1
|
Jiang J, Zhai S, Yao L, Zhang Y, Zhou S. The influence of Kitchon-RCAA on biomechanics of maxillary tissues based on indirect action: A finite element analysis. Proc Inst Mech Eng H 2024:9544119241305468. [PMID: 39727304 DOI: 10.1177/09544119241305468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
This paper creates 3D models of Kitchon Root Controlled Auxiliary Archwire (Kitchon-RCAA) with different material properties and assembles them onto the main archwire equipped with brackets. By setting different loading methods and conducting Finite Element Analysis (FEA), the range of Orthodontic Torque/Support Force (OT/SF) values can be obtained. From the obtained values, it can be seen that changes in material properties have a significant impact on the mechanical properties of Kitchon-RCAA. When the properties of the Kitchon-RCAA material change two or more times, the mechanical values generated by Kitchon-RCAA cannot be directly added from two or more separate changes in the properties of the material. Therefore, it is necessary to simulate the model after each parameter change to obtain new results. And then the maxillary bio-model is reconstructed in reverse based on Cone Beam Computerized Tomography (CBCT) images. The biomechanical data equivalent to the mechanical mechanics generated by the root control assisted archwire is also added to the corresponding tooth positions, making indirect orthodontic behavior of Kitchon-RCAA on teeth possible. From the obtained results, it can be seen that the von Mises stress and total deformation magnitude for both normal teeth and corresponding Periodontal Ligament (PDL) position show a stable trend, while the Right Cuspid (R-C) and corresponding PDL with malformed root have a large stress concentration and may have a mold penetration problem. Overall, this paper not only analyses the mechanical behavior of the Kitchon-RCAA, this article not only analyzed the mechanical behavior of Kitchon-RCAA, but also its effect on the indirect biomechanical behavior of the teeth and PDL. And in combination with simulation result nephograms, it also enables predictability and visualization of orthodontic results. This helps dentists to provide safer and more reliable individualized orthodontic treatment plans for patients.
Collapse
Affiliation(s)
- Jingang Jiang
- The Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin, Heilongjiang, P. R. China
- The Robotics & Its Engineering Research Center, Harbin University of Science and Technology, Harbin, Heilongjiang, P. R. China
| | - Shuojian Zhai
- The Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin, Heilongjiang, P. R. China
| | - Liang Yao
- The Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin, Heilongjiang, P. R. China
- The Robotics & Its Engineering Research Center, Harbin University of Science and Technology, Harbin, Heilongjiang, P. R. China
| | - Yongde Zhang
- The Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin, Heilongjiang, P. R. China
- The Robotics & Its Engineering Research Center, Harbin University of Science and Technology, Harbin, Heilongjiang, P. R. China
| | - Shan Zhou
- The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P. R. China
| |
Collapse
|
2
|
Wang Z, Du S, Zhu H, Yi K, Tang Z, Li Q. A finite element analysis of periodontal ligament fluid mechanics response to occlusal loading based on hydro-mechanical coupling model. Arch Oral Biol 2024; 164:106008. [PMID: 38781742 DOI: 10.1016/j.archoralbio.2024.106008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/12/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE Considering fluid stimulation is one of the essential biomechanical signals for periodontal tissues, this study aims to characterizing fluid mechanics response during occlusal loading by a hydro-mechanical coupling model for periodontal ligament. DESIGN Models simulating periodontium with normal bone height and with intraosseous defects were built with three mechanical modules: tooth, periodontal ligament and alveolar bone. Tooth was modeled as linear elastic, and periodontal ligament and alveolar bone as a hydro-mechanical coupling model. Transient analyses under dynamic occlusal loading were performed. Fluid dynamics within periodontal ligament space was simulated and visualized by post-processing module. RESULTS Reciprocating oscillatory flow occurred within the periodontal ligament under occlusal loading. Higher pore pressure and fluid velocity were observed in furcation and apical regions compared to mid-root and cervical regions. Intraosseous defects increased pore pressure and fluid velocity within the periodontal ligament, most significantly near the defect. CONCLUSION Based on the results of the hydro-mechanical coupling model, significant oscillatory fluid motion is observed within the periodontal ligament under occlusal loading. Particularly, higher fluid velocity is evident in the furcation and apical areas. Additionally, Intraosseous defects significantly enhance fluid motion within the periodontal ligament.
Collapse
Affiliation(s)
- Zhongyu Wang
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing
| | - Sa Du
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing
| | - Huilin Zhu
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing
| | - Ke Yi
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing
| | - Zhihui Tang
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing.
| | - Qing Li
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing, PR China.
| |
Collapse
|
3
|
Bi S, Shi G. The crucial role of periodontal ligament's Poisson's ratio and tension-compression asymmetric moduli on the evaluation of tooth displacement and stress state of periodontal ligament. J Mech Behav Biomed Mater 2023; 148:106217. [PMID: 37931551 DOI: 10.1016/j.jmbbm.2023.106217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023]
Abstract
The hydrostatic stress in the periodontal ligament (PDL) evaluated by finite element analysis is considered an important indicator for determining an appropriate orthodontic force. The computed result of the hydrostatic stress strongly depends on the PDL material model used in the orthodontic simulation. This study aims to investigate the effects of PDL Poisson's ratio and tension-compression asymmetric moduli on both the simulated tooth displacement and the PDL hydrostatic stress. Three tension-compression symmetric and two asymmetric PDL constitutive models were selected to simulate the tensile and compressive behavior of a PDL specimen under uniaxial loading, and the resulting numerical results were compared with the in-vitro PDL experimental results reported in the literature. Subsequently, a tooth model was established, and the selected constitutive models and parameters were employed to assess the hydrostatic stress state in the PDL under two distinct loading conditions. The simulated results indicate that PDL Poisson's ratio and tension-compression asymmetry exert substantial influences on the simulated PDL hydrostatic stress. Conversely, the elastic modulus exhibits minimal impact on the PDL stress state under the identical loading conditions. Furthermore, the PDL models with tension-compression asymmetric moduli and appropriate Poisson's ratio yield more realistic hydrostatic stress. Hence, it is imperative to employ suitable Poisson's ratio and tension-compression asymmetric moduli for the purpose of characterizing the biomechanical response of the PDL in orthodontic simulations.
Collapse
Affiliation(s)
- Shaoyang Bi
- Department of Mechanics, Tianjin University, 135 Yaguan Road, Tianjin, 300354, China.
| | - Guangyu Shi
- Department of Mechanics, Tianjin University, 135 Yaguan Road, Tianjin, 300354, China
| |
Collapse
|
4
|
Zhong J, Shibata Y, Wu C, Watanabe C, Chen J, Zheng K, Hu J, Swain MV, Li Q. Functional non-uniformity of periodontal ligaments tunes mechanobiological stimuli across soft- and hard-tissue interfaces. Acta Biomater 2023; 170:240-249. [PMID: 37634832 DOI: 10.1016/j.actbio.2023.08.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/09/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
The bone-periodontal ligament-tooth (BPT) complex is a unique mechanosensing soft-/hard-tissue interface, which governs the most rapid bony homeostasis in the body responding to external loadings. While the correlation between such loading and alveolar bone remodelling has been widely recognised, it has remained challenging to investigate the transmitted mechanobiological stimuli across such embedded soft-/hard-tissue interfaces of the BPT complex. Here, we propose a framework combining three distinct bioengineering techniques (i, ii, and iii below) to elucidate the innate functional non-uniformity of the PDL in tuning mechanical stimuli to the surrounding alveolar bone. The biphasic PDL mechanical properties measured via nanoindentation, namely the elastic moduli of fibres and ground substance at the sub-tissue level (i), were used as the input parameters in an image-based constitutive modelling framework for finite element simulation (ii). In tandem with U-net deep learning, the Gaussian mixture method enabled the comparison of 5195 possible pseudo-microstructures versus the innate non-uniformity of the PDL (iii). We found that the balance between hydrostatic pressure in PDL and the strain energy in the alveolar bone was maintained within a specific physiological range. The innate PDL microstructure ensures the transduction of favourable mechanobiological stimuli, thereby governing alveolar bone homeostasis. Our outcomes expand current knowledge of the PDL's mechanobiological roles and the proposed framework can be adopted to a broad range of similar soft-/hard- tissue interfaces, which may impact future tissue engineering, regenerative medicine, and evaluating therapeutic strategies. STATEMENT OF SIGNIFICANCE: A combination of cutting-edge technologies, including dynamic nanomechanical testing, high-resolution image-based modelling and machine learning facilitated computing, was used to elucidate the association between the microstructural non-uniformity and biomechanical competence of periodontal ligaments (PDLs). The innate PDL fibre network regulates mechanobiological stimuli, which govern alveolar bone remodelling, in different tissues across the bone-PDL-tooth (BPT) interfaces. These mechanobiological stimuli within the BPT are tuned within a physiological range by the non-uniform microstructure of PDLs, ensuring functional tissue homeostasis. The proposed framework in this study is also applicable for investigating the structure-function relationship in broader types of fibrous soft-/hard- tissue interfaces.
Collapse
Affiliation(s)
- Jingxiao Zhong
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yo Shibata
- Department of Biomaterials and Engineering, Showa University School of Dentistry, Tokyo, Japan
| | - Chi Wu
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Chie Watanabe
- Department of Biomaterials and Engineering, Showa University School of Dentistry, Tokyo, Japan
| | - Junning Chen
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Keke Zheng
- Institute for Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, UK
| | - Jingrui Hu
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Michael V Swain
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Qing Li
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
5
|
Ortún-Terrazas J, Cegoñino J, Pérez Del Palomar A. In silico approach towards neuro-occlusal rehabilitation for the early correction of asymmetrical development in a unilateral crossbite patient. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3688. [PMID: 36726272 DOI: 10.1002/cnm.3688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/09/2023] [Accepted: 01/29/2023] [Indexed: 05/13/2023]
Abstract
Neuro-occlusal rehabilitation (N.O.R.) is a discipline of the stomatognathic medicine that defends early treatments of functional malocclusions, such as unilateral crossbite, for the correction of craniofacial development, avoiding surgical procedures later in life. Nevertheless, N.O.R.'s advances have not been proved analytically yet due to the difficulties of evaluate the mechanical response after the treatment. This study aims to evaluate computationally the effect of N.O.R.'s treatments during childhood. Therefore, bilateral chewing and maximum intercuspation occlusion were modelled through a detailed finite element model of a paediatric craniofacial complex, before and after different selective grinding-alternatives. This model was subjected to the muscular forces derived from a musculoskeletal model and was validated by the occlusal contacts recorded experimentally. This approach yielded errors below 2% and reproduced successfully the occlusal, muscular, functional and mechanical imbalance before the therapies. Treatment strategies balanced the occlusal plane and reduced the periodontal overpressure (>4.7 kPa) and the mandibular over deformation (>0.002 ε) on the crossed side. Based on the principles of the mechanostat theory of bone remodelling and the pressure-tension theory of tooth movement, these findings could also demonstrate how N.O.R.'s treatments correct the malocclusion and the asymmetrical development of the craniofacial complex. Besides, N.O.R.'s treatments slightly modified the stress state and functions of the temporomandibular joints, facilitating the chewing by the unaccustomed side. These findings provide important biomechanical insights into the use of N.O.R.'s treatments for the correction of unilateral crossbite, but also encourage the application of computing methods in biomedical research and clinical practise.
Collapse
Affiliation(s)
- Javier Ortún-Terrazas
- Escuela Superior de Ingeniería y Tecnología (ESIT), Universidad Internacional de La Rioja (UNIR), Logroño, La Rioja, Spain
- Instituto Tecnológico de Aragón (ITAINNOVA), Zaragoza, Zaragoza, Spain
| | - José Cegoñino
- Instituto Tecnológico de Aragón (ITAINNOVA), Zaragoza, Zaragoza, Spain
| | | |
Collapse
|
6
|
Roato I, Masante B, Putame G, Massai D, Mussano F. Challenges of Periodontal Tissue Engineering: Increasing Biomimicry through 3D Printing and Controlled Dynamic Environment. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12213878. [PMID: 36364654 PMCID: PMC9655809 DOI: 10.3390/nano12213878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 05/14/2023]
Abstract
In recent years, tissue engineering studies have proposed several approaches to regenerate periodontium based on the use of three-dimensional (3D) tissue scaffolds alone or in association with periodontal ligament stem cells (PDLSCs). The rapid evolution of bioprinting has sped up classic regenerative medicine, making the fabrication of multilayered scaffolds-which are essential in targeting the periodontal ligament (PDL)-conceivable. Physiological mechanical loading is fundamental to generate this complex anatomical structure ex vivo. Indeed, loading induces the correct orientation of the fibers forming the PDL and maintains tissue homeostasis, whereas overloading or a failure to adapt to mechanical load can be at least in part responsible for a wrong tissue regeneration using PDLSCs. This review provides a brief overview of the most recent achievements in periodontal tissue engineering, with a particular focus on the use of PDLSCs, which are the best choice for regenerating PDL as well as alveolar bone and cementum. Different scaffolds associated with various manufacturing methods and data derived from the application of different mechanical loading protocols have been analyzed, demonstrating that periodontal tissue engineering represents a proof of concept with high potential for innovative therapies in the near future.
Collapse
Affiliation(s)
- Ilaria Roato
- Bone and Dental Bioengineering Laboratory, CIR-Dental School, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
- Correspondence: ; Tel.: +39-011-670-3528
| | - Beatrice Masante
- Bone and Dental Bioengineering Laboratory, CIR-Dental School, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
- PolitoBIOMed Lab and Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, 10129 Turin, Italy
| | - Giovanni Putame
- PolitoBIOMed Lab and Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, 10129 Turin, Italy
| | - Diana Massai
- PolitoBIOMed Lab and Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, 10129 Turin, Italy
| | - Federico Mussano
- Bone and Dental Bioengineering Laboratory, CIR-Dental School, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| |
Collapse
|
7
|
Bi S, Guo Z, Zhang X, Shi G. Anchorage effects of ligation and direct occlusion in orthodontics: A finite element analysis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 226:107142. [PMID: 36156441 DOI: 10.1016/j.cmpb.2022.107142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/07/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND OBJECTIVE During orthodontic treatment, the figure-of-eight ligature and the physiological occlusion play an important role in providing anchorage effects. However, their effects on reaction forces of tooth and stress state in periodontal ligament (PDL) have not been quantitatively evaluated yet. In this study, we presented a finite element analysis process for simulating posterior molar ligature and direct occlusion during orthodontics in order to quantitatively assess their anchorage effects. METHODS A high precision 3D biomechanical model containing upper and lower teeth, PDL, brackets and archwire was generated from the images of computed tomographic scan and sophisticated modelling procedures. The orthodontic treatment of closing the extraction gap was simulated via the finite element method to evaluate the biomechanical response of the molars under the conditions with or without ligation. The simulations were divided into experimental and control groups. In the experimental group, orthodontic force of 1 N was first applied, then direct occlusal forces of 3 and 10 N were applied on each opposite tooth. While in the control group, occlusal forces were applied without orthodontic treatment. The tooth displacement, the stress state in the PDL and the directions of the resultant forces on each tooth were evaluated. RESULTS In the case of molars ligated, the maximum hydrostatic stress in the molars' PDL decreases by 60%. When an initial tooth displacement of several microns occurs in response to an orthodontic force, the direction of the occlusal force changes simultaneously. Even a moderate occlusal force (3 N per tooth) can almost completely offset the mesial forces on the maxillary teeth, thus to provide effective anchorage effect for the orthodontics. CONCLUSIONS The proposed method is effective for simulating ligation and direct occlusion. Figure-of-eight ligature can effectively disperse orthodontic forces on the posterior teeth, while a good original occlusal relationship provides considerable anchorage effects in orthodontics.
Collapse
Affiliation(s)
- Shaoyang Bi
- Department of Mechanics, Tianjin University, 135 Yaguan Road, Tianjin 300354, China.
| | - Ziyuan Guo
- Department of Orthodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China
| | - Xizhong Zhang
- Department of Orthodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China
| | - Guangyu Shi
- Department of Mechanics, Tianjin University, 135 Yaguan Road, Tianjin 300354, China
| |
Collapse
|
8
|
Construction of hyperelastic model of human periodontal ligament based on collagen fibers distribution. J Mech Behav Biomed Mater 2022; 135:105484. [PMID: 36179616 DOI: 10.1016/j.jmbbm.2022.105484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The human periodontal ligament (PDL) dominated by collagen fibers showed hyperelastic mechanical behavior under orthodontic force. Despite previous researches on the hyperelastic model of PDL, there were certain limitations because of the types of samples and the ignorance of distribution of collagen fibers. Therefore, the aim of this study was to quantify the effect of collagen fibers distribution of human PDL on its hyperelastic behavior. METHODS A total of 6 human PDL samples of root neck, root middle and root apex were cut from human maxillary central incisor and lateral incisor. The spatial angles of collagen fibers were observed by optical microscope, the hyperelastic model was constructed combined with the observation results. The quasi-static uniaxial tensile tests with displacement load 0.05 mm/min were carried out, and the test data were used to identify the parameters of model. RESULTS The mechanical behavior of human PDL conformed to the trend of hyperelastic materials, and greatly depended on the spatial angles of internal collagen fibers. The R2 value statistical fit of the constitutive model to the data is excellent (R2 > 0.98). This model could excellently describe the hyperelastic properties of human PDL. SIGNIFICANCE In this study, we quantitatively described the effect of spatial distribution of collagen fibers on the mechanical properties of human PDL. The accuracy of this model was verified by the uniaxial test data, and the relevant model parameters were acquired, which have certain reference value in subsequent researches on hyperelasticity of human PDL and clinical treatment.
Collapse
|
9
|
Gholamalizadeh T, Moshfeghifar F, Ferguson Z, Schneider T, Panozzo D, Darkner S, Makaremi M, Chan F, Søndergaard PL, Erleben K. Open-Full-Jaw: An open-access dataset and pipeline for finite element models of human jaw. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 224:107009. [PMID: 35872385 DOI: 10.1016/j.cmpb.2022.107009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND State-of-the-art finite element studies on human jaws are mostly limited to the geometry of a single patient. In general, developing accurate patient-specific computational models of the human jaw acquired from cone-beam computed tomography (CBCT) scans is labor-intensive and non-trivial, which involves time-consuming human-in-the-loop procedures, such as segmentation, geometry reconstruction, and re-meshing tasks. Therefore, with the current practice, researchers need to spend considerable time and effort to produce finite element models (FEMs) to get to the point where they can use the models to answer clinically-interesting questions. Besides, any manual task involved in the process makes it difficult for the researchers to reproduce identical models generated in the literature. Hence, a quantitative comparison is not attainable due to the lack of surface/volumetric meshes and FEMs. METHODS We share an open-access repository composed of 17 patient-specific computational models of human jaws and the utilized pipeline for generating them for reproducibility of our work. The used pipeline minimizes the required time for processing and any potential biases in the model generation process caused by human intervention. It gets the segmented geometries with irregular and dense surface meshes and provides reduced, adaptive, watertight, and conformal surface/volumetric meshes, which can directly be used in finite element (FE) analysis. RESULTS We have quantified the variability of our 17 models and assessed the accuracy of the developed models from three different aspects; (1) the maximum deviations from the input meshes using the Hausdorff distance as an error measurement, (2) the quality of the developed volumetric meshes, and (3) the stability of the FE models under two different scenarios of tipping and biting. CONCLUSIONS The obtained results indicate that the developed computational models are precise, and they consist of quality meshes suitable for various FE scenarios. We believe the provided dataset of models including a high geometrical variation obtained from 17 different models will pave the way for population studies focusing on the biomechanical behavior of human jaws.
Collapse
Affiliation(s)
- Torkan Gholamalizadeh
- Department of Computer Science, University of Copenhagen, Copenhagen 2100, Denmark; 3Shape A/S, Copenhagen 1060, Denmark.
| | - Faezeh Moshfeghifar
- Department of Computer Science, University of Copenhagen, Copenhagen 2100, Denmark
| | - Zachary Ferguson
- Courant Institute of Mathematical Sciences, New York University, 60 5th Ave, New York NY 10011, USA
| | - Teseo Schneider
- Department of Computer Science, University of Victoria, Victoria BC V8P 5C2, Canada
| | - Daniele Panozzo
- Courant Institute of Mathematical Sciences, New York University, 60 5th Ave, New York NY 10011, USA
| | - Sune Darkner
- Department of Computer Science, University of Copenhagen, Copenhagen 2100, Denmark
| | - Masrour Makaremi
- Dentofacial Orthopedics Department, University of Bordeaux, Bordeaux, France; Orthodontie clinic, 2 Rue des 2 Conils, Bergerac 24100, France
| | - François Chan
- Orthodontie clinic, 2 Rue des 2 Conils, Bergerac 24100, France
| | | | - Kenny Erleben
- Department of Computer Science, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
10
|
Multifactorial Analysis of Endodontic Microsurgery Using Finite Element Models. J Pers Med 2022; 12:jpm12061012. [PMID: 35743798 PMCID: PMC9224708 DOI: 10.3390/jpm12061012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 12/02/2022] Open
Abstract
Background: The present study aimed to classify the relative contributions of four biomechanical factors—the root-end filling material, the apical preparation, the root resection length, and the bone height—on the root stresses of the resected premolar. Methods: A design of experiments approach based on a defined subset of factor combinations was conducted to calculate the influence of each factor and their interactions. Sixteen finite element models were created and analyzed using the von Mises stress criterion. The robustness of the design of experiments was evaluated with nine supplementary models. Results: The current study showed that the factors preparation and bone height had a high influence on root stresses. However, it also revealed that nearly half of the biomechanical impact was missed without considering interactions between factors, particularly between resection and preparation. Conclusions: Design of experiments appears to be a valuable strategy to classify the contributions of biomechanical factors related to endodontics. Imagining all possible interactions and their clinical impact is difficult and can require relying on one’s own experience. This study proposed a statistical method to quantify the mechanical risk when planning apicoectomy. A perspective could be to integrate the equation defined herein in future software to support decision-making.
Collapse
|
11
|
Houg KP, Camarillo AM, Doschak MR, Major PW, Popowics T, Dennison CR, Romanyk DL. Strain Measurement within an Intact Swine Periodontal Ligament. J Dent Res 2022; 101:1474-1480. [PMID: 35689395 PMCID: PMC9605999 DOI: 10.1177/00220345221100234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The periodontal ligament (PDL) provides support, proprioception, nutrition, and protection within the tooth–PDL–bone complex (TPBC). While understanding the mechanical behavior of the PDL is critical, current research has inferred PDL mechanics from finite element models, from experimental measures on complete TPBCs, or through direct measurement of isolated PDL sections. Here, transducers are used in an attempt to quantify ex vivo PDL strain. In-fiber Bragg grating (FBG) sensors are small flexible sensors that can be placed within an intact TPBC and yield repeatable strain measurements from within the PDL space. The objective of this study was to determine: 1) if the FBG strain measured from the PDL space of intact swine premolars ex vivo was equivalent to physical PDL strains estimated through finite element analysis and 2) if a change in FBG strain could be linearly related to a change in finite element strain under variable tooth displacement, applied to an intact swine TPBC. Experimentally, individual TPBCs were subjected to 2 displacements (n = 14). The location of the FBG was determined from representative micro–computed tomography images. From a linear elastic finite element model of a TPBC, the strain magnitudes at the sensor locations were recorded. An experimental ratio (i.e., FBG strain at the first displacement divided by the FBG strain at the second displacement) and a finite element ratio (i.e., finite element strain at the first displacement divided by the finite element strain at the second displacement) were calculated. A linear regression model indicated a statistically significant relationship between the experimental and finite element ratio (P = 0.017) with a correlation coefficient (R2) of 0.448. It was concluded that the FBG sensor could be used as a measure for a change in strain and thus could be implemented in applications where the mechanical properties of an intact PDL are monitored over time.
Collapse
Affiliation(s)
- K P Houg
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - A M Camarillo
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - M R Doschak
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - P W Major
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - T Popowics
- Department of Oral Health Science, University of Washington, Seattle, WA, USA
| | - C R Dennison
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - D L Romanyk
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada.,School of Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
12
|
Ortún-Terrazas J, Fagan MJ, Cegoñino J, Illipronti-Filho E, Del Palomar AP. Biomechanical evaluation of the unilateral crossbite on the asymmetrical development of the craniofacial complex. A mechano-morphological approach. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 217:106703. [PMID: 35217305 DOI: 10.1016/j.cmpb.2022.106703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/27/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE The occlusion effect on the craniofacial development is a controversial topic that has attracted the interest of many researchers but that remains unclear, mainly due to the difficulties on measure its mechanical response experimentally. This mechano-morphological relationship of the craniofacial growth is often explained by the periosteal and capsular matrices of the functional matrix hypothesis (FMH); however, its outcomes have not been analytically demonstrated yet. This computational study aims, therefore, to analytically demonstrate the mechano-morphological relationship in the craniofacial development of children with unilateral crossbite (UXB) using the finite element (FE) method. METHODS The craniofacial complex asymmetry of ten children, five of whom exhibit UXB, was 3D-analysed and compared with the biomechanical response computed from a FE analysis of each patient's occlusion. Due to the complexity of the geometry and the multitude of contacts involved, the inherent limitations of the model were evaluated by comparing computed occlusal patterns with those recorded by an occlusal analysis on 3D printed copies. RESULTS Comparison's outcomes proved the reliability of our models with just a deviation error below 6% between both approaches. Out of validation process, computational results showed that the significant elongation of mandibular branch in the contralateral side could be related to the mandibular shift and increase of thickness on the crossed side, and particularly of the posterior region. These morphological changes could be associated with periodontal overpressure (>4.7 kPa) and mandibular over deformation (0.002 ε) in that side, in agreement with the periosteal matrix's principles. Furthermore, the maxilla's transversal narrowing and the elevation of the maxillary and zygomatic regions on the crossed side were statistically demonstrated and seem to be related with their respective micro displacements at occlusion, as accounted by their specific capsule matrices. Our results were consistent with those reported clinically and demonstrated analytically the mechano-morphological relationship of children's craniofacial development based on the FMH's functional matrices. CONCLUSIONS This study is a first step in the understanding of the occlusion's effect on the craniofacial development by computational methods. Our approach could help future engineers, researchers and clinicians to understand better the aetiology of some dental malocclusions and functional disorders improve the diagnosis or even predict the craniofacial development.
Collapse
Affiliation(s)
- Javier Ortún-Terrazas
- Group of Biomaterials, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.
| | - Michael J Fagan
- Medical and Biological Engineering, School of Engineering and Computer Science, University of Hull, Hull, United Kingdom
| | - José Cegoñino
- Group of Biomaterials, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - Edson Illipronti-Filho
- School of Dentistry, Department of Stomatology, University of São Paulo, São Paulo, Brazil
| | - Amaya Pérez Del Palomar
- Group of Biomaterials, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
13
|
Abstract
Successful periodontal regeneration requires the hierarchical reorganization of multiple tissues including periodontal ligament, cementum, alveolar bone, and gingiva. The limitation of conventional regenerative therapies has been attracting research interest in tissue engineering-based periodontal therapies where progenitor cells, scaffolds, and bioactive molecules are delivered. Scaffolds offer not only structural support but also provide geometrical clue to guide cell fate. Additionally, functionalization improves bioactive properties to the scaffold. Various scaffold designs have been proposed for periodontal regeneration. These include the fabrication of biomimetic periodontal extracellular matrix, multiphasic scaffolds with tissue-specific layers, and personalized 3D printed scaffolds. This review summarizes the basic concept as well as the recent advancement of scaffold designing and fabrication for periodontal regeneration and provides an insight of future clinical translation.
Collapse
Affiliation(s)
- Shuntaro Yamada
- Department of Clinical Dentistry, Faculty of Medicine - Tissue Engineering Group, University of Bergen, Årstadveien 19, 5009 Bergen, Norway
| | - Siddharth Shanbhag
- Department of Clinical Dentistry, Faculty of Medicine - Tissue Engineering Group, University of Bergen, Årstadveien 19, 5009 Bergen, Norway; Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Jonas Lies vei 65, 5021 Bergen, Norway
| | - Kamal Mustafa
- Department of Clinical Dentistry, Faculty of Medicine - Tissue Engineering Group, University of Bergen, Årstadveien 19, 5009 Bergen, Norway.
| |
Collapse
|
14
|
Gholamalizadeh T, Darkner S, Søndergaard PL, Erleben K. A multi-patient analysis of the center of rotation trajectories using finite element models of the human mandible. PLoS One 2021; 16:e0259794. [PMID: 34780529 PMCID: PMC8592475 DOI: 10.1371/journal.pone.0259794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/26/2021] [Indexed: 11/30/2022] Open
Abstract
Studying different types of tooth movements can help us to better understand the force systems used for tooth position correction in orthodontic treatments. This study considers a more realistic force system in tooth movement modeling across different patients and investigates the effect of the couple force direction on the position of the center of rotation (CRot). The finite-element (FE) models of human mandibles from three patients are used to investigate the position of the CRots for different patients’ teeth in 3D space. The CRot is considered a single point in a 3D coordinate system and is obtained by choosing the closest point on the axis of rotation to the center of resistance (CRes). A force system, consisting of a constant load and a couple (pair of forces), is applied to each tooth, and the corresponding CRot trajectories are examined across different patients. To perform a consistent inter-patient analysis, different patients’ teeth are registered to the corresponding reference teeth using an affine transformation. The selected directions and applied points of force on the reference teeth are then transformed into the registered teeth domains. The effect of the direction of the couple on the location of the CRot is also studied by rotating the couples about the three principal axes of a patient’s premolar. Our results indicate that similar patterns can be obtained for the CRot positions of different patients and teeth if the same load conditions are used. Moreover, equally rotating the direction of the couple about the three principal axes results in different patterns for the CRot positions, especially in labiolingual direction. The CRot trajectories follow similar patterns in the corresponding teeth, but any changes in the direction of the force and couple cause misalignment of the CRot trajectories, seen as rotations about the long axis of the tooth.
Collapse
Affiliation(s)
- Torkan Gholamalizadeh
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
- 3Shape A/S, Copenhagen, Denmark
- * E-mail:
| | - Sune Darkner
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Kenny Erleben
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Nedrelow DS, Damodaran KV, Thurston TA, Beyer JP, Barocas VH. Residual stress and osmotic swelling of the periodontal ligament. Biomech Model Mechanobiol 2021; 20:2047-2059. [PMID: 34365539 DOI: 10.1007/s10237-021-01493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/09/2021] [Indexed: 11/28/2022]
Abstract
Osmotic swelling and residual stress are increasingly recognized as important factors in soft tissue biomechanics. Little attention has been given to residual stress in periodontal ligament (PDL) biomechanics despite its rapid growth and remodeling potential. Those tissues that bear compressive loads, e.g., articular cartilage, intervertebral disk, have received much attention related to their capacities for osmotic swelling. To understand residual stress and osmotic swelling in the PDL, it must be asked (1) to what extent, if any, does the PDL exhibit residual stress and osmotic swelling, and (2) if so, whether residual stress and osmotic swelling are mechanically significant to the PDL's stress/strain behavior under external loading. Here, we incrementally built a series of computer models that were fit to uniaxial loading, osmotic swelling and residual stretch data. The models were validated with in vitro shear tests and in vivo tooth-tipping data. Residual stress and osmotic swelling models were used to analyze tension and compression stress (principal stress) effects in PDL specimens under external loads. Shear-to-failure experiments under osmotic conditions were performed and modeled to determine differences in mechanics and failure of swollen periodontal ligament. Significantly higher failure shear stresses in swollen PDL suggested that osmotic swelling reduced tension and thus had a strengthening effect. The in vivo model's first and third principal stresses were both higher with residual stress and osmotic swelling, but smooth stress gradients prevailed throughout the three-dimensional PDL anatomy. The addition of PDL stresses from residual stress and osmotic swelling represents a unique concept in dental biomechanics.
Collapse
Affiliation(s)
- David S Nedrelow
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, USA.
| | - Kishore V Damodaran
- Department of Developmental and Surgical Sciences, University of Minnesota School of Dentistry, Minneapolis, USA
| | - Theresa A Thurston
- Department of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, USA
| | - John P Beyer
- Department of Developmental and Surgical Sciences, University of Minnesota School of Dentistry, Minneapolis, USA
| | - Victor H Barocas
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, USA
| |
Collapse
|
16
|
Ovy EG, Romanyk DL, Flores Mir C, Westover L. Modelling and evaluating periodontal ligament mechanical behaviour and properties: A scoping review of current approaches and limitations. Orthod Craniofac Res 2021; 25:199-211. [PMID: 34355507 DOI: 10.1111/ocr.12527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/29/2022]
Abstract
This scoping review is intended to synthesize the techniques proposed to model the tooth-periodontal ligament-bone complex (TPBC), while also evaluating the suggested periodontal ligament (PDL) material properties. It is concentrated on the recent advancements on the PDL and TPBC models, while identifying the advantages and limitations of the proposed approaches. Systematic searches were conducted up to December 2020 for articles that proposed PDL models to assess orthodontic tooth movement in Compendex, Web of Science, EMBASE, MEDLINE, PubMed, ScienceDirect, Google Scholar and Scopus databases. Although there have been many studies focused on the evaluation of PDL material properties through numerous modelling approaches, only a handful of approaches have been identified to investigate the interface properties of the PDL as a complete dynamical system (TPBC models). Past reviews on the analytical and experimental determination of the PDL properties already show a concerning range in reported output values-some nearly six orders of magnitude in difference-that strongly suggested the need for further investigation. Surprisingly, it has not yet been possible to determine a narrower range of values for the PDL material properties. Moreover, very few scientific approaches address the TPBC as an integrated complex system model. In consequence, current methods for capturing the PDL material behaviour in a clinical setting are limited and inconclusive. This synthesis encourages more systematic, pragmatic and phenomenological research in this area.
Collapse
Affiliation(s)
- Enaiyat Ghani Ovy
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Dan L Romanyk
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Carlos Flores Mir
- Department of Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Lindsey Westover
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
17
|
3D-Printed Collagen-Based Waveform Microfibrous Scaffold for Periodontal Ligament Reconstruction. Int J Mol Sci 2021; 22:ijms22147725. [PMID: 34299345 PMCID: PMC8307958 DOI: 10.3390/ijms22147725] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 01/13/2023] Open
Abstract
Reconstruction of the periodontal ligament (PDL) to fulfill functional requirement remains a challenge. This study sought to develop a biomimetic microfibrous system capable of withstanding the functional load to assist PDL regeneration. Collagen-based straight and waveform microfibers to guide PDL cell growth were prepared using an extrusion-based bioprinter, and a laminar flow-based bioreactor was used to generate fluidic shear stress. PDL cells were seeded on the respective microfibers with 0 or 6 dynes/cm2 fluidic shear stress for 1–4 h. The viability, morphology, adhesion pattern, and gene expression levels of PDL cells were assessed. The results revealed that upon bioprinting optimization, collagen-based microfibers were successfully fabricated. The straight microfibers were 189.9 ± 11.44 μm wide and the waveform microfibers were 235.9 ± 11.22 μm wide. Under 6 dynes/cm2 shear stress, PDL cells were successfully seeded, and cytoskeleton expansion, adhesion, and viability were greater. Cyclin D, E-cadherin, and periostin were upregulated on the waveform microfibers. In conclusion, 3D-printed collagen-based waveform microfibers preserved PDL cell viability and exhibited an enhanced tendency to promote healing and regeneration under shear stress. This approach is promising for the development of a guiding scaffold for PDL regeneration.
Collapse
|
18
|
Houg KP, Armijo L, Doschak MR, Major PW, Popowics T, Dennison CR, Romanyk DL. Experimental repeatability, sensitivity, and reproducibility of force and strain measurements from within the periodontal ligament space during ex vivo swine tooth loading. J Mech Behav Biomed Mater 2021; 120:104562. [PMID: 33971497 DOI: 10.1016/j.jmbbm.2021.104562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
The Periodontal Ligament (PDL) is a complex connective tissue that anchors a tooth to the surrounding alveolar bone. The small size and complex geometry of the PDL space within an intact tooth-PDL-bone complex (TPBC) limits strain measurements. An in-fiber Bragg grating (FBG) sensor offers potential for such measurements due to its small size. This work defines an experimental procedure where strain and force were measured during quasi-static, apically directed, displacement-controlled tests on swine premolar crowns. Specifically, the: inter-TPBC, intra-TPBC, and long-term repeatability after a preconditioned state was objectively identified; sensitivity to preload magnitude, TPBC alignment, and sensor depth; and reproducibility within a TPBC was determined. Data clustering was used to determine the appropriate number of preconditioning trials, ranging from one to seven. Strain and force measurements showed intra-TPBC repeatability with average adjusted root mean square from the median of 28.9% of the peak strain and 4.5% of the peak force measurement. A Mann-Whitney U test generally found statistically significant differences in peak strain and force measurements between the left and right sides, suggesting a lack of inter-TPBC repeatability. Using a Friedman test, it was shown that peak strain measures were sensitive to the TPBC alignment and sensor depth, while peak force measures were sensitive to the preload and TPBC alignment. A Friedman test suggested reproducible strain and force measurements when the FBG was replaced within the same TPBC and the preload, alignment, and sensor depth were controlled.
Collapse
Affiliation(s)
- Kathryn P Houg
- Department of Mechanical Engineering, University of Alberta, 4-17 Mechanical Engineering Building, North Campus, Edmonton, T6G 2G8, AB, Canada.
| | - Leigh Armijo
- Department of Orthodontics, University of Washington School of Dentistry, 1959 NE Pacific St B307, Seattle, 98195, WA, USA.
| | - Michael R Doschak
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, 2-020J Katz Centre for Pharmacy & Health Research, 11361 - 87 Avenue NW, Edmonton, T6G 2E1, AB, Canada.
| | - Paul W Major
- School of Dentistry, University of Alberta, 5-478 Edmonton Clinic Health Academy, 1405 - 87 Avenue NW, T6G 1C0, Edmonton, AB, Canada.
| | - Tracy Popowics
- Dept. of Oral Health Sciences, University of Washington School of Dentistry, Box 357475, Seattle, WA, 98195, USA.
| | - Christopher R Dennison
- Department of Mechanical Engineering, University of Alberta, 10-372 Donadeo Innovation Centre for Engineering, 9211 - 116 Street NW, Edmonton, AB, T6G 2H5, Canada.
| | - Dan L Romanyk
- Department of Mechanical Engineering and School of Dentistry, University of Alberta, 10-354 Donadeo Innovation Centre for Engineering, 9211 - 116 Street NW, Edmonton, AB, T6G 2H5, Canada.
| |
Collapse
|
19
|
Otani T, Koga T, Nozaki K, Kobayashi Y, Tanaka M. Mechanical effects of distributed fibre orientation in the periodontal ligament of an idealised geometry. Comput Methods Biomech Biomed Engin 2020; 24:1-10. [PMID: 33225747 DOI: 10.1080/10255842.2020.1847277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/09/2020] [Accepted: 11/03/2020] [Indexed: 10/22/2022]
Abstract
In this study, we computationally assess the effects of the distributed fibre orientation in the periodontal ligament (PDL) on mechanical responses of the tooth-PDL complex. An idealised axial-symmetric geometry of a tooth-PDL complex was constructed. The fibre orientation in the PDL was modelled as a trigonometric function based on anatomical knowledge, and the PDL was modelled as a transversely isotropic hyperelastic material dependent on fibre orientations. Parametric studies of the fibre orientation on the mechanical responses of the tooth-PDL complex were conducted. Obtained results showed that the anatomically consistent fibre orientation functions as a supporting structure against not only vertical but also horizontal loads.
Collapse
Affiliation(s)
- Tomohiro Otani
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Japan
| | - Taiki Koga
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Japan
| | - Kazunori Nozaki
- Division of Medical Information, Osaka University Dental Hospital, Osaka, Japan
| | - Yo Kobayashi
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Japan
| | - Masao Tanaka
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Japan
| |
Collapse
|
20
|
Kaiser AH, Keilig L, Klein R, Bourauel C. Parameter identification for the simulation of the periodontal ligament during the initial phase of orthodontic tooth movement. Comput Methods Biomech Biomed Engin 2020; 24:333-348. [PMID: 33136452 DOI: 10.1080/10255842.2020.1830275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The paper is concerned with simulation of the periodontal ligament response to force in the initial phase of orthodontic tooth movement. This is based on two previous investigations, a in vitro experiment with specimens of porcine mandibular premolars and a in vivo experiment on human upper first incisors. For the curve fit of the in vitro experiment a model function, assuming viscoelasticity, was introduced. The viscoelastic model function was augmented by a ramp rise time term, to account for observed dependence of the response on actuator velocity, and a previous load history term, to account for the effect of the previous tests on the current test. The correlation coefficient of a curve fit for all tests grouped together was R2=0.98. Next, a curve fit of the in vivo experiment was done. Good correlation was found for a simplified model function, without viscoelastic term (R2=0.96). For both tests, in vitro and in vivo, the ramp rise time term improved correlation. A finite element model of the specimen of the in vitro experiment was created. For the PDL a hyperelastic constitutive model for compressible material was used and model parameters were identified. The present work indicates that the macroscopic response of the periodontal ligament to an external load can be simulated with a poro-visco-hyperelastic model. The simulation showed that poroelastic behaviour will gradually cease when viscoelastic relaxation progresses. This followed also from dimensionless analysis. As a consequence, for slow loading, or if initial response to fast loading is not of interest, a visco-hyperelastic model may suffice. To identify parameters of the finite element model several optimisation problems were solved. A model function, which can be regarded as a reduced order model, allowed a full factorial experiment (analysis) at low cost, to identify initial parameters. The thus found parameters were further refined with an optimum interpolation meta-model. That is, for limited number of parameter combinations the response was simulated with the finite element model and a refined parameter study was conducted by means of optimal interpolation. The thus found optimal parameters were verified by simulation with the finite element model. Optimal interpolation is computationally cheap, which allowed full factorial experiments at low cost.
Collapse
Affiliation(s)
| | - Ludger Keilig
- Oral Technology, University Hospital Bonn, Bonn, Germany
| | - Reinhard Klein
- Institute of Computer Science II, University of Bonn, Bonn, Germany
| | | |
Collapse
|
21
|
Validated Finite Element Models of Premolars: A Scoping Review. MATERIALS 2020; 13:ma13153280. [PMID: 32717945 PMCID: PMC7436020 DOI: 10.3390/ma13153280] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 12/02/2022]
Abstract
Finite element (FE) models are widely used to investigate the biomechanics of reconstructed premolars. However, parameter identification is a complex step because experimental validation cannot always be conducted. The aim of this study was to collect the experimentally validated FE models of premolars, extract their parameters, and discuss trends. A systematic review was performed following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Records were identified in three electronic databases (MEDLINE [PubMed], Scopus, The Cochrane Library) by two independent reviewers. Twenty-seven parameters dealing with failure criteria, model construction, material laws, boundary conditions, and model validation were extracted from the included articles. From 1306 records, 214 were selected for eligibility and entirely read. Among them, 19 studies were included. A heterogeneity was observed for several parameters associated with failure criteria and model construction. Elasticity, linearity, and isotropy were more often chosen for dental and periodontal tissues with a Young’s modulus mostly set at 18–18.6 GPa for dentine. Loading was mainly simulated by an axial force, and FE models were mostly validated by in vitro tests evaluating tooth strains, but different conditions about experiment type, sample size, and tooth status (intact or restored) were reported. In conclusion, material laws identified herein could be applied to future premolar FE models. However, further investigations such as sensitivity analysis are required for several parameters to clarify their indication.
Collapse
|
22
|
Ortún-Terrazas J, Cegoñino J, Pérez Del Palomar A. In silico study of cuspid' periodontal ligament damage under parafunctional and traumatic conditions of whole-mouth occlusions. A patient-specific evaluation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 184:105107. [PMID: 31629157 DOI: 10.1016/j.cmpb.2019.105107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/28/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Although traumatic loading has been associated with periodontal ligament (PDL) damage and therefore with several oral disorders, the damage phenomena and the traumatic loads involved are still unclear. The complex composition and extremely thin size of the PDL make experimentation difficult, requiring computational studies that consider the macroscopic loading conditions, the microscopic composition and fine detailed geometry of the tissue. In this study, a new methodology to analyse the damage phenomena in the collagen network and the extracellular matrix of the PDL caused by parafunctional and traumatic occlusal forces was proposed. METHODS The entire human mandible and a portion thereof containing a full cuspid tooth were separately modelled using finite element analysis based on computed tomography and micro-computed tomography images, respectively. The first model was experimentally validated by occlusion analysis and subjected to the muscle loads produced during hard and soft chewing, traumatic cuspid occlusion, grinding, clenching, and simultaneous grinding and clenching. The occlusal forces computed by the first model were subsequently applied to the single tooth model to evaluate damage to the collagen network and the extracellular matrix of the PDL. RESULTS Early occlusal contact on the left cuspid tooth guided the mandible to the more occluded side (16.5% greater in the right side) and absorbed most of the lateral load. The intrusive occlusal loads on the posterior teeth were 0.77-13.3% greater than those on the cuspid. According to our findings, damage to the collagen network and the extracellular matrix of the PDL could occur in traumatic and grinding conditions, mainly due to fibre overstretching (>60%) and interstitial fluid overpressure (>4.7 kPa), respectively. CONCLUSIONS Our findings provide important biomechanical insights into the determination of damage mechanisms which are caused by mechanical loading and the key role of the porous-fibrous behaviour of the PDL in parafunctional and traumatic loading scenarios. Besides, the 3D loading conditions computed from occlusal contacts will help future studies in the design of new orthodontics appliances and encourage the application of computing methods in medical practice.
Collapse
Affiliation(s)
- Javier Ortún-Terrazas
- Group of Biomaterials, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.
| | - José Cegoñino
- Group of Biomaterials, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - Amaya Pérez Del Palomar
- Group of Biomaterials, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
23
|
Ortún-Terrazas J, Cegoñino J, Pérez Del Palomar A. Computational characterization of the porous-fibrous behavior of the soft tissues in the temporomandibular joint. J Biomed Mater Res B Appl Biomater 2020; 108:2204-2217. [PMID: 31951102 PMCID: PMC7216964 DOI: 10.1002/jbm.b.34558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/26/2019] [Accepted: 01/06/2020] [Indexed: 01/21/2023]
Abstract
The prevalence and severity of temporomandibular joint (TMJ) disorders have led to growing research interest in the development of new biomaterials and medical devices for TMJ implant designs. In computational designs, however, the time and stretch direction dependences of the TMJ soft tissues behavior are not considered and they are frequently based on measurements taken from non‐human species or from joints that differ markedly from the human TMJ. The aim of this study was to accurately characterize the porous‐fibrous properties of the TMJ soft tissues by simulating previously published experimental tests, to assist professionals in the design of new TMJ implants. To that end, material parameters were determined assuming a uniform fiber orientation throughout the entire sample. This assumption was then tested by comparing these results with those of considering multiple regions and distinct fiber orientations in each sample. Our findings validated the use of a transversely isotropic hyperelastic material model to characterize the direction dependent behavior of TMJ soft tissues and its combination with porous hyperfoam material models to mimic the compressive response of the TMJ disc. In conclusion, constitutive model proposed accurately reproduce the mechanical response of the TMJ soft tissues at different strain rates and stretch directions.
Collapse
Affiliation(s)
- Javier Ortún-Terrazas
- Group of Biomaterials, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - José Cegoñino
- Group of Biomaterials, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - Amaya Pérez Del Palomar
- Group of Biomaterials, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
24
|
Ortún-Terrazas J, Cegoñino J, Santana-Penín U, Santana-Mora U, Pérez Del Palomar A. A porous fibrous hyperelastic damage model for human periodontal ligament: Application of a microcomputerized tomography finite element model. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3176. [PMID: 30628171 DOI: 10.1002/cnm.3176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/21/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023]
Abstract
The periodontal ligament (PDL) is a soft biological tissue that connects the tooth with the trabecular bone of the mandible. It plays a key role in load transmission and is primarily responsible for bone resorption and most common periodontal diseases. Although several numerical studies have analysed the biomechanical response of the PDL, most did not consider its porous fibrous structure, and only a few analysed damage to the PDL. This study presents an innovative numerical formulation of a porous fibrous hyperelastic damage material model for the PDL. The model considers two separate softening phenomena: fibre alignment during loading and fibre rupture. The parameters for the material model characterization were fitted using experimental data from the literature. Furthermore, the experimental tests used for characterization were computationally modelled to verify the material parameters. A finite element model of a portion of a human mandible, obtained by microcomputerized tomography, was developed, and the proposed constitutive model was implemented for the PDL. Our results confirm that damage to the PDL may occur mainly because of overpressure of the interstitial fluid, while large forces must be applied to damage the PDL fibrous network. Moreover, this study clarifies some aspects of the relationship between PDL damage and the bone remodelling process.
Collapse
Affiliation(s)
- Javier Ortún-Terrazas
- Group of Biomaterials, Aragon Institute of Engineering Research (I3A), Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - José Cegoñino
- Group of Biomaterials, Aragon Institute of Engineering Research (I3A), Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Urbano Santana-Penín
- School of Dentistry, Faculty of Medicine and Odontology, Santiago de Compostela University, Santiago de Compostela, Spain
| | - Urbano Santana-Mora
- School of Dentistry, Faculty of Medicine and Odontology, Santiago de Compostela University, Santiago de Compostela, Spain
| | - Amaya Pérez Del Palomar
- Group of Biomaterials, Aragon Institute of Engineering Research (I3A), Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|