1
|
Dong M, Sun Y, Dunstan DJ, Young RJ, Papageorgiou DG. Mechanical reinforcement from two-dimensional nanofillers: model, bulk and hybrid polymer nanocomposites. NANOSCALE 2024; 16:13247-13299. [PMID: 38940686 DOI: 10.1039/d4nr01356e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Thanks to their intrinsic properties, multifunctionality and unique geometrical features, two-dimensional nanomaterials have been used widely as reinforcements in polymer nanocomposites. The effective mechanical reinforcement of polymers is, however, a multifaceted problem as it depends not only on the intrinsic properties of the fillers and the matrix, but also upon a number of other important parameters. These parameters include the processing method, the interfacial properties, the aspect ratio, defects, orientation, agglomeration and volume fraction of the fillers. In this review, we summarize recent advances in the mechanical reinforcement of polymer nanocomposites from two-dimensional nanofillers with an emphasis on the mechanisms of reinforcement. Model, bulk and hybrid polymer nanocomposites are reviewed comprehensively. The use of Raman and photoluminescence spectroscopies is examined in light of the distinctive information they can yield upon stress transfer at interfaces. It is shown that the very diverse family of 2D nanofillers includes a number of materials that can attribute distrinctive features to a polymeric matrix, and we focus on the mechanical properties of both graphene and some of the most important 2D materials beyond graphene, including boron nitride, molybdenum disulphide, other transition metal dichalcogenides, MXenes and black phosphorous. In the first part of the review we evaluate the mechanical properties of 2D nanoplatelets in "model" nanocomposites. Next we examine how the performance of these materials can be optimised in bulk nanocomposites. Finally, combinations of these 2D nanofillers with other 2D nanomaterials or with nanofillers of other dimensions are assessed thoroughly, as such combinations can lead to additive or even synergistic mechanical effects. Existing unsolved problems and future perspectives are discussed.
Collapse
Affiliation(s)
- Ming Dong
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK.
| | - Yiwei Sun
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK.
| | - David J Dunstan
- School of Physics and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Robert J Young
- National Graphene Institute, Department of Materials, School of Natural Sciences, The University of Manchester, Manchester M13 9PL, UK.
| | - Dimitrios G Papageorgiou
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK.
| |
Collapse
|
2
|
Sahoo P, Chaturvedi A, Ramamurty U, Matte HSSR. Nanomechanical study of aqueous-processed h-BN reinforced PVA composites. NANOTECHNOLOGY 2022; 34:095703. [PMID: 36594874 DOI: 10.1088/1361-6528/aca544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Hexagonal boron nitride (h-BN) as a filler has significantly improved the mechanical properties of various polymers composites. Among them, polyvinyl alcohol (PVA) is particularly important for its wide range of industrial applications and biocompatibility nature. However, preparing a homogenous composite of h-BN and PVA in water is troublesome as the aqueous processing of h-BN without any additives is challenging. In this context, a pre-processing technique is used to produce an additive-free aqueous dispersion of h-BN. The uniformly dispersed composites are then prepared with different concentrations of h-BN. Free-standing thin films are fabricated using the doctor blade technique, and nanoindentation is employed to understand their deformation behaviour at smaller length scale for better understanding of micro-mechanism involved. Reduced elastic modulus and hardness of 10 wt% h-BN/PVA composite film are enhanced by ∼93% and ∼159%, respectively, compared to pristine PVA. Frequency sweep dynamic mechanical analysis is performed between 1 and 50 Hz, and the elastic properties of composite materials are found to improve significantly upon addition of h-BN nanosheets. Besides, the impact of h-BN incorporation in stress relaxation behaviour and hardness depth profiling are also investigated. The observed improvement in mechanical properties of the composites may be attributed to the uniform distribution of the nanosheets and the strong interfacial interaction between h-BN and PVA, which ensures efficient mechanical stress transfer at the interface.
Collapse
Affiliation(s)
- Priyabrata Sahoo
- Energy Materials Laboratory, Centre for Nano and Soft Matter Sciences, Arkavathi, Shivanapura, Bengaluru-562 162, India
- Manipal Academy of Higher Education, Manipal-576 104, India
| | - Abhishek Chaturvedi
- Micro and Nano Characterization Facility (MNCF), Centre for Nano Science & Engineering (CeNSE), Indian Institute of Science, Bengaluru-560 012, India
| | - Upadrasta Ramamurty
- School of Mechanical & Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering, Agency for Science, Singapore 138634, Singapore
| | - H S S Ramakrishna Matte
- Energy Materials Laboratory, Centre for Nano and Soft Matter Sciences, Arkavathi, Shivanapura, Bengaluru-562 162, India
| |
Collapse
|
3
|
A Brief Review on Advanced Sandwich Structures with Customized Design Core and Composite Face Sheet. Polymers (Basel) 2022; 14:polym14204267. [PMID: 36297845 PMCID: PMC9608463 DOI: 10.3390/polym14204267] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 12/04/2022] Open
Abstract
Sandwich structures are a class of multifunctional high-performance structural composites that have the advantages of being lightweight, of a high strength-to-weight ratio, and of high specific energy absorption capabilities. The creative design of the core along with the apposite material selection for the fabrication of the face sheet and core are the two prerequisites with encouraging areas for further expedition towards the fabrication of advanced composite sandwich structures. The current review work focused on different types of core designs, such as truss, foam, corrugated, honeycomb, derivative, hybrid, hollow, hierarchical, gradient, folded, and smart core along with different composite materials accessible for face sheet fabrication, including fiber-reinforced composite, metal matrix composite, and polymer matrix composite are considered. The joining method plays a major role for the performance evolution of sandwich structures, which were also investigated. Further discussions are aligned to address major challenges in the fabrication of sandwich structures and further enlighten the future direction of the advanced composite sandwich structure. Finally, the work is summarized with a brief conclusion. This review article provides wider guidelines for researchers in designing and manufacturing next-generation lightweight multilayer core sandwich structures.
Collapse
|
4
|
Zhang S, Patel D, Brady M, Gambill S, Theivendran K, Deshmukh S, Swadener J, Junaid S, Leslie LJ. Experimental testing of fracture fixation plates: A review. Proc Inst Mech Eng H 2022; 236:1253-1272. [PMID: 35920401 PMCID: PMC9449446 DOI: 10.1177/09544119221108540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Metal and its alloys have been predominantly used in fracture fixation for
centuries, but new materials such as composites and polymers have begun to see
clinical use for fracture fixation during the past couple of decades. Along with
the emerging of new materials, tribological issues, especially debris, have
become a growing concern for fracture fixation plates. This article for the
first time systematically reviews the most recent biomechanical research, with a
focus on experimental testing, of those plates within ScienceDirect and PubMed
databases. Based on the search criteria, a total of 5449 papers were retrieved,
which were then further filtered to exclude nonrelevant, duplicate or
non-accessible full article papers. In the end, a total of 83 papers were
reviewed. In experimental testing plates, screws and simulated bones or cadaver
bones are employed to build a fixation construct in order to test the strength
and stability of different plate and screw configurations. The test set-up
conditions and conclusions are well documented and summarised here, including
fracture gap size, types of bones deployed, as well as the applied load, test
speed and test ending criteria. However, research on long term plate usage was
very limited. It is also discovered that there is very limited experimental
research around the tribological behaviour particularly on the debris’
generation, collection and characterisation. In addition, there is no identified
standard studying debris of fracture fixation plate. Therefore, the authors
suggested the generation of a suite of tribological testing standards on
fracture fixation plate and screws in the aim to answer key questions around the
debris from fracture fixation plate of new materials or new design and
ultimately to provide an insight on how to reduce the risks of debris-related
osteolysis, inflammation and aseptic loosening.
Collapse
Affiliation(s)
- Shiling Zhang
- Aston Institute of Materials Research (AIMR), Aston University, Birmingham, UK
| | - Dharmesh Patel
- Invibio Biomaterial Solutions Limited, Hillhouse International, Thornton-Cleveleys, UK
| | - Mark Brady
- Invibio Biomaterial Solutions Limited, Hillhouse International, Thornton-Cleveleys, UK
| | - Sherri Gambill
- Invibio Biomaterial Solutions Limited, Hillhouse International, Thornton-Cleveleys, UK
| | | | - Subodh Deshmukh
- Sandwell and West Birmingham Hospital NHS Trust, Birmingham, UK
| | - John Swadener
- Aston Institute of Materials Research (AIMR), Aston University, Birmingham, UK
| | - Sarah Junaid
- Aston Institute of Materials Research (AIMR), Aston University, Birmingham, UK
| | - Laura Jane Leslie
- Aston Institute of Materials Research (AIMR), Aston University, Birmingham, UK
| |
Collapse
|
5
|
Abstract
For the last twenty years, polymer hybrid nanocomposites have enjoyed unflagging interest from numerous scientific groups and R&D departments, as they provide notable enhancement of properties, even at low nanofillers’ content. Their performance results from many factors, the most important of which is the uniform distribution in the entire volume of the matrix, that still is very challenging, but is the right choice of two types of nanoparticles that can lead to an increase of dispersion stability and even more uniform distribution of fillers. The incorporation of two types of nanofillers, especially when they differ in aspect ratio or chemical nature, allows to additively reduce the price of the final composite by replacing the more expensive filler with the cheaper one, or even synergistically improving the properties, e.g., mechanical, thermal, and barrier, etc., that can extend their usage in the industry. Despite numerous review papers on nanocomposites, there is no review on how the introduction of a hybrid system of nanofillers affects the properties of polyolefins, which are the most commonly used engineering plastics. This review deeply focuses on the structure–properties relationship of polyolefins-based hybrid nanocomposites, especially based on two types of polyethylenes (low-density polyethylenes (LDPE) and high-density polyethylenes (HDPE)) and polypropylene.
Collapse
|
6
|
Zare Y, Rhee KY. Prediction of loss factor (tan δ) for polymer nanocomposites as a function of yield tress, relaxation time and the width of transition region between Newtonian and power-law behaviors. J Mech Behav Biomed Mater 2019; 96:136-143. [DOI: 10.1016/j.jmbbm.2019.04.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 11/29/2022]
|