1
|
Zhou H, Wu Q, Wu L, Zhao Y. Mechanical behaviors of high-strength fabric composite membrane designed for cardiac valve prosthesis replacement. J Mech Behav Biomed Mater 2023; 142:105863. [PMID: 37116312 DOI: 10.1016/j.jmbbm.2023.105863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 04/30/2023]
Abstract
Bovine pericardium has been commonly used as leaflets in cardiac valve prosthesis replacement for decades because of its good short-term hemocompatibility and hemodynamic performance. However, fatigue, abrasion, permanent deformation, calcification, and many other failure modes have been reported as well. The degradation of the performance will have a serious impact on the function of valve prostheses, posing a risk to the patient's health. This study aimed to introduce a flexible fabric composite with better mechanical performance such that it can be employed as a substitute material for bioprosthetic valve leaflets. This composite has a multilayered thin film structure made of ultrahigh molecular weight polyethylene (UHMWPE) fabric and thermoplastic polyurethane (TPU) membranes. The mechanical properties of three specifications with different design parameters were tested. The tensile strength, shear behavior, tear resistance, and bending stiffness of the composites were characterized and compared to those of bovine pericardium. A constitutive model was also established to describe the composites' mechanical behaviors and predict their strength. According to the results of the tests, the composite could maintain a flexible bending stiffness with high in-plane tensile strength and tear strength. Therefore, bioprosthetic valve made of this substitute material can withstand harsher loads in the blood flow environment than those made of bovine pericardium. Moreover, all these test results and constitutive models can be used in future research to evaluate hemodynamic performance and clinical applications of fabric composite valve prostheses.
Collapse
Affiliation(s)
- Han Zhou
- Center for Composite Materials, Harbin Institute of Technology, Harbin, 150001, China; National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, China
| | - Qianqian Wu
- Center for Composite Materials, Harbin Institute of Technology, Harbin, 150001, China; National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, China.
| | - Linzhi Wu
- Center for Composite Materials, Harbin Institute of Technology, Harbin, 150001, China; National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, China; Key Laboratory of Advanced Ship Materials and Mechanics, Harbin Engineering University, Harbin, 150001, China
| | - Yang Zhao
- Center for Composite Materials, Harbin Institute of Technology, Harbin, 150001, China; National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
2
|
Han Y, Zhang B, Li J, Cen L, Zhao L, Xi Z. Preparation of extracellular matrix of fish swim bladders by decellularization with supercritical carbon dioxide. BIORESOUR BIOPROCESS 2023; 10:14. [PMID: 38647890 PMCID: PMC10991867 DOI: 10.1186/s40643-022-00621-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/15/2022] [Indexed: 02/23/2023] Open
Abstract
Fish swim bladders used to be considered as byproducts or waste in fishery; however, they are potential materials for biological medicine with abundant collagen. In this work, an efficient noncytotoxic decellularization process using sodium dodecyl sulfate (SDS) ternary system assisted with supercritical carbon dioxide (scCO2) as the green extraction fluid and ethanol (ET) as the cosolvent has been developed to harvest acellular fish swim bladders (AFSBs). The experimental results show that the tissue treated by SDS assisted with scCO2 and ethanol at 37 °C and 25 MPa can be decellularized thoroughly and maintains intact fibers and uniform pore distribution, which resulting in a tensile strength of 5.61 MPa and satisfactory biocompatibility. Meanwhile, the residual SDS content in scCO2/SDS/ET ternary system is 0.0122% which is significantly lower than it in scCO2/SDS system due to the enhanced mass transfer rate of SDS in tissues by scCO2 with ethanol. The synergy between SDS and ethanol can enhance the diffusion coefficient and the solubility of SDS in scCO2, which reduced the contact time between SDS and tissues. Meaningfully, the results obtained in this work can not only provide a novel strategy to produce acellular matrix with superior properties, but also offer a further understanding of the decellularization through scCO2 extraction processing with the synergy of suitable detergent/cosolvent.
Collapse
Affiliation(s)
- Yuqing Han
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Bingyan Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jinjin Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lian Cen
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ling Zhao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhenhao Xi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
3
|
Biological Scaffolds for Congenital Heart Disease. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010057. [PMID: 36671629 PMCID: PMC9854830 DOI: 10.3390/bioengineering10010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023]
Abstract
Congenital heart disease (CHD) is the most predominant birth defect and can require several invasive surgeries throughout childhood. The absence of materials with growth and remodelling potential is a limitation of currently used prosthetics in cardiovascular surgery, as well as their susceptibility to calcification. The field of tissue engineering has emerged as a regenerative medicine approach aiming to develop durable scaffolds possessing the ability to grow and remodel upon implantation into the defective hearts of babies and children with CHD. Though tissue engineering has produced several synthetic scaffolds, most of them failed to be successfully translated in this life-endangering clinical scenario, and currently, biological scaffolds are the most extensively used. This review aims to thoroughly summarise the existing biological scaffolds for the treatment of paediatric CHD, categorised as homografts and xenografts, and present the preclinical and clinical studies. Fixation as well as techniques of decellularisation will be reported, highlighting the importance of these approaches for the successful implantation of biological scaffolds that avoid prosthetic rejection. Additionally, cardiac scaffolds for paediatric CHD can be implanted as acellular prostheses, or recellularised before implantation, and cellularisation techniques will be extensively discussed.
Collapse
|
4
|
Barbulescu GI, Bojin FM, Ordodi VL, Goje ID, Barbulescu AS, Paunescu V. Decellularized Extracellular Matrix Scaffolds for Cardiovascular Tissue Engineering: Current Techniques and Challenges. Int J Mol Sci 2022; 23:13040. [PMID: 36361824 PMCID: PMC9658138 DOI: 10.3390/ijms232113040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 08/13/2023] Open
Abstract
Cardiovascular diseases are the leading cause of global mortality. Over the past two decades, researchers have tried to provide novel solutions for end-stage heart failure to address cardiac transplantation hurdles such as donor organ shortage, chronic rejection, and life-long immunosuppression. Cardiac decellularized extracellular matrix (dECM) has been widely explored as a promising approach in tissue-regenerative medicine because of its remarkable similarity to the original tissue. Optimized decellularization protocols combining physical, chemical, and enzymatic agents have been developed to obtain the perfect balance between cell removal, ECM composition, and function maintenance. However, proper assessment of decellularized tissue composition is still needed before clinical translation. Recellularizing the acellular scaffold with organ-specific cells and evaluating the extent of cardiomyocyte repopulation is also challenging. This review aims to discuss the existing literature on decellularized cardiac scaffolds, especially on the advantages and methods of preparation, pointing out areas for improvement. Finally, an overview of the state of research regarding the application of cardiac dECM and future challenges in bioengineering a human heart suitable for transplantation is provided.
Collapse
Affiliation(s)
- Greta Ionela Barbulescu
- Immuno-Physiology and Biotechnologies Center (CIFBIOTEH), Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, No 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Department of Clinical Practical Skills, “Victor Babes” University of Medicine and Pharmacy, No 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Florina Maria Bojin
- Immuno-Physiology and Biotechnologies Center (CIFBIOTEH), Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, No 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Clinical Emergency County Hospital “Pius Brinzeu” Timisoara, Center for Gene and Cellular Therapies in the Treatment of Cancer Timisoara-OncoGen, No 156 Liviu Rebreanu, 300723 Timisoara, Romania
| | - Valentin Laurentiu Ordodi
- Clinical Emergency County Hospital “Pius Brinzeu” Timisoara, Center for Gene and Cellular Therapies in the Treatment of Cancer Timisoara-OncoGen, No 156 Liviu Rebreanu, 300723 Timisoara, Romania
- Faculty of Industrial Chemistry and Environmental Engineering, “Politehnica” University Timisoara, No 2 Victoriei Square, 300006 Timisoara, Romania
| | - Iacob Daniel Goje
- Department of Medical Semiology I, “Victor Babes” University of Medicine and Pharmacy, No 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Advanced Cardiology and Hemostaseology Research Center, “Victor Babes” University of Medicine and Pharmacy, No 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Andreea Severina Barbulescu
- Center for Advanced Research in Gastroenterology and Hepatology, Department of Internal Medicine II, Division of Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Virgil Paunescu
- Immuno-Physiology and Biotechnologies Center (CIFBIOTEH), Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, No 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Clinical Emergency County Hospital “Pius Brinzeu” Timisoara, Center for Gene and Cellular Therapies in the Treatment of Cancer Timisoara-OncoGen, No 156 Liviu Rebreanu, 300723 Timisoara, Romania
| |
Collapse
|
5
|
García-Gareta E, Pérez MÁ, García-Aznar JM. Decellularization of tumours: A new frontier in tissue engineering. J Tissue Eng 2022; 13:20417314221091682. [PMID: 35495097 PMCID: PMC9044784 DOI: 10.1177/20417314221091682] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/17/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide. The tumour extracellular
matrix (ECM) has unique features in terms of composition and mechanical
properties, resulting in a structurally and chemically different ECM to that of
native, healthy tissues. This paper reviews to date the efforts into
decellularization of tumours, which in the authors’ view represents a new
frontier in the ever evolving field of tumour tissue engineering. An overview of
the ECM and its importance in cancer is given, ending with examples of research
using decellularized tumours, which has already indicated potential therapeutic
targets, unravelled malignancy mechanisms or response to chemotherapy agents.
The review highlights that more research is needed in this area, which can
answer important questions related to tumour formation and progression to
ultimately identify new and effective therapeutic targets. Within the
near-future of personalized medicine, this research can create patient-specific
tumour models and therapeutic regimes.
Collapse
Affiliation(s)
- Elena García-Gareta
- Aragonese Agency for R&D (ARAID) Foundation, Zaragoza, Aragón, Spain
- Multiscale in Mechanical & Biological Engineering Research Group, Aragón Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragón, Spain
- Division of Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| | - María Ángeles Pérez
- Multiscale in Mechanical & Biological Engineering Research Group, Aragón Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragón, Spain
| | - José Manuel García-Aznar
- Multiscale in Mechanical & Biological Engineering Research Group, Aragón Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragón, Spain
| |
Collapse
|
6
|
Duarte MM, Silva IV, Eisenhut AR, Bionda N, Duarte ARC, Oliveira AL. Contributions of supercritical fluid technology for advancing decellularization and postprocessing of viable biological materials. MATERIALS HORIZONS 2022; 9:864-891. [PMID: 34931632 DOI: 10.1039/d1mh01720a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The demand for tissue and organ transplantation worldwide has led to an increased interest in the development of new therapies to restore normal tissue function through transplantation of injured tissue with biomedically engineered matrices. Among these developments is decellularization, a process that focuses on the removal of immunogenic cellular material from a tissue or organ. However, decellularization is a complex and often harsh process that frequently employs techniques that can negatively impact the properties of the materials subjected to it. The need for a more benign alternative has driven research on supercritical carbon dioxide (scCO2) assisted decellularization. scCO2 can achieve its critical point at relatively low temperature and pressure conditions, and for its high transfer rate and permeability. These properties make scCO2 an appealing methodology that can replace or diminish the exposure of harsh chemicals to sensitive materials, which in turn could lead to better preservation of their biochemical and mechanical properties. The presented review covers relevant literature over the last years where scCO2-assisted decellularization is employed, as well as discussing major topics such as the mechanism of action behind scCO2-assisted decellularization, CO2 and cosolvents' solvent properties, effect of the operational parameters on decellularization efficacy and on the material's properties.
Collapse
Affiliation(s)
- Marta M Duarte
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - Inês V Silva
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | | | - Nina Bionda
- iFyber, LLC, 950 Danby Road, Ithaca, NY 14850, USA
| | - Ana Rita C Duarte
- LAQV/REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Ana L Oliveira
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
7
|
Bioinks Enriched with ECM Components Obtained by Supercritical Extraction. Biomolecules 2022; 12:biom12030394. [PMID: 35327586 PMCID: PMC8945720 DOI: 10.3390/biom12030394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 02/01/2023] Open
Abstract
Extracellular matrix (ECM)-based bioinks have been steadily gaining interest in the field of bioprinting to develop biologically relevant and functional tissue constructs. Herein, we propose the use of supercritical carbon dioxide (scCO2) technology to extract the ECM components of cell-sheets that have shown promising results in creating accurate 3D microenvironments replicating the cell’s own ECM, to be used in the preparation of bioinks. The ECM extraction protocol best fitted for cell sheets was defined by considering efficient DNA removal with a minor effect on the ECM. Cell sheets of human dermal fibroblasts (hDFbs) and adipose stem cells (hASCs) were processed using a customised supercritical system by varying the pressure of the reactor, presence, exposure time, and type of co-solvent. A quantification of the amount of DNA, protein, and sulfated glycosaminoglycans (sGAGs) was carried out to determine the efficiency of the extraction in relation to standard decellularization methodologies. The bioinks containing the extracted ECM were fabricated by combining them with alginate as a support polymer. The influence of the alginate (1%, 2% w/vol) and ECM (0.5% and 1.5% w/vol) amounts on the printability of the blends was addressed by analysing the rheological behaviour of the suspensions. Finally, 3D printed constructs were fabricated using an in-house built extrusion-based bioprinter, and the impact of the extrusion process on cell viability was assessed. The optimised scCO2 protocol allowed efficient removal of DNA while preserving a higher number of proteins and sGAGs than the standard methodologies. The characterization of extract’s composition also revealed that the ECM produced by hDFbs (fECM) and hASCs (aECM) is distinctively affected by the extraction protocols. Furthermore, rheological analysis indicated an increase in viscosity with increasing ECM composition, an effect even more prominent in samples containing aECM. 3D printing of alginate/ECM constructs demonstrated that cell viability was only marginally affected by the extrusion process, and this effect was also dependent on the ECM source. Overall, this work highlights the benefits of supercritical fluid-based methods for ECM extraction and strengthens the relevance of ECM-derived bioinks in the development of printed tissue-like constructs.
Collapse
|
8
|
|
9
|
Jin C, Zhao L, Wu Z, Li B, Liu R, He H, Wang L, Wang W. Comparison on the properties of bovine pericardium and porcine pericardium used as leaflet materials of transcatheter heart valve. Artif Organs 2021; 46:427-438. [PMID: 34545589 DOI: 10.1111/aor.14074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/06/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND In order to obtain the smaller delivery diameter, porcine pericardium had been used as a substitute material of bovine pericardium for the leaflet materials of transcatheter heart valve (THV). However, the differences between them had not been fully studied. Therefore, this study compared the microstructure, biochemical and mechanical properties of two materials and hydrodynamics of THV made by the two materials in detail. METHODS In this study, firstly, the microstructure of pericardium was analyzed by staining and scanning electron microscope; secondly, the biochemical properties of pericardium after different processes were compared by heat shrinkage temperature test, free amino and carboxyl concentration test, enzyme degradation test, subcutaneous implantation calcification analysis in rats; finally, the mechanical properties were evaluated by uniaxial tensile test before and after the pericardium being crimped, and then, the hydrodynamics of THV was studied according to the ISO5840 standard. RESULTS Compared with bovine pericardium, after the same process, porcine pericardium showed a looser and tinier fiber bundle, a similar free carboxyl concentration, a lower resistance to enzyme degradation, a significantly lower calcification, bearing capacity and damage after being crimped, a better hydrodynamic and adaption with lower cardiac output and deformation of implantation position. Meanwhile the dehydration process of pericardium almost had preserved all the biochemical advantages of two materials. CONCLUSION In this study, porcine and bovine pericardium showed some significant differences in biochemical, mechanical properties and hydrodynamics. According to the results, it was presumed that the thinner porcine pericardium might be more suitable for THV of right heart system. Meanwhile, more attention should be taken for the calcification of THV made by the bovine pericardium.
Collapse
Affiliation(s)
- Chang Jin
- Research Center for Biomedical Engineering, Medical Innovation & Research Division, Chinese PLA General Hospital, Beijing, China.,Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, China
| | - Li Zhao
- Research Center for Biomedical Engineering, Medical Innovation & Research Division, Chinese PLA General Hospital, Beijing, China.,Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, China
| | - Zebin Wu
- Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing, China
| | - Bin Li
- Research Center for Biomedical Engineering, Medical Innovation & Research Division, Chinese PLA General Hospital, Beijing, China.,Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, China
| | - Ronghui Liu
- Research Center for Biomedical Engineering, Medical Innovation & Research Division, Chinese PLA General Hospital, Beijing, China.,Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, China
| | - Hongping He
- Research Center for Biomedical Engineering, Medical Innovation & Research Division, Chinese PLA General Hospital, Beijing, China.,Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, China
| | - Lizhen Wang
- Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing, China
| | - Weidong Wang
- Research Center for Biomedical Engineering, Medical Innovation & Research Division, Chinese PLA General Hospital, Beijing, China.,Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
10
|
Duarte MM, Ribeiro N, Silva IV, Dias JR, Alves NM, Oliveira AL. Fast decellularization process using supercritical carbon dioxide for trabecular bone. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105194] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Alekseev ES, Alentiev AY, Belova AS, Bogdan VI, Bogdan TV, Bystrova AV, Gafarova ER, Golubeva EN, Grebenik EA, Gromov OI, Davankov VA, Zlotin SG, Kiselev MG, Koklin AE, Kononevich YN, Lazhko AE, Lunin VV, Lyubimov SE, Martyanov ON, Mishanin II, Muzafarov AM, Nesterov NS, Nikolaev AY, Oparin RD, Parenago OO, Parenago OP, Pokusaeva YA, Ronova IA, Solovieva AB, Temnikov MN, Timashev PS, Turova OV, Filatova EV, Philippov AA, Chibiryaev AM, Shalygin AS. Supercritical fluids in chemistry. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4932] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Chaschin IS, Khugaev GA, Krasheninnikov SV, Petlenko AA, Badun GA, Chernysheva MG, Dzhidzhikhiya KM, Bakuleva NP. Bovine jugular vein valved conduit: A new hybrid method of devitalization and protection by chitosan-based coatings using super- and subrcritical СО2. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Gafarova ER, Grebenik EA, Lazhko AE, Frolova AA, Kuryanova AS, Kurkov AV, Bazhanov IA, Kapomba BS, Kosheleva NV, Novikov IA, Shekhter AB, Golubeva EN, Soloviova AB, Timashev PS. Evaluation of Supercritical CO 2-Assisted Protocols in a Model of Ovine Aortic Root Decellularization. Molecules 2020; 25:molecules25173923. [PMID: 32867356 PMCID: PMC7504408 DOI: 10.3390/molecules25173923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 01/03/2023] Open
Abstract
One of the leading trends in the modern tissue engineering is the development of new effective methods of decellularization aimed at the removal of cellular components from a donor tissue, reducing its immunogenicity and the risk of rejection. Supercritical CO2 (scCO2)-assisted processing has been proposed to improve the outcome of decellularization, reduce contamination and time costs. The resulting products can serve as personalized tools for tissue-engineering therapy of various somatic pathologies. However, the decellularization of heterogeneous 3D structures, such as the aortic root, requires optimization of the parameters, including preconditioning medium composition, the type of co-solvent, values of pressure and temperature inside the scCO2 reactor, etc. In our work, using an ovine aortic root model, we performed a comparative analysis of the effectiveness of decellularization approaches based on various combinations of these parameters. The protocols were based on the combinations of treatments in alkaline, ethanol or detergent solutions with scCO2-assisted processing at different modes. Histological analysis demonstrated favorable effects of the preconditioning in a detergent solution. Following processing in scCO2 medium provided a high decellularization degree, reduced cytotoxicity, and increased ultimate tensile strength and Young’s modulus of the aortic valve leaflets, while the integrity of the extracellular matrix was preserved.
Collapse
Affiliation(s)
- Elvira R. Gafarova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.A.G.); (A.A.F.); (A.S.K.); (A.V.K.); (I.A.B.); (B.S.K.); (A.B.S.); (P.S.T.)
- Correspondence: ; Tel.: +7-917-372-5217
| | - Ekaterina A. Grebenik
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.A.G.); (A.A.F.); (A.S.K.); (A.V.K.); (I.A.B.); (B.S.K.); (A.B.S.); (P.S.T.)
| | - Alexey E. Lazhko
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Anastasia A. Frolova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.A.G.); (A.A.F.); (A.S.K.); (A.V.K.); (I.A.B.); (B.S.K.); (A.B.S.); (P.S.T.)
| | - Anastasia S. Kuryanova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.A.G.); (A.A.F.); (A.S.K.); (A.V.K.); (I.A.B.); (B.S.K.); (A.B.S.); (P.S.T.)
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 117977 Moscow, Russia;
| | - Alexandr V. Kurkov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.A.G.); (A.A.F.); (A.S.K.); (A.V.K.); (I.A.B.); (B.S.K.); (A.B.S.); (P.S.T.)
| | - Ilya A. Bazhanov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.A.G.); (A.A.F.); (A.S.K.); (A.V.K.); (I.A.B.); (B.S.K.); (A.B.S.); (P.S.T.)
| | - Byron S. Kapomba
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.A.G.); (A.A.F.); (A.S.K.); (A.V.K.); (I.A.B.); (B.S.K.); (A.B.S.); (P.S.T.)
| | - Nastasia V. Kosheleva
- FSBSI “Institute of General Pathology and Pathophysiology”, 125315 Moscow, Russia;
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ivan A. Novikov
- Scientific Research Institute of Eye Diseases, 119021 Moscow, Russia;
| | - Anatoly B. Shekhter
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.A.G.); (A.A.F.); (A.S.K.); (A.V.K.); (I.A.B.); (B.S.K.); (A.B.S.); (P.S.T.)
| | - Elena N. Golubeva
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Anna B. Soloviova
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 117977 Moscow, Russia;
| | - Peter S. Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.A.G.); (A.A.F.); (A.S.K.); (A.V.K.); (I.A.B.); (B.S.K.); (A.B.S.); (P.S.T.)
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 117977 Moscow, Russia;
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
| |
Collapse
|
14
|
Grebenik EA, Gafarova ER, Istranov LP, Istranova EV, Ma X, Xu J, Guo W, Atala A, Timashev PS. Mammalian Pericardium-Based Bioprosthetic Materials in Xenotransplantation and Tissue Engineering. Biotechnol J 2020; 15:e1900334. [PMID: 32077589 DOI: 10.1002/biot.201900334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/29/2020] [Indexed: 12/13/2022]
Abstract
Bioprosthetic materials based on mammalian pericardium tissue are the gold standard in reconstructive surgery. Their application range covers repair of rectovaginal septum defects, abdominoplastics, urethroplasty, duraplastics, maxillofacial, ophthalmic, thoracic and cardiovascular reconstruction, etc. However, a number of factors contribute to the success of their integration into the host tissue including structural organization, mechanical strength, biocompatibility, immunogenicity, surface chemistry, and biodegradability. In order to improve the material's properties, various strategies are developed, such as decellularization, crosslinking, and detoxification. In this review, the existing issues and long-term achievements in the development of bioprosthetic materials based on the mammalian pericardium tissue, aimed at a wide-spectrum application in reconstructive surgery are analyzed. The basic technical approaches to preparation of biocompatible forms providing continuous functioning, optimization of biomechanical and functional properties, and clinical applicability are described.
Collapse
Affiliation(s)
- Ekaterina A Grebenik
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Elvira R Gafarova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Leonid P Istranov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Elena V Istranova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Xiaowei Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Jing Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Weisheng Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Peter S Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia.,Institute of Photonic Technologies, Research center "Crystallography and Photonics" RAS, Moscow, 142190, Russia.,N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
15
|
Veryasova NN, Lazhko AE, Isaev DE, Grebenik EA, Timashev PS. Supercritical Carbon Dioxide—A Powerful Tool for Green Biomaterial Chemistry. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2020. [DOI: 10.1134/s1990793119070236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
García-Gareta E, Abduldaiem Y, Sawadkar P, Kyriakidis C, Lali F, Greco KV. Decellularised scaffolds: just a framework? Current knowledge and future directions. J Tissue Eng 2020; 11:2041731420942903. [PMID: 32742632 PMCID: PMC7376382 DOI: 10.1177/2041731420942903] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/27/2020] [Indexed: 12/14/2022] Open
Abstract
The use of decellularised matrices as scaffolds offers the advantage of great similarity with the tissue to be replaced. Moreover, decellularised tissues and organs can be repopulated with the patient's own cells to produce bespoke therapies. Great progress has been made in research and development of decellularised scaffolds, and more recently, these materials are being used in exciting new areas like hydrogels and bioinks. However, much effort is still needed towards preserving the original extracellular matrix composition, especially its minor components, assessing its functionality and scaling up for large tissues and organs. Emphasis should also be placed on developing new decellularisation methods and establishing minimal criteria for assessing the success of the decellularisation process. The aim of this review is to critically review the existing literature on decellularised scaffolds, especially on the preparation of these matrices, and point out areas for improvement, finishing with alternative uses of decellularised scaffolds other than tissue and organ reconstruction. Such uses include three-dimensional ex vivo platforms for idiopathic diseases and cancer modelling.
Collapse
Affiliation(s)
- Elena García-Gareta
- The Griffin Institute, Northwick Park
and Saint Mark’s Hospital, London, UK
- Regenerative Biomaterials Group, The
RAFT Institute and The Griffin Institute, Northwick Park and Saint Mark’s Hospital,
London, UK
- Division of Biomaterials and Tissue
Engineering, Eastman Dental Institute, University College London, London, UK
| | - Yousef Abduldaiem
- The Griffin Institute, Northwick Park
and Saint Mark’s Hospital, London, UK
| | - Prasad Sawadkar
- Regenerative Biomaterials Group, The
RAFT Institute and The Griffin Institute, Northwick Park and Saint Mark’s Hospital,
London, UK
| | - Christos Kyriakidis
- The Griffin Institute, Northwick Park
and Saint Mark’s Hospital, London, UK
- Regenerative Biomaterials Group, The
RAFT Institute and The Griffin Institute, Northwick Park and Saint Mark’s Hospital,
London, UK
| | - Ferdinand Lali
- The Griffin Institute, Northwick Park
and Saint Mark’s Hospital, London, UK
| | | |
Collapse
|
17
|
Noble C, Maxson EL, Lerman A, Young MD. Mechanical and finite element evaluation of a bioprinted scaffold following recellularization in a rat subcutaneous model. J Mech Behav Biomed Mater 2019; 102:103519. [PMID: 31879268 DOI: 10.1016/j.jmbbm.2019.103519] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 10/01/2019] [Accepted: 11/01/2019] [Indexed: 12/23/2022]
Abstract
Tissue engineered heart valves (TEHV) provide several advantages over currently available aortic heart valve replacements. Bioprinting provides a patient-specific means of developing a TEHV scaffold from imaging data, and the capability to embed the patient's own cells within the scaffold. In this work we investigated the remodeling capacity of a collagen-based bio-ink by implanting bioprinted disks in a rat subcutaneous model for 2, 4 and 12 weeks and evaluating the mechanical response using biaxial testing and subsequent finite element (FE) modeling. Samples explanted after 2 and 4 weeks showed inferior mechanical properties compared to native tissues while 12 week explants showed a mechanical response of similar magnitude but did not demonstrate the anisotropy present in native tissues. In the FE analysis, the model utilizing mechanical properties from samples explanted after 12 weeks showed the closest mechanical behavior to the native tissues. However, in diastole native tissues showed higher stress in the leaflet belly and lower strain at the commissures compared to 12 week explants, likely due to the anisotropy present in the native tissues. Thus, either further remodeling is required in situ in the aortic valve position or by in vitro preconditioning in an environment such as a bioreactor. Regardless, these results demonstrate the utility of FE analysis to optimize bioprinting process parameters for the most favorable in vivo mechanical performance.
Collapse
Affiliation(s)
- Christopher Noble
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Eva L Maxson
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Melissa D Young
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
18
|
Kim H, Kim Y, Fendereski M, Hwang NS, Hwang Y. Recent Advancements in Decellularized Matrix-Based Biomaterials for Musculoskeletal Tissue Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1077:149-162. [DOI: 10.1007/978-981-13-0947-2_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|