Petre DG, Kucko NW, Abbadessa A, Vermonden T, Polini A, Leeuwenburgh SC. Surface functionalization of polylactic acid fibers with alendronate groups does not improve the mechanical properties of fiber-reinforced calcium phosphate cements. J Mech Behav Biomed Mater 2019; 90:472-483. [DOI: 10.1016/j.jmbbm.2018.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 10/27/2022]
|
14
|
Hu M, He Z, Han F, Shi C, Zhou P, Ling F, Zhu X, Yang H, Li B. Reinforcement of calcium phosphate cement using alkaline-treated silk fibroin. Int J Nanomedicine 2018; 13:7183-7193. [PMID: 30519015 PMCID: PMC6233488 DOI: 10.2147/ijn.s172881] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Bone cement plays an important role in the treatment of osteoporotic vertebral compression fractures. Calcium phosphate cement (CPC) is a potential alternative to poly(methyl methacrylate), currently the gold standard of bone cements. However, the poor mechanical properties of CPCs limit their clinical applications. The objective of this study was to develop reinforced CPCs for minimally invasive orthopedic surgeries by compositing silk fibroin (SF) with α-tricalcium phosphate. METHODS SF solution was treated with calcium hydroxide and characterized by Zeta potential analyzer and Fourier transform infrared spectroscopy. The alkaline-treated SF (tSF) was com-posited with α-tricalcium phosphate to obtain tSF/CPC composite, which was characterized using mechanical tests, scanning electron microscopy, handling property and biocompatibility tests, and sheep vertebral augmentation tests. RESULTS Upon treatment with calcium hydroxide, larger SF particles and more abundant negative charge appeared in tSF solution. The tSF/CPCs exhibited a compact structure, which consisted of numerous SF -CPC clusters and needle-like hydroxyapatite (HAp) crystals. In addition, high transition rate of HAp in tSF/CPCs was achieved. As a result, the mechanical property of tSF/ CPC composite cements was enhanced remarkably, with the compressive strength reaching as high as 56.3±1.1 MPa. Moreover, the tSF/CPC cements showed good injectability, anti-washout property, and decent biocompatibility. The tSF/CPCs could be used to augment defected sheep vertebrae to restore their mechanical strength. CONCLUSION tSF/CPC may be a promising composite bone cement for minimally invasive orthopedic surgeries.
Collapse
Affiliation(s)
- Muli Hu
- Department of Polymer Science, College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou, China
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China,
| | - Zhiwei He
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China,
- Department of Orthopaedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Fengxuan Han
- Department of Polymer Science, College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou, China
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China,
| | - Chen Shi
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Pinghui Zhou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China,
| | - Feng Ling
- Department of Polymer Science, College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou, China
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China,
| | - Xuesong Zhu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China,
| | - Huilin Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China,
| | - Bin Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China,
- China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, China,
| |
Collapse
|
15
|
The Mechanical Properties of Biocompatible Apatite Bone Cement Reinforced with Chemically Activated Carbon Fibers. MATERIALS 2018; 11:ma11020192. [PMID: 29373487 PMCID: PMC5848889 DOI: 10.3390/ma11020192] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 12/11/2022]
Abstract
Calcium phosphate cement (CPC) is a well-established bone replacement material in dentistry and orthopedics. CPC mimics the physicochemical properties of natural bone and therefore shows excellent in vivo behavior. However, due to their brittleness, the application of CPC implants is limited to non-load bearing areas. Generally, the fiber-reinforcement of ceramic materials enhances fracture resistance, but simultaneously reduces the strength of the composite. Combining strong C-fiber reinforcement with a hydroxyapatite to form a CPC with a chemical modification of the fiber surface allowed us to adjust the fiber-matrix interface and consequently the fracture behavior. Thus, we could demonstrate enhanced mechanical properties of CPC in terms of bending strength and work of fracture to a strain of 5% (WOF5). Hereby, the strength increased by a factor of four from 9.2 ± 1.7 to 38.4 ± 1.7 MPa. Simultaneously, the WOF5 increased from 0.02 ± 0.004 to 2.0 ± 0.6 kJ∙m-2, when utilizing an aqua regia/CaCl₂ pretreatment. The cell proliferation and activity of MG63 osteoblast-like cells as biocompatibility markers were not affected by fiber addition nor by fiber treatment. CPC reinforced with chemically activated C-fibers is a promising bone replacement material for load-bearing applications.
Collapse
|
16
|
Self-Setting Calcium Orthophosphate (CaPO4) Formulations. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/978-981-10-5975-9_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Gunnella F, Kunisch E, Bungartz M, Maenz S, Horbert V, Xin L, Mika J, Borowski J, Bischoff S, Schubert H, Hortschansky P, Sachse A, Illerhaus B, Günster J, Bossert J, Jandt KD, Plöger F, Kinne RW, Brinkmann O. Low-dose BMP-2 is sufficient to enhance the bone formation induced by an injectable, PLGA fiber-reinforced, brushite-forming cement in a sheep defect model of lumbar osteopenia. Spine J 2017; 17:1699-1711. [PMID: 28619686 DOI: 10.1016/j.spinee.2017.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/23/2017] [Accepted: 06/08/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Bioresorbable calcium phosphate cement (CPC) may be suitable for vertebroplasty/kyphoplasty of osteoporotic vertebral fractures. However, additional targeted delivery of osteoinductive bone morphogenetic proteins (BMPs) in the CPC may be required to counteract the augmented local bone catabolism and support complete bone regeneration. PURPOSE This study aimed at testing an injectable, poly (l-lactide-co-glycolide) acid (PLGA) fiber-reinforced, brushite-forming cement (CPC) containing low-dose bone morphogenetic protein BMP-2 in a sheep lumbar osteopenia model. STUDY DESIGN/ SETTING This is a prospective experimental animal study. METHODS Bone defects (diameter 5 mm) were generated in aged, osteopenic female sheep and filled with fiber-reinforced CPC alone (L4; CPC+fibers) or with CPC containing different dosages of BMP-2 (L5; CPC+fibers+BMP-2; 1, 5, 100, and 500 µg BMP-2; n=5 or 6 each). The results were compared with those of untouched controls (L1). Three and 9 months after the operation, structural and functional effects of the CPC (±BMP-2) were analyzed ex vivo by measuring (1) bone mineral density (BMD); (2) bone structure, that is, bone volume/total volume (assessed by micro-computed tomography [micro-CT] and histomorphometry), trabecular thickness, and trabecular number; (3) bone formation, that is, osteoid volume/bone volume, osteoid surface/bone surface, osteoid thickness, mineralizing surface/bone surface, mineral apposition rate, and bone formation rate/bone surface; (4) bone resorption, that is, eroded surface/bone surface; and (5) compressive strength. RESULTS Compared with untouched controls (L1), CPC+fibers (L4) and/or CPC+fibers+BMP-2 (L5) significantly improved all parameters of bone formation, bone resorption, and bone structure. These effects were observed at 3 and 9 months, but were less pronounced for some parameters at 9 months. Compared with CPC without BMP-2, additional significant effects of BMP-2 were demonstrated for bone structure (bone volume/total volume, trabecular thickness, trabecular number) and formation (osteoid surface/bone surface and mineralizing surface/bone surface), as well as for the compressive strength. The BMP-2 effects on bone formation at 3 and 9 months were dose-dependent, with 5-100 µg as the optimal dosage. CONCLUSIONS BMP-2 significantly enhanced the bone formation induced by a PLGA fiber-reinforced CPC in sheep lumbar osteopenia. A single local dose as low as ≤100 µg BMP-2 was sufficient to augment middle to long-term bone formation. The novel CPC+BMP-2 may thus represent an alternative to the bioinert, supraphysiologically stiff polymethylmethacrylate cement presently used to treat osteoporotic vertebral fractures by vertebroplasty/kyphoplasty.
Collapse
Affiliation(s)
- Francesca Gunnella
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany
| | - Elke Kunisch
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany
| | - Matthias Bungartz
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany; Chair of Orthopedics, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany
| | - Stefan Maenz
- Chair of Materials Science, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
| | - Victoria Horbert
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany
| | - Long Xin
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany
| | - Joerg Mika
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany
| | - Juliane Borowski
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany
| | - Sabine Bischoff
- Institute of Laboratory Animal Sciences and Welfare, Jena University Hospital, Dornburger Straße 23, 07743 Jena, Germany
| | - Harald Schubert
- Institute of Laboratory Animal Sciences and Welfare, Jena University Hospital, Dornburger Straße 23, 07743 Jena, Germany
| | - Peter Hortschansky
- Leibniz-Institute for Natural Products Research and Infection Biology - Hans-Knoell-Institute, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Andre Sachse
- Chair of Orthopedics, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany
| | - Bernhard Illerhaus
- Institute of Laboratory Animal Sciences and Welfare, Jena University Hospital, Dornburger Straße 23, 07743 Jena, Germany
| | - Jens Günster
- BAM Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 44-46, 12203 Berlin; Germany
| | - Jörg Bossert
- Chair of Materials Science, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Klaus D Jandt
- Chair of Materials Science, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany; Jena School for Microbial Communication (JSMC), Friedrich Schiller University Jena, Neugasse 23, 07743 Jena, Germany
| | - Frank Plöger
- BIOPHARM GmbH, Handelsstrasse 15, 69214 Eppelheim, Germany
| | - Raimund W Kinne
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany.
| | - Olaf Brinkmann
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany; Chair of Orthopedics, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany
| |
Collapse
|
18
|
Enhanced bone formation in sheep vertebral bodies after minimally invasive treatment with a novel, PLGA fiber-reinforced brushite cement. Spine J 2017; 17:709-719. [PMID: 27871820 DOI: 10.1016/j.spinee.2016.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/21/2016] [Accepted: 11/09/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Injectable, brushite-forming calcium phosphate cements (CPC) show potential for bone replacement, but they exhibit low mechanical strength. This study tested a CPC reinforced with poly(l-lactide-co-glycolide) acid (PLGA) fibers in a minimally invasive, sheep lumbar vertebroplasty model. PURPOSE The study aimed to test the in vivo biocompatibility and osteogenic potential of a PLGA fiber-reinforced, brushite-forming CPC in a sheep large animal model. STUDY DESIGN/SETTING This is a prospective experimental animal study. METHODS Bone defects (diameter: 5 mm) were placed in aged, osteopenic female sheep, and left empty (L2) or injected with pure CPC (L3) or PLGA fiber-reinforced CPC (L4; fiber diameter: 25 µm; length: 1 mm; 10% [wt/wt]). Three and 9 months postoperation (n=20 each), the structural and functional CPC effects on bone regeneration were documented ex vivo by osteodensitometry, histomorphometry, micro-computed tomography (micro-CT), and biomechanical testing. RESULTS Addition of PLGA fibers enhanced CPC osteoconductivity and augmented bone formation. This was demonstrated by (1) significantly enhanced structural (bone volume/total volume, shown by micro-CT and histomorphometry; 3 or 9 months) and bone formation parameters (osteoid volume and osteoid surface; 9 months); (2) numerically enhanced bone mineral density (3 and 9 months) and biomechanical compression strength (9 months); and (3) numerically decreased bone erosion (eroded surface; 3 and 9 months). CONCLUSIONS The PLGA fiber-reinforced CPC is highly biocompatible and its PLGA fiber component enhanced bone formation. Also, PLGA fibers improve the mechanical properties of brittle CPC, with potential applicability in load-bearing areas.
Collapse
|
19
|
Castro AGB, Polini A, Azami Z, Leeuwenburgh SCG, Jansen JA, Yang F, van den Beucken JJJP. Incorporation of PLLA micro-fillers for mechanical reinforcement of calcium-phosphate cement. J Mech Behav Biomed Mater 2017; 71:286-294. [PMID: 28376362 DOI: 10.1016/j.jmbbm.2017.03.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/18/2017] [Accepted: 03/26/2017] [Indexed: 01/09/2023]
Abstract
Calcium phosphate cements (CPCs) are biocompatible, resorbable, injectable and osteoconductive. Those properties render such materials suitable for applications where bone repair and regeneration is required However, their brittle nature limits their application only to non-load-bearing applications. The incorporation of long polymeric fibers can improve the mechanical properties of CPCs, but aggregation is a major problem. Instead, short polymeric fillers can be easily dispersed in the cement matrix, but their reinforcing effect has not been studied yet. In this study, continuous poly-L-lactic acid fibers (PLLA) with a smooth or porous surface morphology were prepared by electrospinning. PLLA micro-fillers were developed, by means of an aminolysis process, and added to α-TCP or α-TCP/PLGA-based cements. Micro-filler distribution as well as the morphology, cohesiveness, setting times and mechanical properties were evaluated. PLLA micro-fillers were homogeneously dispersed throughout the cement while the handling properties were not significantly affected. A decrease in the initial setting times was observed when PLLA was added, while the mechanical properties were comparable to those of the α-TPC or α-TCP/PLGA compositions.
Collapse
Affiliation(s)
- Antonio G B Castro
- Department of Biomaterials, Radboudumc, Philips van Leydenlaan 25, Nijmegen 6525 EX, The Netherlands
| | - Alessandro Polini
- Department of Biomaterials, Radboudumc, Philips van Leydenlaan 25, Nijmegen 6525 EX, The Netherlands
| | - Zohal Azami
- Department of Biomaterials, Radboudumc, Philips van Leydenlaan 25, Nijmegen 6525 EX, The Netherlands
| | - Sander C G Leeuwenburgh
- Department of Biomaterials, Radboudumc, Philips van Leydenlaan 25, Nijmegen 6525 EX, The Netherlands
| | - John A Jansen
- Department of Biomaterials, Radboudumc, Philips van Leydenlaan 25, Nijmegen 6525 EX, The Netherlands
| | - Fang Yang
- Department of Biomaterials, Radboudumc, Philips van Leydenlaan 25, Nijmegen 6525 EX, The Netherlands
| | | |
Collapse
|