1
|
Spadoni S, Todros S, Pavan PG. Numerical modeling of the abdominal wall biomechanics and experimental analysis for model validation. Front Bioeng Biotechnol 2024; 12:1472509. [PMID: 39398644 PMCID: PMC11466767 DOI: 10.3389/fbioe.2024.1472509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024] Open
Abstract
The evaluation of the biomechanics of the abdominal wall is particularly important to understand the onset of pathological conditions related to weakening and injury of the abdominal muscles. A better understanding of the biomechanics of the abdominal wall could be a breakthrough in the development of new therapeutic approaches. For this purpose, several studies in the literature propose finite element models of the human abdomen, based on the geometry of the abdominal wall from medical images and on constitutive formulations describing the mechanical behavior of fascial and muscular tissues. The biomechanics of the abdominal wall depends on the passive mechanical properties of fascial and muscle tissue, on the activation of abdominal muscles, and on the variable intra-abdominal pressure. To assess the quantitative contribution of these features to the development and validation of reliable numerical models, experimental data are fundamental. This work presents a review of the state of the art of numerical models developed to investigate abdominal wall biomechanics. Different experimental techniques, which can provide data for model validation, are also presented. These include electromyography, ultrasound imaging, intraabdominal pressure measurements, abdominal surface deformation, and stiffness/compliance measurements.
Collapse
Affiliation(s)
- Silvia Spadoni
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Silvia Todros
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Piero G. Pavan
- Department of Industrial Engineering, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| |
Collapse
|
2
|
Berardo A, Bonaldi L, Stecco C, Fontanella CG. Biomechanical properties of the human superficial fascia: Site-specific variability and anisotropy of abdominal and thoracic regions. J Mech Behav Biomed Mater 2024; 157:106637. [PMID: 38914036 DOI: 10.1016/j.jmbbm.2024.106637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/30/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024]
Abstract
Superficial fascia is a fibrofatty tissue found throughout the body. Initially described in relation to hernias, it has only recently received attention from the scientific community due to new evidence on its role in force transmission and structural integrity of the body. Considering initial difficulties in its anatomical identification, to date, a characterization of the superficial fascia through mechanical tests is still lacking. The mechanical properties of human superficial fasciae of abdominal and thoracic districts (back) of different subjects (n = 4) were then investigated, focusing on anisotropy and viscoelasticity. Experimental tests were performed on samples taken in two perpendicular directions according to body planes (cranio-caudal and latero-medial axes). Data collected from two different uniaxial tensile protocols, failure (i.e., ultimate tensile strength and strain at break, Young's modulus and toughness) and stress-relaxation (i.e., residual stress), were processed and then grouped for statistical analysis. Failure tests confirmed tissue anisotropy, revealing the stiffer nature of the latero-medial direction compared to the cranio-caudal one, for both the districts (with a ratio of the respective Young's moduli close to 2). Furthermore, the thoracic region exhibited significantly greater strength and resultant Young's modulus compared to the abdomen (with greater results along the latero-medial direction, such as 6.13 ± 3.11 MPa versus 0.85 ± 0.39 MPa and 24.87 ± 15.23 MPa versus 3.19 ± 1.62 MPa, respectively). On the contrary, both regions displayed similar strain at break (varying between 38 and 47%), with no clear dependence from the loading directions. Stress-relaxation tests highlighted the viscous behavior of the superficial fascia, with no significant differences in the stress decay between directions and districts (35-38% of residual stress after 300 s). All these collected results represent the starting point for a more in-depth knowledge of the mechanical characterization of the superficial fascia, which can have direct implications in the design, implementation, and effectiveness of site-specific treatments.
Collapse
Affiliation(s)
- Alice Berardo
- Department of Civil, Environmental and Architectural Engineering, University of Padova, 35131, Padova, Italy; Centre for Mechanics of Biological Materials, University of Padova, 35131, Padova, Italy
| | - Lorenza Bonaldi
- Department of Civil, Environmental and Architectural Engineering, University of Padova, 35131, Padova, Italy; Centre for Mechanics of Biological Materials, University of Padova, 35131, Padova, Italy.
| | - Carla Stecco
- Centre for Mechanics of Biological Materials, University of Padova, 35131, Padova, Italy; Department of Neuroscience, Institute of Human Anatomy, University of Padova, 35121, Padova, Italy
| | - Chiara Giulia Fontanella
- Centre for Mechanics of Biological Materials, University of Padova, 35131, Padova, Italy; Department of Industrial Engineering, University of Padova, 35131, Padova, Italy
| |
Collapse
|
3
|
Gueroult P, Joppin V, Chaumoitre K, Di Bisceglie M, Masson C, Bege T. Linea alba 3D morphometric variability by CT scan exploration. Hernia 2024; 28:485-494. [PMID: 38177404 DOI: 10.1007/s10029-023-02939-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/26/2023] [Indexed: 01/06/2024]
Abstract
PURPOSE The width of the Linea alba, which is often gauged by inter-rectus distance, is a key risk factor for incisional hernia and recurrence. Previous studies provided limited descriptions with no consideration for width, location variability, or curvature. We aimed to offer a comprehensive 3D anatomical analysis of the Linea alba, emphasizing its variations across diverse demographics. METHODS Using open source software, 2D sagittal plane and 3D reconstructions were performed on 117 patients' CT scans. Linea alba length, curvature assessed by the sagitta (the longest perpendicular segment between xipho-pubic line and the Linea alba), and continuous width along the height were measured. RESULTS The Linea alba had a rhombus shape, with a maximum width at the umbilicus of 4.4 ± 1.9 cm and a larger width above the umbilicus than below. Its length was 37.5 ± 3.6 cm, which increased with body mass index (BMI) (p < 0.001), and was shorter in women (p < 0.001). The sagitta was 2.6 ± 2.2 cm, three times higher in the obese group (p < 0.001), majorated with age (p = 0.009), but was independent of gender (p = 0.212). Linea alba width increased with both age and BMI (p < 0.001-p = 0.002), being notably wider in women halfway between the umbilicus and pubis (p = 0.007). CONCLUSION This study provides an exhaustive 3D description of Linea alba's anatomical variability, presenting new considerations for curvature. This method provides a patient-specific anatomy description of the Linea alba. Further studies are needed to determine whether 3D reconstruction correlates with pathologies, such as hernias and diastasis recti.
Collapse
Affiliation(s)
- P Gueroult
- Laboratoire de Biomécanique Appliquée, Aix Marseille Univ, IFSTTAR UMR T24, Marseille, France.
- Service de chirurgie viscérale et endocrinienne, Angers University Hospital, Rue Larrey, 49933, CEDEX 9, Angers, France.
| | - V Joppin
- Laboratoire de Biomécanique Appliquée, Aix Marseille Univ, IFSTTAR UMR T24, Marseille, France
| | - K Chaumoitre
- Department of Medical Imaging, Aix Marseille Univ, North Hospital, APHM, Marseille, France
- Anthropologie Biologique UMR 7268ADES, Aix Marseille Univ, Marseille, France
| | - M Di Bisceglie
- Department of Medical Imaging, Aix Marseille Univ, North Hospital, APHM, Marseille, France
| | - C Masson
- Laboratoire de Biomécanique Appliquée, Aix Marseille Univ, IFSTTAR UMR T24, Marseille, France
| | - T Bege
- Laboratoire de Biomécanique Appliquée, Aix Marseille Univ, IFSTTAR UMR T24, Marseille, France
- Department of General Surgery, Aix Marseille Univ, North Hospital, APHM, Marseille, France
| |
Collapse
|
4
|
Tuset L, López-Cano M, Fortuny G, López JM, Herrero J, Puigjaner D. A virtual simulation approach to assess the effect of trocar-site placement and scar characteristics on the abdominal wall biomechanics. Sci Rep 2024; 14:3583. [PMID: 38351278 PMCID: PMC10864383 DOI: 10.1038/s41598-024-54119-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 02/08/2024] [Indexed: 02/16/2024] Open
Abstract
Analyses of registries and medical imaging suggest that laparoscopic surgery may be penalized with a high incidence of trocar-site hernias (TSH). In addition to trocar diameter, the location of the surgical wound (SW) may affect TSH incidence. The intra-abdominal pressure (IAP) exerted on the abdominal wall (AW) might also influence the appearance of TSH. In the present study, we used finite element (FE) simulations to predict the influence of trocar location and SW characteristics (stiffness) on the mechanical behavior of the AW subject to an IAP. Two models of laparoscopy patterns on the AW, with trocars in the 5-12 mm range, were generated. FE simulations for IAP values within the 4 kPa-20 kPa range were carried out using the Code Aster open-source software. Different stiffness levels of the SW tissue were considered. We found that midline-located surgical wounds barely deformed, even though they moved outwards along with the regular LA tissue. Laterally located SWs hardly changed their location but they experienced significant variations in their volume and shape. The amount of deformation of lateral SWs was found to strongly depend on their stiffness. Trocar incisions placed in a LA with non-diastatic dimensions do not compromise its mechanical integrity. The more lateral the trocars are placed, the greater is their deformation, regardless of their size. Thus, to prevent TSH it might be advisable to close lateral trocars with a suture, or even use a prosthetic reinforcement depending on the patient's risk factors (e.g., obesity).
Collapse
Affiliation(s)
- Lluís Tuset
- Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Av. Països Catalans 26, Tarragona, Catalunya, Spain
| | - Manuel López-Cano
- Abdominal Wall Surgery Unit, Department of General Surgery, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gerard Fortuny
- Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Av. Països Catalans 26, Tarragona, Catalunya, Spain
| | - Josep M López
- Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Av. Països Catalans 26, Tarragona, Catalunya, Spain
| | - Joan Herrero
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, Tarragona, Catalunya, Spain
| | - Dolors Puigjaner
- Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Av. Països Catalans 26, Tarragona, Catalunya, Spain.
| |
Collapse
|
5
|
Jourdan A, Dhume R, Guérin E, Siegel A, Le Ruyet A, Palmer M. Numerical investigation of a finite element abdominal wall model during breathing and muscular contraction. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 244:107985. [PMID: 38185041 DOI: 10.1016/j.cmpb.2023.107985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND AND OBJECTIVE Ventral hernia repair is faced with high recurrence rates. The personalization of the diagnosis, the surgical approach and the choice of the prosthetic implant seem relevant axes to improve the current results. Numerical models have the potential to allow this patient-specific approach, yet currently existing models lack validation. This work extensively investigated a realistic finite element abdominal wall model including the implementation of muscle activation. METHODS A parametric 3D finite element model composed of bone, muscle and aponeurotic structures was introduced. Hyperelastic anisotropic materials were implemented. Two loading scenarios were simulated: passive inflation of the abdominal cavity to represent, e.g., breathing, and passive inflation followed by muscular activation to simulate other daily activities such as cough. The impact of the inter-individual variability (e.g., BMI, tissue thickness, material properties, intra-abdominal pressure (IAP) and muscle contractility) on the model outputs was studied through a sensitivity analysis. RESULTS The overall model predictions were in good agreement with the experimental data in terms of shape variation, muscles displacements, strains and midline forces. A total of 34 and 41 runs were computed for the passive and active sensitivity analysis respectively. The regression model fits rendered high R-squared in both passive (84.0 ± 6.7 %) and active conditions (82.0 ± 8.3 %). IAP and muscle thickness were the most influential factors for the selected outputs during passive (breathing) activities. Maximum isometric stress, muscle thickness and pre-activation IAP were found to drive the response of the simulations involving muscular contraction. The material properties of the connective tissue were essential contributors to the behaviour of the medial part of the abdominal wall. CONCLUSIONS This work extensively investigated a realistic abdominal wall model and evaluated its robustness using experimental data from literature. Such a model could improve patient-specific simulation for ventral hernia surgical planning, prevention, and repair or implant evaluation. Further investigations will be conducted to evaluate the impact of the surgical technique and the mechanical characteristic of prosthetic meshes on the model outputs.
Collapse
Affiliation(s)
- Arthur Jourdan
- Medtronic, Surgical Operating Unit, General Surgical Technologies, 116 Avenue du Formans, BioTex 01600, Trévoux, France.
| | - Rohit Dhume
- Medtronic, Corporate Core Technologies, MN, USA
| | - Elisabeth Guérin
- Medtronic, Surgical Operating Unit, General Surgical Technologies, 116 Avenue du Formans, BioTex 01600, Trévoux, France
| | - Alice Siegel
- Medtronic, Surgical Operating Unit, General Surgical Technologies, 116 Avenue du Formans, BioTex 01600, Trévoux, France
| | - Anicet Le Ruyet
- Medtronic, Surgical Operating Unit, General Surgical Technologies, 116 Avenue du Formans, BioTex 01600, Trévoux, France
| | - Mark Palmer
- Medtronic, Corporate Core Technologies, MN, USA
| |
Collapse
|
6
|
Vergari C, Persohn S, Rohan PY. The effect of breathing on the in vivo mechanical characterization of linea alba by ultrasound shearwave elastography. Comput Biol Med 2023; 167:107637. [PMID: 37897961 DOI: 10.1016/j.compbiomed.2023.107637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/09/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023]
Abstract
The most common surgical repair of abdominal wall hernia consists in implanting a mesh to reinforce hernia defects during the healing phase. Ultrasound shearwave elastography (SWE) is a promising non-invasive method to estimate soft tissue mechanical properties at bedside through shear wave speed (SWS) measurement. Combined with conventional ultrasonography, it could help the clinician plan surgery. In this work, a novel protocol is proposed to reliably assess the stiffness of the linea alba, and to evaluate the effect of breathing and of inflating the abdomen on SWS. Fifteen healthy adults were included. SWS was measured in the linea alba, in the longitudinal and transverse direction, during several breathing cycle and during active abdominal inflation. SWS during normal breathing was 2.3 [2.0; 2.5] m/s in longitudinal direction and 2.2 [1.9; 2.7] m/s in the transversal. Inflating the abdomen increased SWS both in longitudinal and transversal direction (3.5 [2.8; 5.8] m/s and 5.2 [3.0; 6.0] m/s, respectively). The novel protocol significantly improved the reproducibility relative to the literature (8% in the longitudinal direction and 14% in the transverse one). Breathing had a mild effect on SWS, and accounting for it only marginally improved the reproducibility. This study proved the feasibility of the method, and its potential clinical interest. Further studies on larger cohort should focus on improving our understanding of the relationship between abdominal wall properties and clinical outcomes, but also provide a cartography of the abdominal wall, beyond the linea alba.
Collapse
Affiliation(s)
- Claudio Vergari
- Arts et Métiers Institute of Technology, Institut de Biomécanique Humaine Georges Charpak, Université Sorbonne Paris Nord, Paris, France.
| | - Sylvain Persohn
- Arts et Métiers Institute of Technology, Institut de Biomécanique Humaine Georges Charpak, Université Sorbonne Paris Nord, Paris, France
| | - Pierre-Yves Rohan
- Arts et Métiers Institute of Technology, Institut de Biomécanique Humaine Georges Charpak, Université Sorbonne Paris Nord, Paris, France
| |
Collapse
|
7
|
Kriener K, Lala R, Homes RAP, Finley H, Sinclair K, Williams MK, Midwinter MJ. Mechanical Characterization of the Human Abdominal Wall Using Uniaxial Tensile Testing. Bioengineering (Basel) 2023; 10:1213. [PMID: 37892943 PMCID: PMC10604332 DOI: 10.3390/bioengineering10101213] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
It is generally accepted that the human abdominal wall comprises skin, subcutaneous tissues, muscles and their aponeuroses, and the parietal peritoneum. Understanding these layers and their mechanical properties provides valuable information to those designing procedural skills trainers, supporting surgical procedures (hernia repair), and engineering-based work (in silico simulation). However, there is little literature available on the mechanical properties of the abdominal wall in layers or as a composite in the context of designing a procedural skills trainer. This work characterizes the tensile properties of the human abdominal wall by layer and as a partial composite. Tissues were collected from fresh-never-frozen and fresh-frozen cadavers and tested in uniaxial tension at a rate of 5 mm/min until failure. Stress-strain curves were created for each sample, and the values for elastic moduli, ultimate tensile strength, and strain at failure were obtained. The experimental outcomes from this study demonstrated variations in tensile properties within and between tissues. The data also suggest that the tensile properties of composite abdominal walls are not additive. Ultimately, this body of work contributes to a deeper comprehension of these mechanical properties and will serve to enhance patient care, refine surgical interventions, and assist with more sophisticated engineering solutions.
Collapse
Affiliation(s)
- Kyleigh Kriener
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia; (R.L.); (R.A.P.H.); (M.J.M.)
| | | | | | | | | | | | | |
Collapse
|
8
|
Takada J, Hamada K, Zhu X, Tsuboko Y, Iwasaki K. Biaxial tensile testing system for measuring mechanical properties of both sides of biological tissues. J Mech Behav Biomed Mater 2023; 146:106028. [PMID: 37531771 DOI: 10.1016/j.jmbbm.2023.106028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
The aortic wall exhibits a unique elastic behavior, periodically expanding in aortic diameter by approximately 10% during heartbeats. This elastic behavior of the aortic wall relies on the distinct yet interacting mechanical properties of its three layers: intima, media, and adventitia. Aortic aneurysms develop as a result of multifactorial remodeling influenced by mechanical vulnerability of the aortic wall. Therefore, investigating the mechanical response of the aneurysmal wall, in conjunction with changes in microstructural parameters on both the intimal and adventitial sides, may offer valuable insights into the mechanisms of aortic aneurysm development or rupture. This study aimed to develop a biaxial tensile testing system to measure the mechanical properties of both sides of the tissue to gain insights concerning the interactions in anisotropic layered tissue. The biaxial tensile test set-up consisted of four motors, four cameras, four load cells, and a toggle switch. Porcine ascending aortas were chosen as the test subject. Graphite particles with diameters of approximately 5-11 [μm] were randomly applied to both sides of the aorta. Strain measurements were obtained using the stereo digital-image correlation method. Because stretching a rectangular specimen with a thread inevitably concentrates and localizes stress, to reduce this effect the specimen's shape was investigated using finite element analysis. The finite element analysis showed that a cross-shaped specimen with diagonally cut edges would be suitable. Therefore, we prepared specimens with this novel shape. This test system showed that mechanical response of the aortic tissue was significantly different between the intimal and adventitial side in the high-strain range, due to the disruption of collagen fibers. The adventitia side exhibited a smaller elastic modulus than the intimal side, accompanied by disruption of collagen fibers in the adventitia, which were more pronounced in the longitudinal direction. In contrast, in the mid-strain range, the elastic modulus did not differ between the intimal and adventitial sides, irrespective of longitudinal or circumferential direction, and collagen fibers were not disrupted but elongated. A biaxial tensile test system, which measures the mechanical properties of both sides of biological tissues and the shape of the specimen for reducing the concentration of stress at the chuck region, was developed in this study. The biaxial tensile testing system developed here is useful for better understanding the influences of mechanical loads and tissue degeneration on anisotropic, layered biological tissues.
Collapse
Affiliation(s)
- Jumpei Takada
- Department of Modern Mechanical Engineering, School of Creative Science and Engineering, Waseda University, Tokyo, Japan; Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Kohei Hamada
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Xiaodong Zhu
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| | - Yusuke Tsuboko
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| | - Kiyotaka Iwasaki
- Department of Modern Mechanical Engineering, School of Creative Science and Engineering, Waseda University, Tokyo, Japan; Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan; Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan; Cooperative Major in Advanced Biomedical Sciences, Joint Graduate School of Tokyo Women's Medical University and Waseda University, Waseda University, Tokyo, Japan.
| |
Collapse
|
9
|
Whitehead-Clarke T, Brown C, Ail G, Mudera V, Smith C, Kureshi A. Characterisation of human posterior rectus sheath reveals mechanical and structural anisotropy. Clin Biomech (Bristol, Avon) 2023; 106:105989. [PMID: 37244136 DOI: 10.1016/j.clinbiomech.2023.105989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND Our work aims to investigate the mechanical properties of the human posterior rectus sheath in terms of its ultimate tensile stress, stiffness, thickness and anisotropy. It also aims to assess the collagen fibre organisation of the posterior rectus sheath using Second-Harmonic Generation microscopy. METHODS For mechanical analysis, twenty-five fresh-frozen samples of posterior rectus sheath were taken from six different cadaveric donors. They underwent uniaxial tensile stress testing until rupture either in the transverse (n = 15) or longitudinal (n = 10) plane. The thickness of each sample was also recorded using digital callipers. On a separate occasion, ten posterior rectus sheath samples and three anterior rectus sheath samples underwent microscopy and photography to assess collagen fibre organisation. FINDINGS samples had a mean ultimate tensile stress of 7.7 MPa (SD 4.9) in the transverse plane and 1.2 MPa (SD 0.8) in the longitudinal plane (P < 0.01). The same samples had a mean Youngs modulus of 11.1 MPa (SD 5.0) in the transverse plane and 1.7 MPa (SD 1.3) in the longitudinal plane (P < 0.01). The mean thickness of the posterior rectus sheath was 0.51 mm (SD 0.13). Transversely aligned collagen fibres could be identified within the posterior sheath tissue using Second-Harmonic Generation microscopy. INTERPRETATION The posterior rectus sheath displays mechanical and structural anisotropy with greater tensile stress and stiffness in the transverse plane compared to the longitudinal plane. The mean thickness of this layer is around 0.51 mm - consistent with other studies. The tissue is constructed of transversely aligned collagen fibres that are visible using Second-Harmonic Generation microscopy.
Collapse
Affiliation(s)
- Thomas Whitehead-Clarke
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, UK.
| | | | - Geetika Ail
- Department of Anatomy, Brighton and Sussex Medical School, UK
| | - Vivek Mudera
- Division of Surgery and Interventional Science, University College London, UK
| | - Claire Smith
- Department of Anatomy, Brighton and Sussex Medical School, UK
| | - Alvena Kureshi
- Division of Surgery and Interventional Science, University College London, UK
| |
Collapse
|
10
|
He W, Shen F, Xu Z, Pei B, Xie H, Li X. The effect of mesh orientation, defect location and size on the biomechanical compatibility of hernia mesh. Ing Rech Biomed 2023. [DOI: 10.1016/j.irbm.2023.100777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
11
|
Gupta V, Gupta S, Chanda A. Development of an ultra-low-cost planar biaxial tester for soft tissue characterization. Biomed Phys Eng Express 2023; 9. [PMID: 36745909 DOI: 10.1088/2057-1976/acb940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/06/2023] [Indexed: 02/08/2023]
Abstract
Nowadays, the research in the arena of biomedical engineering or specifically soft tissue characterization is rapidly increasing. Due to the complex properties of soft tissues such as, anisotropy and viscoelasticity, it is difficult to predict the deformation behaviour. Hence, soft tissue characterization is essential to analyze these metrics. Soft tissue characterization, specifically, can be done by implementing a planar biaxial tester. Currently, available biaxial testers are mostly developed with respect to other mechanical components such as metals, and not for the soft tissues. Also, these devices are very costly, which makes it difficult for the low and middle income countries to perform this characterization. To solve this problem, in this work, an extremely low-cost biaxial tester was designed and developed. The design of the biaxial tester was simple and modular to allow device modifications according to the applications. The device has a force capability of less than 0.4 kN and a variable speed of 18 mm min-1to 300 mm min-1. The biaxial tester was validated using a standard test material with mechanical testing machine and was further tested on several wound geometries including circular, square, diamond shaped, L-Plasty, and elliptical. The developed fully automated device exhibited high accuracy with real-time monitoring. Furthermore, test results on the wounds showed the device's capability to differentiate amongst the considered wound geometries. This device can be helpful to medical students and doctors in understanding the mechanical behaviour of soft tissues during injury induced damage, disease, wounds healing and also for plethora of applications such as expansion testing of skin grafts.
Collapse
Affiliation(s)
- Vivek Gupta
- Centre for Biomedical Engineering, Indian Institute of Technology (IIT), Delhi, India
| | - Shubham Gupta
- Centre for Biomedical Engineering, Indian Institute of Technology (IIT), Delhi, India
| | - Arnab Chanda
- Centre for Biomedical Engineering, Indian Institute of Technology (IIT), Delhi, India.,Department of Biomedical Engineering, All India Institute of Medical Sciences (AIIMS), Delhi, India
| |
Collapse
|
12
|
Jourdan A, Rapacchi S, Guye M, Bendahan D, Masson C, Bège T. Dynamic-MRI quantification of abdominal wall motion and deformation during breathing and muscular contraction. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 217:106667. [PMID: 35231757 DOI: 10.1016/j.cmpb.2022.106667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/15/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Biomechanical assessment of the abdominal wall represents a major prerequisite for a better understanding of physiological and pathological situations such as hernia, post-delivery recovery, muscle dystrophy or sarcopenia. Such an assessment is challenging and requires muscular deformations quantification which have been very scarcely reported in vivo. In the present study, we intended to characterize abdominal wall deformations in passive and active conditions using dynamic MRI combined to a semiautomatic segmentation procedure. METHODS Dynamic deformations resulting from three complementary exercises i.e. forced breathing, coughing and Valsalva maneuver were mapped in a transversal abdominal plane and so for twenty healthy volunteers. Real-time dynamic MRI series were acquired at a rate of 182 ms per image, then segmented semi-automatically to follow muscles deformation through each exercise. Circumferential and radial strains of each abdominal muscle were computed from the geometrical characteristics' quantification, namely the medial axis length and the thickness. Muscular radial displacement maps were computed using image registration. RESULTS Large variations in circumferential and radial strains were observed for the lateral muscles (LM) but remained low for the rectus abdominis muscles (RA). Contraction phases of each exercise led to LM muscle shortening down to -9.6 ± 5.9% during Valsalva maneuver with a 16.2 ± 9.6% thickness increase. Contraction also led to inward radial displacement of the LM up to 9.9 ± 4.1 mm during coughing. During maximal inhalation, a significant 10.0 ± 6.6% lengthening was quantified for LM while a significant thickness decrease was computed for the whole set of muscles (-14.7 ± 6.6% for LM and -7.3 ± 6.5% for RA). The largest displacement was observed for the medial part of RA (17.9 ± 8.0 mm) whereas the posterior part of LM underwent limited motion (2.8 ± 2.3 mm). Displacement rate and correlation between muscle thickness and medial axis length during each exercise provided insights regarding subject-specific muscle function. CONCLUSIONS Dynamic MRI is a promising tool for the assessment of the abdominal wall motion and deformations. The corresponding metrics which have been continuously recorded during the exercises provided global and regional quantitative information. These metrics offer perspectives for a genuine clinical evaluation tool dedicated to the assessment of abdominal muscles function in both healthy subjects and patients.
Collapse
Affiliation(s)
- Arthur Jourdan
- Aix-Marseille Univ, Univ Gustave Eiffel, IFSTTAR, LBA, F-13016 Marseille, France.
| | | | - Maxime Guye
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France; APHM, Hopital Universitaire Timone, CEMEREM, Marseille, France.
| | | | - Catherine Masson
- Aix-Marseille Univ, Univ Gustave Eiffel, IFSTTAR, LBA, F-13016 Marseille, France.
| | - Thierry Bège
- Aix-Marseille Univ, Univ Gustave Eiffel, IFSTTAR, LBA, F-13016 Marseille, France; Department of General Surgery, Aix Marseille Univ, North Hospital, APHM, Marseille, France.
| |
Collapse
|
13
|
Tuset L, López-Cano M, Fortuny G, López JM, Herrero J, Puigjaner D. Virtual simulation of the biomechanics of the abdominal wall with different stoma locations. Sci Rep 2022; 12:3545. [PMID: 35241748 PMCID: PMC8894338 DOI: 10.1038/s41598-022-07555-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/10/2022] [Indexed: 11/09/2022] Open
Abstract
An ostomy is a surgical procedure by which an artificial opening in the abdominal wall, known as a stoma, is created. We assess the effects of stoma location on the abdominal wall mechanics. We perform three-dimensional finite element simulations on an anatomy model which was generated on the basis of medical images. Our simulation methodology is entirely based on open source software. We consider seventeen different locations for the stoma incision (trephine) and we simulate the mechanical response of the abdominal wall when an intraabdominal pressure as high as 20 kPa is applied. We focus on factors related to the risk of parastomal hernia development such as the deformation experienced by the abdominal wall, the stress levels supported by its tissues and the corresponding level of trephine enlargement. No significant dependence was found between stoma location and the levels of abdominal wall deformations or stress supported by tissues, except for the case with a stoma located on the linea alba. Trephine perimeter and area respectively increased by as much as [Formula: see text] and [Formula: see text]. The level of trephine deformation depends on stoma location with considerably higher trephine enlargements found in stomas laterally located with respect to the rectus abdominis muscle.
Collapse
Affiliation(s)
- Lluís Tuset
- Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Av Països Catalans 26, Tarragona, Catalunya, Spain
| | - Manuel López-Cano
- Abdominal Wall Surgery Unit, Department of General Surgery, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gerard Fortuny
- Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Av Països Catalans 26, Tarragona, Catalunya, Spain.
| | - Josep M López
- Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Av Països Catalans 26, Tarragona, Catalunya, Spain
| | - Joan Herrero
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av Països Catalans 26, Tarragona, Catalunya, Spain
| | - Dolors Puigjaner
- Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Av Països Catalans 26, Tarragona, Catalunya, Spain
| |
Collapse
|
14
|
A novel in vivo approach to assess strains of the human abdominal wall under known intraabdominal pressure. J Mech Behav Biomed Mater 2021; 125:104902. [PMID: 34717119 DOI: 10.1016/j.jmbbm.2021.104902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/23/2022]
Abstract
The study concerns mechanical behaviour of a living human abdominal wall. A better mechanical understanding of a human abdominal wall and recognition of its material properties is required to find mechanically compatible surgical meshes to significantly improve the treatment of ventral hernias. A non-invasive methodology, based on in vivo optical measurements is proposed to determine strains of abdominal wall corresponding to a known intraabdominal pressure. The measurement is performed in the course of a standard procedure of peritoneal dialysis. A dedicated experimental stand is designed for the experiment. The photogrammetric technique is employed to recover the three-dimensional surface geometry of the anterior abdominal wall at the initial and terminal instants of the dialysis. This corresponds to two deformation states, before and after filling the abdominal cavity with dialysis fluid. The study provides information on strain fields of living human abdominal wall. The inquiry is aimed at principal strains and their directions, observed at the level from -10% to 17%. The intraabdominal pressure related to the amount of introduced dialysis fluid measured within the medical procedure covers the range 11-18.5 cmH2O. The methodology leads to the deformation state of the abdominal wall according to the corresponding loading conditions. Therefore, the study is a step towards an identification of mechanical properties of living human abdominal wall.
Collapse
|
15
|
Ward A, Morgante D, Fisher J, Ingham E, Southgate J. Translation of mechanical strain to a scalable biomanufacturing process for acellular matrix production from full thickness porcine bladders. Biomed Mater 2021; 16. [PMID: 34652283 DOI: 10.1088/1748-605x/ac2ab8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/28/2021] [Indexed: 11/12/2022]
Abstract
Bladder acellular matrix has promising applications in urological and other reconstructive surgery as it represents a naturally compliant, non-immunogenic and highly tissue-integrative material. As the bladder fills and distends, the loosely-coiled bundles of collagen fibres in the wall become extended and orientate parallel to the lumen, resulting in a physical thinning of the muscular wall. This accommodating property can be exploited to achieve complete decellularisation of the full-thickness bladder wall by immersing the distended bladder through a series of hypotonic buffers, detergents and nucleases, but the process is empirical, idiosyncratic and does not lend itself to manufacturing scale up. In this study we have taken a mechanical engineering approach to determine the relationship between porcine bladder size and capacity, to define the biaxial deformation state of the tissue during decellularisation and to apply these principles to the design and testing of a scalable novel laser-printed flat-bed apparatus in order to achieve reproducible and full-thickness bladder tissue decellularisation. We demonstrate how the procedure can be applied reproducibly to fresh, frozen or twice-frozen bladders to render8×8 cm2patches of DNA-free acellular matrix suitable for surgical applications.
Collapse
Affiliation(s)
- Ashley Ward
- School of Mechanical Engineering, Institute of Medical and Biological Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Debora Morgante
- Jack Birch Unit, Department of Biology, York Biomedical Research Institute, The University of York, York YO10 5DD, United Kingdom
| | - John Fisher
- School of Mechanical Engineering, Institute of Medical and Biological Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Eileen Ingham
- School of Biomedical Sciences, Institute of Medical and Biological Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Jennifer Southgate
- Jack Birch Unit, Department of Biology, York Biomedical Research Institute, The University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
16
|
The precision of macroscale mechanical measurements is limited by the inherent structural heterogeneity of human stratum corneum. Acta Biomater 2021; 130:308-316. [PMID: 34087446 DOI: 10.1016/j.actbio.2021.05.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/18/2022]
Abstract
Biological tissues are structurally heterogenous mosaics at cellular and sub-cellular length scales. Some tissues, like the outermost layer of human skin, or stratum corneum (SC), also exhibit a rich topography of microchannels at larger mesoscopic length scales. Although this is well understood, modern studies continue to characterize the mechanical properties of biological tissues, including the SC, using macroscale techniques that assume these materials are homogenous in structure, thickness, and composition. Macroscale failure testing of SC is commonly associated with large sample to sample variability. We anticipate that microscale heterogeneities play an important role in defining the global mechanical response of the tissue. To evaluate the validity of the prevailing paradigm that macroscopic testing techniques can provide meaningful information about failure in soft heterogenous tissues, the macroscale work of fracture in isolated human SC samples is measured using conventional macroscale testing techniques and compared with the energy cost of creating new crack interfaces at the microscale, measured using a modified traction force microscopy technique. Results show that measured micro- and macroscale energy costs per unit crack path length are highly consistent. However, crack propagation is found to be guided by microscale topographical features in the tissue. This correlation reveals that macroscale mechanical sample to sample variability is caused by notable differences in crack propagation pathways. STATEMENT OF SIGNIFICANCE: Although designed to test homogeneous materials, macroscopic uniaxial tensometry is currently the gold standard for measuring the mechanical properties of biological tissues. All tissues, including human stratum corneum are structurally heterogeneous at the microscale and mechanical measurements are commonly highly variable, even for specimens from the same source. This study explores the fundamental causes of this disparity and evaluates the prevailing paradigm that macroscopic testing techniques can provide meaningful information about failure in soft heterogeneous tissues. Results conclude that the cause of large variability in mechanical work of fracture is due to inherent structural heterogeneities governing crack propagation pathways and altering the total crack length. Structural heterogeneities in tissue therefore limits the precision of macroscale biomechanical testing.
Collapse
|
17
|
Liu Z, Wei N, Tang R. Functionalized Strategies and Mechanisms of the Emerging Mesh for Abdominal Wall Repair and Regeneration. ACS Biomater Sci Eng 2021; 7:2064-2082. [PMID: 33856203 DOI: 10.1021/acsbiomaterials.1c00118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Meshes have been the overwhelmingly popular choice for the repair of abdominal wall defects to retrieve the bodily integrity of musculofascial layer. Broadly, they are classified into synthetic, biological and composite mesh based on their mechanical and biocompatible features. With the development of anatomical repair techniques and the increasing requirements of constructive remodeling, however, none of these options satisfactorily manages the conditional repair. In both preclinical and clinical studies, materials/agents equipped with distinct functions have been characterized and applied to improve mesh-aided repair, with the importance of mesh functionalization being highlighted. However, limited information exists on systemic comparisons of the underlying mechanisms with respect to functionalized strategies, which are fundamental throughout repair and regeneration. Herein, we address this topic and summarize the current literature by subdividing common functions of the mesh into biomechanics-matched, macrophage-mediated, integration-enhanced, anti-infective and antiadhesive characteristics for a comprehensive overview. In particular, we elaborate their effects separately with respect to host response and integration and discuss their respective advances, challenges and future directions toward a clinical alternative. From the vastly different approaches, we provide insight into the mechanisms involved and offer suggestions for personalized modifications of these emerging meshes.
Collapse
Affiliation(s)
- Zhengni Liu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai 200120, PR China
| | - Nina Wei
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai 200120, PR China
| | - Rui Tang
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai 200120, PR China
| |
Collapse
|
18
|
Verkade ME, Suthers J, Wiemer P, Martens A, De Clercq E, Burford J. Ultrasonographic evaluation of the width, thickness, and length of the normal linea alba in standing and dorsal recumbent horses. Vet Surg 2020; 50:158-169. [PMID: 33043994 DOI: 10.1111/vsu.13528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 08/06/2020] [Accepted: 09/20/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine the variability in length, width, and thickness of the equine linea alba (LA) and the effect of a standing vs dorsal recumbent position on these measurements. STUDY DESIGN Descriptive anatomical comparative study. ANIMALS Standing horses (N = 75; in 30 horses, measurements were obtained in dorsal recumbency first and repeated after horses were standing). METHODS Linea alba length was measured in standing position from xiphoid to umbilicus, and transverse ultrasonographic images were obtained at five reference points to measure LA width and thickness. In 30 horses, measurements were obtained in dorsal recumbency first and repeated after horses were standing. RESULTS There was wide variation in LA width and thickness between standing horses, with gradual increase from xiphoid (range, 0.14-0.64 cm) to umbilicus (range, 0.2-2.97 cm). Linea alba length in standing position was 51.09 ± 6.219 cm. Width was independent of the size of the horse; thickness and length were correlated at some reference points to height (r = 0.346-585, P < .05) and weight (r = 0.324-0.642, P < .05). Different LA shapes could be identified. In dorsal recumbency, the LA was smaller in width at all reference points (15%-23%, P < .05) and shorter (20%, P < .001) compared with standing. CONCLUSION In addition to the wide variability in LA measurements and shapes between horses, there was a significant decrease in LA width and length when horses changed from standing to dorsal recumbency. CLINICAL SIGNIFICANCE The difference in LA length and width between dorsal recumbency and when standing could increase tension on sutures after laparotomy and should be taken into account when surgeons are closing the abdomen.
Collapse
Affiliation(s)
- Maria E Verkade
- De Lingehoeve Diergeneeskunde, Lienden, the Netherlands.,B&W Equine Hospital, Gloucestershire, United Kingdom
| | | | - Peter Wiemer
- De Lingehoeve Diergeneeskunde, Lienden, the Netherlands.,Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ann Martens
- Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Eva De Clercq
- Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - John Burford
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| |
Collapse
|
19
|
Fischer B, Kurz S, Höch A, Schleifenbaum S. The influence of different sample preparation on mechanical properties of human iliotibial tract. Sci Rep 2020; 10:14836. [PMID: 32908171 PMCID: PMC7481782 DOI: 10.1038/s41598-020-71790-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
In the run-up to biomechanical testing, fresh human tissue samples are often frozen in order to inhibit initial decomposition processes and to achieve a temporal independence of tissue acquisition from biomechanical testing. The aim of this study was to compare the mechanical properties of fresh tissue samples of the human iliotibial tract (IT) to fresh-frozen samples taken from the same IT and those modified with different concentrations of Dimethylsulfoxide (DMSO) prior to freezing. All samples were partial plastinated and destructive tensile tests were conducted with a uniaxial tensile test setup. A plastination technique already established in the laboratory was modified to improve the clamping behaviour of the samples. Material failure was caused by a gradual rupture of the load-bearing collagen fibre bundles. Contrary to our expectations, no significant difference was found between the tensile strength of fresh and fresh frozen specimens. The addition of 1 wt% DMSO did not increase the tensile strength compared to fresh-frozen samples; an addition of 10 wt% DMSO even resulted in a decrease. Based on our findings, the use of simple fresh-frozen specimens to determine the tensile strength is viable; however fresh specimens should be used to generate a complete property profile.
Collapse
Affiliation(s)
- Benjamin Fischer
- ZESBO - Center for Research On the Musculoskeletal System, Leipzig University, Semmelweisstraße 14, 04103, Leipzig, Germany. .,Department of Orthopedic, Trauma and Plastic Surgery, Spine Center, Leipzig University, Leipzig, Germany.
| | - Sascha Kurz
- ZESBO - Center for Research On the Musculoskeletal System, Leipzig University, Semmelweisstraße 14, 04103, Leipzig, Germany.,Department of Orthopedic, Trauma and Plastic Surgery, Spine Center, Leipzig University, Leipzig, Germany
| | - Andreas Höch
- Department of Orthopedic, Trauma and Plastic Surgery, Spine Center, Leipzig University, Leipzig, Germany
| | - Stefan Schleifenbaum
- ZESBO - Center for Research On the Musculoskeletal System, Leipzig University, Semmelweisstraße 14, 04103, Leipzig, Germany.,Department of Orthopedic, Trauma and Plastic Surgery, Spine Center, Leipzig University, Leipzig, Germany.,Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany
| |
Collapse
|
20
|
Morch A, Astruc L, Mayeur O, Witz JF, Lecomte-Grosbras P, Brieu M. Is there any objective and independent characterization and modeling of soft biological tissues? J Mech Behav Biomed Mater 2020; 110:103915. [PMID: 32771881 DOI: 10.1016/j.jmbbm.2020.103915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/28/2020] [Accepted: 06/04/2020] [Indexed: 10/23/2022]
Abstract
The characterization of soft tissue raises several difficulties. Indeed, soft biological tissues usually shrink when dissected from their in vivo location. This shrinkage is characteristic of the release of residual stresses, since soft tissues are indeed often pre-stressed in their physiological configuration. During experimental loading, large extension at very low level of force are expected and assumed to be related to the progressive recruitment and stretching of fibers. However, the first phase of the mechanical test is also aiming at recovering the pre-stressed in vivo behavior. As a consequence, the initial phase, corresponding to the recovering of prestress and/or recruitment of fiberes, is questionable and frequently removed. One of the preferred methods to erase it consists in applying a preforce or prestress to the sample: this allows to easily get rid of the sample retensioning range. However this operation can impact the interpretation of the identified mechanical parameters. This study presents an evaluation of the impact of the data processing on the mechanical properties of a numerically defined material. For this purpose, a finite element simulation was performed to replicate a uniaxial tensile test on a biological soft tissue sample. The influence of different pre-stretches on the mechanical parameters of a second order Yeoh model was investigated. The Yeoh mechanical parameters, or any other strain energy density, depend strongly on any pre- and post-processing choices: they adapt to compensate the error made when choosing an arbitrary level of prestretch or prestress. This observation spreads to any modeling approach used in soft tissues. Mechanical parameters are indeed naturally bound to the choice of the pre-stretch (or pre-stress) through the elongation and the constitutive law. Regardless of the model, it would therefore be pointless to compare mechanical parameters if the conditions for the processing of experimental raw data are not fully documented.
Collapse
Affiliation(s)
- A Morch
- Univ. Lille, CNRS, Centrale Lille, UMR 9013 LaMcube Laboratoire de mécanique multiphysique et multiéchelle, F-59000, Lille, France
| | - L Astruc
- Univ. Lille, CNRS, Centrale Lille, UMR 9013 LaMcube Laboratoire de mécanique multiphysique et multiéchelle, F-59000, Lille, France
| | - O Mayeur
- Univ. Lille, CNRS, Centrale Lille, UMR 9013 LaMcube Laboratoire de mécanique multiphysique et multiéchelle, F-59000, Lille, France
| | - J-F Witz
- Univ. Lille, CNRS, Centrale Lille, UMR 9013 LaMcube Laboratoire de mécanique multiphysique et multiéchelle, F-59000, Lille, France
| | - P Lecomte-Grosbras
- Univ. Lille, CNRS, Centrale Lille, UMR 9013 LaMcube Laboratoire de mécanique multiphysique et multiéchelle, F-59000, Lille, France.
| | - M Brieu
- Univ. Lille, CNRS, Centrale Lille, UMR 9013 LaMcube Laboratoire de mécanique multiphysique et multiéchelle, F-59000, Lille, France; California State University, Los Angeles College Engineering, Computer Science and Technology, Dept. Mechanical Engineering, USA
| |
Collapse
|
21
|
Verkade ME, Ugahary F, Martens A, Wiemer P. Clinical and ultrasonographic evaluation of three suture techniques for closure of the equine linea alba. EQUINE VET EDUC 2019. [DOI: 10.1111/eve.13109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- M. E. Verkade
- De Lingehoeve Diergeneeskunde Lienden The Netherlands
| | - F. Ugahary
- MD Surgeon n.p., Consultant in General Surgery Tiel The Netherlands
| | - A. Martens
- Department of Surgery and Anaesthesiology of Domestic Animals Faculty of Veterinary Medicine Ghent University Merelbeke Belgium
| | - P. Wiemer
- De Lingehoeve Diergeneeskunde Lienden The Netherlands
- Department of Surgery and Anaesthesiology of Domestic Animals Faculty of Veterinary Medicine Ghent University Merelbeke Belgium
| |
Collapse
|
22
|
Cooney GM, Kiernan A, Winter DC, Simms CK. Optimized wound closure using a biomechanical abdominal model. Br J Surg 2018; 105:395-400. [PMID: 29488649 DOI: 10.1002/bjs.10753] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/19/2017] [Accepted: 10/17/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND Suturing techniques for midline abdominal wall incisions vary between surgeons. This study uses a biomechanical abdominal model to assess tissue stretch using different suturing techniques for midline laparotomy closure. METHODS Deformation tests were performed on the linea alba of 48 porcine abdominal walls. Each pattern was tested three times at pressures ranging from 0 to 20 kPa using different continuous suturing techniques and a control. RESULTS There was a sevenfold improvement when the best performing bite separation and bite width ([5, 16] mm) was compared with the most poorly performing combination ([15, 4] mm). The traditional bite and width separation ([10, 10] mm) and the recently proposed combination ([5, 5] mm) may not be optimal, and substantial improvements in surgical outcome may be achieved by changing to a [5,16]-mm combination. CONCLUSION These findings suggest using a small bite separation (5 mm) and large bite width (16 mm) during abdominal wound closure may be optimal. Surgical relevance Suturing techniques for midline abdominal wall incisions vary between surgeons. This experimental study suggests substantial potential for improved tissue apposition by changing the suturing approach from the traditional clinical recommendation of 10 mm for both bite separation and bite width to a bite separation of 5 mm and a bite width of 16 mm. These findings support recent European Hernia Society guidelines and the recent randomized STITCH (Suture Techniques to Reduce the Incidence of The inCisional Hernia) trial, which found that small separations are more effective than large separations, but suggest that they should be combined with large bite depths.
Collapse
Affiliation(s)
- G M Cooney
- Trinity Centre for Bioengineering, Department of Mechanical and Manufacturing Engineering, Trinity College, Dublin, Ireland
| | - A Kiernan
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - D C Winter
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland.,Department of Surgery, St Vincent's University Hospital, Dublin, Ireland
| | - C K Simms
- Trinity Centre for Bioengineering, Department of Mechanical and Manufacturing Engineering, Trinity College, Dublin, Ireland
| |
Collapse
|
23
|
Astruc L, De Meulaere M, Witz JF, Nováček V, Turquier F, Hoc T, Brieu M. Characterization of the anisotropic mechanical behavior of human abdominal wall connective tissues. J Mech Behav Biomed Mater 2018; 82:45-50. [PMID: 29567529 DOI: 10.1016/j.jmbbm.2018.03.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/05/2018] [Accepted: 03/09/2018] [Indexed: 11/30/2022]
Abstract
Abdominal wall sheathing tissues are commonly involved in hernia formation. However, there is very limited work studying mechanics of all tissues from the same donor which prevents a complete understanding of the abdominal wall behavior and the differences in these tissues. The aim of this study was to investigate the differences between the mechanical properties of the linea alba and the anterior and posterior rectus sheaths from a macroscopic point of view. Eight full-thickness human anterior abdominal walls of both genders were collected and longitudinal and transverse samples were harvested from the three sheathing connective tissues. The total of 398 uniaxial tensile tests was conducted and the mechanical characteristics of the behavior (tangent rigidities for small and large deformations) were determined. Statistical comparisons highlighted heterogeneity and non-linearity in behavior of the three tissues under both small and large deformations. High anisotropy was observed under small and large deformations with higher stress in the transverse direction. Variabilities in the mechanical properties of the linea alba according to the gender and location were also identified. Finally, data dispersion correlated with microstructure revealed that macroscopic characterization is not sufficient to fully describe behavior. Microstructure consideration is needed. These results provide a better understanding of the mechanical behavior of the abdominal wall sheathing tissues as well as the directions for microstructure-based constitutive model.
Collapse
Affiliation(s)
- Laure Astruc
- Univ. Lille, CNRS, Centrale Lille, FRE 2016 - LaMcube - Laboratoire de mécanique multiphysique multiéchelle, F-59000 Lille, France.
| | - Maurice De Meulaere
- Laboratoire d'Anatomie, CHRU de Lille, 1 Place de Verdun, 59045 Lille, France
| | - Jean-François Witz
- Univ. Lille, CNRS, Centrale Lille, FRE 2016 - LaMcube - Laboratoire de mécanique multiphysique multiéchelle, F-59000 Lille, France
| | - Vit Nováček
- Medtronic, Sofradim Production, 116 avenue du Formans, 01600 Trévoux, France
| | - Frédéric Turquier
- Medtronic, Sofradim Production, 116 avenue du Formans, 01600 Trévoux, France
| | - Thierry Hoc
- LTDS, UMR CNRS 5513, Université de Lyon, École Centrale de Lyon, 36 av Guy de Collongue, 69134 Écully Cedex, France
| | - Mathias Brieu
- Univ. Lille, CNRS, Centrale Lille, FRE 2016 - LaMcube - Laboratoire de mécanique multiphysique multiéchelle, F-59000 Lille, France
| |
Collapse
|
24
|
Deeken CR, Lake SP. Mechanical properties of the abdominal wall and biomaterials utilized for hernia repair. J Mech Behav Biomed Mater 2017; 74:411-427. [DOI: 10.1016/j.jmbbm.2017.05.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/26/2017] [Accepted: 05/04/2017] [Indexed: 12/29/2022]
|