1
|
Zhang F, Zhu P, Lu P, Qian K, Liu S, Wang L. Biomimetic design and impact simulation of Al 2O 3/Al composite armor based on armadillo shell. Sci Rep 2024; 14:20216. [PMID: 39215067 PMCID: PMC11364756 DOI: 10.1038/s41598-024-71255-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
The advancement of lightweight protective armors holds critical importance for enhancing the maneuverability and combat capabilities of helicopters. Leveraging insights from bionics, it provides a new idea for high-performance armor design. In this study, a new type of composite armor was designed by referring to the structural characteristics of hard phase-protection, soft phase-buffering of unitization armadillo shell. Through the numerical study, the anti-ballistic performance of armor with varying thickness ratios of the dense ceramic layer to the interpenetrating layer is obtained, and the influence of different structures of armor on the anti-ballistic performance is analyzed. The results show that compared with the traditional laminated composite armor, the Al2O3/Al biomimetic composite armor not only improves the separation phenomenon caused by wave impedance mismatch, but also greatly improves the speed drop in resisting high-speed and penetrating bullets. When the thickness ratio is 2:1, the armor has higher ballistic protection performance.
Collapse
Affiliation(s)
- Fulong Zhang
- College of Mechanical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Peng Zhu
- College of Mechanical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Ping Lu
- College of Automotive Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Kai Qian
- College of Mechanical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Shuangyu Liu
- College of Mechanical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| | - Liyan Wang
- College of Mechanical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| |
Collapse
|
2
|
Guo Z, Yang F, Li L, Wu J. Bio-Inspired Curved-Elliptical Lattice Structures for Enhanced Mechanical Performance and Deformation Stability. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4191. [PMID: 39274581 PMCID: PMC11396726 DOI: 10.3390/ma17174191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024]
Abstract
Lattice structures, characterized by their lightweight nature, high specific mechanical properties, and high design flexibility, have found widespread applications in fields such as aerospace and automotive engineering. However, the lightweight design of lattice structures often presents a trade-off between strength and stiffness. To tackle this issue, a bio-inspired curved-elliptical (BCE) lattice is proposed to enhance the mechanical performance and deformation stability of three-dimensional lattice structures. BCE lattice specimens with different parameters were fabricated using selective laser melting (SLM) technology, followed by quasi-static compression tests. Finite element (FE) numerical simulations were also carried out for validation. The results demonstrate that the proposed BCE lattice structures exhibit stronger mechanical performance and more stable deformation modes that can be adjusted through parameter tuning. Specifically, by adjusting the design parameters, the BCE lattice structure can exhibit a bending-dominated delocalized deformation mode, avoiding catastrophic collapse during deformation. The specific energy absorption (SEA) can reach 24.6 J/g at a relative density of only 8%, with enhancements of 48.5% and 297.6% compared with the traditional energy-absorbing lattices Octet and body-center cubic (BCC), respectively. Moreover, the crushing force efficiency (CFE) of the BCE lattice structure surpasses those of Octet and BCC by 34.9% and 15.8%, respectively. Through a parametric study of the influence of the number of peaks N and the curve amplitude A on the compression performance of the BCE lattice structure, the compression deformation mechanism is further analyzed. The results indicate that the curve amplitude A and the number of peaks N have significant impacts on the deformation mode of the BCE lattice. By adjusting the parameters N and A, a structure with a combination of high energy absorption, high stiffness, and strong fracture resistance can be obtained, integrating the advantages of tensile-dominated and bending-dominated lattice structures.
Collapse
Affiliation(s)
- Zhengmiao Guo
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
| | - Fan Yang
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
- Key Laboratory of AI-Aided Airworthiness of Civil Aircraft Structures, Civil Aviation Administration of China, Tongji University, Shanghai 200092, China
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
| | - Lingbo Li
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
| | - Jiacheng Wu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
| |
Collapse
|
3
|
Liu Y, Zou M, Qi Y, Chen L, Wang Z, Song J, He L. Bionic design of thin-walled bilinear tubes with excellent crashworthiness inspired by glass sponge structures. BIOINSPIRATION & BIOMIMETICS 2024; 19:046018. [PMID: 38870926 DOI: 10.1088/1748-3190/ad580a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
In order to enhance energy absorption, this study draws inspiration from the diagonal bilinear robust square lattice structure found in deep-sea glass sponges, proposing a design for thin-walled structures with superior folding capabilities and high strength-to-weight ratio. Firstly, the crashworthiness of bionic glass sponge tube (BGSTO) is compared with that of equal-wall-thickness equal-mass four-X tube through both experiments and simulations, and it is obtained that the specific energy absorption of BGSTO is increased by 78.64%. And the crashworthiness of BGSTO is also most significant compared to that of multicellular tubes with the similar number of crystalline cells. Additionally, we found that the double-line spacing of the glass sponge can be freely adjusted without changing the material amount. Therefore, based on BGSTO, we designed two other double-line structures, BGSTA and BGSTB. Then with equal wall thickness and mass as a prerequisite, this study proceeds to design and compare the energy absorption properties of three bilinear thin-walled tubes in both axial and lateral cases. The deformation modes and crashworthiness of the three types of tubes with variable bilinear spacing (βO/A/B) are comparatively analysed. The improved complex proportional assessment (COPRAS) synthesis decision is used to obtain that BGSTO exhibits superior crashworthiness over the remaining two kinds of tubes. Finally, a surrogate model is established to perform multi-objective optimization on the optimal bilinear configuration BGSTO selected by the COPRAS method.
Collapse
Affiliation(s)
- Yansong Liu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, People's Republic of China
| | - Meng Zou
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, People's Republic of China
| | - Yingchun Qi
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, People's Republic of China
| | - Lining Chen
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, People's Republic of China
| | - Zhaoyang Wang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, People's Republic of China
| | - Jiafeng Song
- State Key Laboratory Automot Safety and Energy, Tsinghua University, Beijing 100084, People's Republic of China
| | - Lianbin He
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, People's Republic of China
| |
Collapse
|
4
|
Houssaye A, Etienne C, Gallic Y, Rocchia F, Chaves-Jacob J. How can research on modern and fossil bones help us build more resistant columns? BIOINSPIRATION & BIOMIMETICS 2024; 19:036007. [PMID: 38452389 DOI: 10.1088/1748-3190/ad311f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
Bone is an economical material. Indeed, as moving a heavy skeleton is energetically costly, the vertebrate skeleton is adapted to maximise resistance to the stresses imposed with a minimum amount of material, so that bone tissue is deposited where it is needed. Using bone as a source of inspiration should therefore reduce the manufacturing cost (both financial and ecological) and increase the strength (and lifespan) of bioinspired (BI) structures. This study proposes to investigate which adaptive features of the outer shape and inner structure of bone, related to compressive strength, could be used to build BI support structures. To do so, we explain the choice of the bones to be analysed and present the results of the biomechanical analyses (finite element analysis) carried out on virtual models built from the structures of the different bone models and of the mechanical tests carried out on 3D-printed versions of these models. The compressive strength of these direct bone BI columns was compared with each other, and with those of a conventional filled cylindrical column, and of a cylindrical column whose internal structure is BI from the radius of the white rhinoceros. The results of our comparative analyses highlight that the shape of long bones is less effective than a cylinder in resisting compression but underline the relevance in designing BI cylindrical columns with heterogeneous structures inspired by the radius of the white rhinoceros and the tibia of the Asian elephant, and raise the interest in studying the fossil record using the radius of the giant rhinocerotoidParaceratherium.
Collapse
Affiliation(s)
- A Houssaye
- Département Adaptations du Vivant, UMR 7179 CNRS/Muséum National d'Histoire Naturelle, 57 rue Cuvier CP-55, 75005 Paris, France
| | - C Etienne
- Département Adaptations du Vivant, UMR 7179 CNRS/Muséum National d'Histoire Naturelle, 57 rue Cuvier CP-55, 75005 Paris, France
| | - Y Gallic
- Département Adaptations du Vivant, UMR 7179 CNRS/Muséum National d'Histoire Naturelle, 57 rue Cuvier CP-55, 75005 Paris, France
| | - F Rocchia
- Aix Marseille Université, CNRS, ISM, Inst Mouvement Sci, UMR, 7287 Marseille, France
| | - J Chaves-Jacob
- Aix Marseille Université, CNRS, ISM, Inst Mouvement Sci, UMR, 7287 Marseille, France
| |
Collapse
|
5
|
On the Mechanical Behaviour of Biomimetic Cornstalk-Inspired Lightweight Structures. Biomimetics (Basel) 2023; 8:biomimetics8010092. [PMID: 36975322 PMCID: PMC10046212 DOI: 10.3390/biomimetics8010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
This paper presents an investigation on the stiffness and energy absorption capabilities of three proposed biomimetic structures based on the internal architecture of a cornstalk. 3D printing was used to manufacture specimens using a tough and impact-resistant thermoplastic material, acrylonitrile butadiene styrene (ABS). The structural stiffness, maximum stress, densification strain, and energy absorption were extracted from the compression tests performed at a strain rate of 10−3 s−1. A numerical model was developed to analyse the behaviour of the biomimetic structures under compression loading. Further, a damage examination was conducted through optical microscopy and profilometry. The results showed that the cornstalk-inspired biomimetic structure exhibited a superior specific energy absorption (SEA) capability that was three times higher than that of the other core designs as reported in the literature.
Collapse
|
6
|
Low-Velocity Impact Resistance of 3D Re-Entrant Honeycomb Sandwich Structures with CFRP Face Sheets. Polymers (Basel) 2023; 15:polym15051092. [PMID: 36904333 PMCID: PMC10006908 DOI: 10.3390/polym15051092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Lightweight sandwich structures have been receiving significant attention. By studying and imitating the structure of biomaterials, its application in the design of sandwich structures has also been found to be feasible. With inspiration from the arrangement of fish scales, a 3D re-entrant honeycomb was designed. In addition, a honeycomb stacking method is proposed. The resultant novel re-entrant honeycomb was utilized as the core of the sandwich structure in order to increase the impact resistance of the sandwich structure under impact loads. The honeycomb core is created using 3D printing. By using low-velocity impact experiments, the mechanical properties of the sandwich structure with Carbon-Fiber-Reinforced Polymer (CFRP) face sheets under different impact energies were studied. To further investigate the effect of the structural parameters on the structural, mechanical properties, a simulation model was developed. Simulation methods examined the effect of structural variables on peak contact force, contact time, and energy absorption. Compared to traditional re-entrant honeycomb, the impact resistance of the improved structure is more significant. Under the same impact energy, the upper face sheet of the re-entrant honeycomb sandwich structure sustains less damage and deformation. The improved structure reduces the upper face sheet damage depth by an average of 12% compared to the traditional structure. In addition, increasing the thickness of the face sheet will enhance the impact resistance of the sandwich panel, but an excessively thick face sheet may decrease the structure's energy absorption properties. Increasing the concave angle can effectively increase the energy absorption properties of the sandwich structure while preserving its original impact resistance. The research results show the advantages of the re-entrant honeycomb sandwich structure, which has certain significance for the study of the sandwich structure.
Collapse
|
7
|
Perricone V, Grun T, Raia P, Langella C. Paleomimetics: A Conceptual Framework for a Biomimetic Design Inspired by Fossils and Evolutionary Processes. Biomimetics (Basel) 2022; 7:biomimetics7030089. [PMID: 35892359 PMCID: PMC9326541 DOI: 10.3390/biomimetics7030089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 12/10/2022] Open
Abstract
In biomimetic design, functional systems, principles, and processes observed in nature are used for the development of innovative technical systems. The research on functional features is often carried out without giving importance to the generative mechanism behind them: evolution. To deeply understand and evaluate the meaning of functional morphologies, integrative structures, and processes, it is imperative to not only describe, analyse, and test their behaviour, but also to understand the evolutionary history, constraints, and interactions that led to these features. The discipline of palaeontology and its approach can considerably improve the efficiency of biomimetic transfer by analogy of function; additionally, this discipline, as well as biology, can contribute to the development of new shapes, textures, structures, and functional models for productive and generative processes useful in the improvement of designs. Based on the available literature, the present review aims to exhibit the potential contribution that palaeontology can offer to biomimetic processes, integrating specific methodologies and knowledge in a typical biomimetic design approach, as well as laying the foundation for a biomimetic design inspired by extinct species and evolutionary processes: Paleomimetics. A state of the art, definition, method, and tools are provided, and fossil entities are presented as potential role models for technical transfer solutions.
Collapse
Affiliation(s)
- Valentina Perricone
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
- Correspondence:
| | - Tobias Grun
- Department of Invertebrate Palaeontology, University of Florida, Florida Museum, Dickinson Hall, Gainesville, FL 32611, USA;
| | - Pasquale Raia
- Department of Earth Sciences, Environment and Resources, University of Naples Federico II, Via Vicinale Cupa Cintia 26, 80126 Napoli, Italy;
| | - Carla Langella
- Department of Architecture and Industrial Design, University of Campania Luigi Vanvitelli, Via San Lorenzo, 81031 Aversa, Italy;
| |
Collapse
|
8
|
Broeckhoven C. Intraspecific competition: A missing link in dermal armour evolution? J Anim Ecol 2022; 91:1562-1566. [PMID: 35633188 DOI: 10.1111/1365-2656.13749] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022]
Abstract
Predation is widely regarded as an important selective force in the evolution and maintenance of dermal armour; yet, the basic premise that predation and armour are strongly linked to each other has proven to be difficult to assess. In this concept, I put forward the fighting-advantage hypothesis, the view that aggressive interactions with conspecifics, not predation, might have been a key selective pressure in the evolution of dermal armour. Considering intraspecific competition as a potential explanation could not only reveal previously overlooked aspects of the functional and evolutionary significance of dermal armour, but also advance the emerging field of biomimetics in which such knowledge forms the starting point of technological innovation.
Collapse
Affiliation(s)
- Chris Broeckhoven
- Laboratory of Functional Morphology, Department of Biology, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
9
|
Computed Tomography as a Characterization Tool for Engineered Scaffolds with Biomedical Applications. MATERIALS 2021; 14:ma14226763. [PMID: 34832165 PMCID: PMC8619049 DOI: 10.3390/ma14226763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 12/16/2022]
Abstract
The ever-growing field of materials with applications in the biomedical field holds great promise regarding the design and fabrication of devices with specific characteristics, especially scaffolds with personalized geometry and architecture. The continuous technological development pushes the limits of innovation in obtaining adequate scaffolds and establishing their characteristics and performance. To this end, computed tomography (CT) proved to be a reliable, nondestructive, high-performance machine, enabling visualization and structure analysis at submicronic resolutions. CT allows both qualitative and quantitative data of the 3D model, offering an overall image of its specific architectural features and reliable numerical data for rigorous analyses. The precise engineering of scaffolds consists in the fabrication of objects with well-defined morphometric parameters (e.g., shape, porosity, wall thickness) and in their performance validation through thorough control over their behavior (in situ visualization, degradation, new tissue formation, wear, etc.). This review is focused on the use of CT in biomaterial science with the aim of qualitatively and quantitatively assessing the scaffolds’ features and monitoring their behavior following in vivo or in vitro experiments. Furthermore, the paper presents the benefits and limitations regarding the employment of this technique when engineering materials with applications in the biomedical field.
Collapse
|
10
|
Williams C, Kirby A, Marghoub A, Kéver L, Ostashevskaya-Gohstand S, Bertazzo S, Moazen M, Abzhanov A, Herrel A, Evans SE, Vickaryous M. A review of the osteoderms of lizards (Reptilia: Squamata). Biol Rev Camb Philos Soc 2021; 97:1-19. [PMID: 34397141 PMCID: PMC9292694 DOI: 10.1111/brv.12788] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022]
Abstract
Osteoderms are mineralised structures consisting mainly of calcium phosphate and collagen. They form directly within the skin, with or without physical contact with the skeleton. Osteoderms, in some form, may be primitive for tetrapods as a whole, and are found in representatives of most major living lineages including turtles, crocodilians, lizards, armadillos, and some frogs, as well as extinct taxa ranging from early tetrapods to dinosaurs. However, their distribution in time and space raises questions about their evolution and homology in individual groups. Among lizards and their relatives, osteoderms may be completely absent; present only on the head or dorsum; or present all over the body in one of several arrangements, including non-overlapping mineralised clusters, a continuous covering of overlapping plates, or as spicular mineralisations that thicken with age. This diversity makes lizards an excellent focal group in which to study osteoderm structure, function, development and evolution. In the past, the focus of researchers was primarily on the histological structure and/or the gross anatomy of individual osteoderms in a limited sample of taxa. Those studies demonstrated that lizard osteoderms are sometimes two-layered structures, with a vitreous, avascular layer just below the epidermis and a deeper internal layer with abundant collagen within the deep dermis. However, there is considerable variation on this model, in terms of the arrangement of collagen fibres, presence of extra tissues, and/or a cancellous bone core bordered by cortices. Moreover, there is a lack of consensus on the contribution, if any, of osteoblasts in osteoderm development, despite research describing patterns of resorption and replacement that would suggest both osteoclast and osteoblast involvement. Key to this is information on development, but our understanding of the genetic and skeletogenic processes involved in osteoderm development and patterning remains minimal. The most common proposition for the presence of osteoderms is that they provide a protective armour. However, the large morphological and distributional diversity in lizard osteoderms raises the possibility that they may have other roles such as biomechanical reinforcement in response to ecological or functional constraints. If lizard osteoderms are primarily for defence, whether against predators or conspecifics, then this 'bony armour' might be predicted to have different structural and/or mechanical properties compared to other hard tissues (generally intended for support and locomotion). The cellular and biomineralisation mechanisms by which osteoderms are formed could also be different from those of other hard tissues, as reflected in their material composition and nanostructure. Material properties, especially the combination of malleability and resistance to impact, are of interest to the biomimetics and bioinspired material communities in the development of protective clothing and body armour. Currently, the literature on osteoderms is patchy and is distributed across a wide range of journals. Herein we present a synthesis of current knowledge on lizard osteoderm evolution and distribution, micro- and macrostructure, development, and function, with a view to stimulating further work.
Collapse
Affiliation(s)
- Catherine Williams
- Department of Biomedical Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.,Department of Biology, Aarhus University, Ny Munkegade 114-116, Aarhus C, DK-8000, Denmark
| | - Alexander Kirby
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, U.K.,Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, U.K
| | - Arsalan Marghoub
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, U.K
| | - Loïc Kéver
- Département Adaptations du Vivant, UMR 7179 MECADEV C.N.R.S/M.N.H.N., Bâtiment d'Anatomie Comparée, 55 rue Buffon, Paris, 75005, France
| | - Sonya Ostashevskaya-Gohstand
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Silwood Park Campus, Berkshire, SL5 7PY, U.K
| | - Sergio Bertazzo
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, U.K
| | - Mehran Moazen
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, U.K
| | - Arkhat Abzhanov
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Silwood Park Campus, Berkshire, SL5 7PY, U.K
| | - Anthony Herrel
- Département Adaptations du Vivant, UMR 7179 MECADEV C.N.R.S/M.N.H.N., Bâtiment d'Anatomie Comparée, 55 rue Buffon, Paris, 75005, France
| | - Susan E Evans
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, U.K
| | - Matt Vickaryous
- Department of Biomedical Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
11
|
Vásárhelyi L, Kónya Z, Kukovecz Á, Vajtai R. Microcomputed tomography–based characterization of advanced materials: a review. MATERIALS TODAY ADVANCES 2020. [DOI: 10.1016/j.mtadv.2020.100084] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Clarac F, Scheyer TM, Desojo JB, Cerda IA, Sanchez S. The evolution of dermal shield vascularization in Testudinata and Pseudosuchia: phylogenetic constraints versus ecophysiological adaptations. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190132. [PMID: 31928197 PMCID: PMC7017437 DOI: 10.1098/rstb.2019.0132] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2019] [Indexed: 01/18/2023] Open
Abstract
Studies on living turtles have demonstrated that shells are involved in the resistance to hypoxia during apnea via bone acidosis buffering; a process which is complemented with cutaneous respiration, transpharyngeal and cloacal gas exchanges in the soft-shell turtles. Bone acidosis buffering during apnea has also been identified in crocodylian osteoderms, which are also known to employ heat transfer when basking. Although diverse, many of these functions rely on one common trait: the vascularization of the dermal shield. Here, we test whether the above ecophysiological functions played an adaptive role in the evolutionary transitions between land and aquatic environments in both Pseudosuchia and Testudinata. To do so, we measured the bone porosity as a proxy for vascular density in a set of dermal plates before performing phylogenetic comparative analyses. For both lineages, the dermal plate porosity obviously varies depending on the animal lifestyle, but these variations prove to be highly driven by phylogenetic relationships. We argue that the complexity of multi-functional roles of the post-cranial dermal skeleton in both Pseudosuchia and Testudinata probably is the reason for a lack of obvious physiological signal, and we discuss the role of the dermal shield vascularization in the evolution of these groups. This article is part of the theme issue 'Vertebrate palaeophysiology'.
Collapse
Affiliation(s)
- François Clarac
- Department of Organismal Biology, Subdepartment of Evolution and Development, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden
| | - Torsten M. Scheyer
- Paleontological Institute and Museum, University of Zurich, Karl Schmid-Strasse 4, 8006 Zurich, Switzerland
| | - Julia B. Desojo
- CONICET, División Paleontología Vertebrados, Museo de La Plata, Paseo del Bosque s/n°, B1900FWA La Plata, Argentina
| | - Ignacio A. Cerda
- CONICET, Argentina y Instituto de Investigacion en Paleobiología y Geología, Universidad Nacional de Río Negro, Museo Carlos Ameghino, Belgrano 1700, Paraje Pichi Ruca (predio Marabunta), 8300 Cipolletti, Río Negro, Argentina
| | - Sophie Sanchez
- Department of Organismal Biology, Subdepartment of Evolution and Development, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS-40220, 38043 Grenoble Cedex, France
| |
Collapse
|
13
|
|
14
|
du Plessis A, Broeckhoven C. Looking deep into nature: A review of micro-computed tomography in biomimicry. Acta Biomater 2019; 85:27-40. [PMID: 30543937 DOI: 10.1016/j.actbio.2018.12.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/20/2018] [Accepted: 12/07/2018] [Indexed: 11/25/2022]
Abstract
Albert Einstein once said "look deep into nature, and then you will understand everything better". Looking deep into nature has in the last few years become much more achievable through the use of high-resolution X-ray micro-computed tomography (microCT). The non-destructive nature of microCT, combined with three-dimensional visualization and analysis, allows for the most complete internal and external "view" of natural materials and structures at both macro- and micro-scale. This capability brings with it the possibility to learn from nature at an unprecedented level of detail in full three dimensions, allowing us to improve our current understanding of structures, learn from them and apply them to solve engineering problems. The use of microCT in the fields of biomimicry, biomimetic engineering and bioinspiration is growing rapidly and holds great promise. MicroCT images and three-dimensional data can be used as generic bio-inspiration, or may be interpreted as detailed blueprints for specific engineering applications, i.e., reverse-engineering nature. In this review, we show how microCT has been used in bioinspiration and biomimetic studies to date, including investigations of multifunctional structures, hierarchical structures and the growing use of additive manufacturing and mechanical testing of 3D printed models in combination with microCT. The latest microCT capabilities and developments which might support biomimetic studies are described and the unique synergy between microCT and biomimicry is demonstrated. STATEMENT OF SIGNIFICANCE: This review highlights the growing use of X-ray micro computed tomography in biomimetic research. We feel the timing of this paper is excellent as there is a significant growth and interest in biomimetic research, also coupled with additive manufacturing, but still no review of the use of microCT in this field. The use of microCT for structural biomimetic and biomaterials research has huge potential but is still under-utilized, partly due to lack of knowledge of the capabilities and how it can be used in this field. We hope this review fills this gap and fuels further advances in this field using microCT.
Collapse
|