1
|
Farr NTH, Gregory DA, Workman VL, Rauert C, Roman S, Knight AJ, Bullock AJ, Tartakovskii AI, Thomas KV, Chapple CR, Deprest J, MacNeil S, Rodenburg C. Evidence of time dependent degradation of polypropylene surgical mesh explanted from the abdomen and vagina of sheep. J Mech Behav Biomed Mater 2024; 160:106722. [PMID: 39317096 DOI: 10.1016/j.jmbbm.2024.106722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024]
Abstract
The failure of polypropylene mesh is marked by significant side effects and debilitation, arising from a complex interplay of factors. One key contributor is the pronounced physico-mechanical mismatch between the polypropylene (PP) fibres and surrounding tissues, resulting in substantial physical damage, inflammation, and persistent pain. However, the primary cause of sustained inflammation due to polypropylene itself remains incompletely understood. This study comprises a comprehensive, multi-pronged investigation to unravel the effects of implantation on a presumed inert PP mesh in sheep. Employing both advanced and conventional techniques to discern the physical and chemical transformations of the implanted PP. Our analyses reveal a surface degradation and oxidation of polypropylene fibres after 60 days implantation, persisting and intensifying at the 180-day mark. The emergence and accumulation of PP debris in the tissue surrounding the implant also increased with implantation time. We demonstrate observable physical and mechanical alterations in the fibre surface and stiffness. Our study shows surface alterations which indicate that PP is evidently less chemically inert than was initially presumed. These findings underscore the need for a re-evaluation of the biocompatibility and long-term consequences of using PP mesh implants.
Collapse
Affiliation(s)
- Nicholas T H Farr
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sheffield, UK; Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield Children's NHS Foundation Trust and Doncaster and Bassetlaw Teaching Hospitals NHS Foundation Trust, Sheffield, UK.
| | - David A Gregory
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sheffield, UK; Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield Children's NHS Foundation Trust and Doncaster and Bassetlaw Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Victoria L Workman
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sheffield, UK; Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield Children's NHS Foundation Trust and Doncaster and Bassetlaw Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Cassandra Rauert
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, Australia
| | - Sabiniano Roman
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Alexander J Knight
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
| | - Anthony J Bullock
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sheffield, UK
| | | | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, Australia
| | | | - Jan Deprest
- Centre for Surgical Technologies, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; Department of Development and Regeneration, Woman and Child, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; Pelvic Floor Unit, University Hospitals KU Leuven, Leuven, Belgium
| | - Sheila MacNeil
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Cornelia Rodenburg
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sheffield, UK; Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield Children's NHS Foundation Trust and Doncaster and Bassetlaw Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
2
|
Farr NTH, Workman VL, Saad S, Roman S, Hearnden V, Chapple CR, Murdoch C, Rodenburg C, MacNeil S. Uncovering the relationship between macrophages and polypropylene surgical mesh. BIOMATERIALS ADVANCES 2024; 159:213800. [PMID: 38377947 DOI: 10.1016/j.bioadv.2024.213800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 02/22/2024]
Abstract
Currently, in vitro testing examines the cytotoxicity of biomaterials but fails to consider how materials respond to mechanical forces and the immune response to them; both are crucial for successful long-term implantation. A notable example of this failure is polypropylene mid-urethral mesh used in the treatment of stress urinary incontinence (SUI). The mesh was largely successful in abdominal hernia repair but produced significant complications when repurposed to treat SUI. Developing more physiologically relevant in vitro test models would allow more physiologically relevant data to be collected about how biomaterials will interact with the body. This study investigates the effects of mechanochemical distress (a combination of oxidation and mechanical distention) on polypropylene mesh surfaces and the effect this has on macrophage gene expression. Surface topology of the mesh was characterised using SEM and AFM; ATR-FTIR, EDX and Raman spectroscopy was applied to detect surface oxidation and structural molecular alterations. Uniaxial mechanical testing was performed to reveal any bulk mechanical changes. RT-qPCR of selected pro-fibrotic and pro-inflammatory genes was carried out on macrophages cultured on control and mechanochemically distressed PP mesh. Following exposure to mechanochemical distress the mesh surface was observed to crack and craze and helical defects were detected in the polymer backbone. Surface oxidation of the mesh was seen after macrophage attachment for 7 days. These changes in mesh surface triggered modified gene expression in macrophages. Pro-fibrotic and pro-inflammatory genes were upregulated after macrophages were cultured on mechanochemically distressed mesh, whereas the same genes were down-regulated in macrophages exposed to control mesh. This study highlights the relationship between macrophages and polypropylene surgical mesh, thus offering more insight into the fate of an implanted material than existing in vitro testing.
Collapse
Affiliation(s)
- Nicholas T H Farr
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, UK; Insigneo Institute for in silico Medicine, The Pam Liversidge Building, Sir Robert Hadfield Building, Mappin Street, Sheffield, UK.
| | - Victoria L Workman
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, UK; Insigneo Institute for in silico Medicine, The Pam Liversidge Building, Sir Robert Hadfield Building, Mappin Street, Sheffield, UK
| | - Sanad Saad
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, UK; Department of Urology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Sabiniano Roman
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, UK
| | - Vanessa Hearnden
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, UK; Insigneo Institute for in silico Medicine, The Pam Liversidge Building, Sir Robert Hadfield Building, Mappin Street, Sheffield, UK
| | | | - Craig Murdoch
- School of Clinical Dentistry, 19 Claremont Crescent, University of Sheffield, Sheffield, UK
| | - Cornelia Rodenburg
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, UK; Insigneo Institute for in silico Medicine, The Pam Liversidge Building, Sir Robert Hadfield Building, Mappin Street, Sheffield, UK
| | - Sheila MacNeil
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, UK
| |
Collapse
|
3
|
Coderre-Ball A, Phillips SP. Extent, transparency and impact of industry funding for pelvic mesh research: a review of the literature. Res Integr Peer Rev 2024; 9:4. [PMID: 38685078 PMCID: PMC11059718 DOI: 10.1186/s41073-024-00145-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/09/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Conflicts of interest inherent in industry funding can bias medical research methods, outcomes, reporting and clinical applications. This study explored the extent of funding provided to American physician researchers studying surgical mesh used to treat uterine prolapse or stress urinary incontinence, and whether that funding was declared by researchers or influenced the ethical integrity of resulting publications in peer reviewed journals. METHODS Publications identified via a Pubmed search (2014-2021) of the terms mesh and pelvic organ prolapse or stress urinary incontinence and with at least one US physician author were reviewed. Using the CMS Open Payments database industry funding received by those MDs in the year before, of and after publication was recorded, as were each study's declarations of funding and 14 quality measures. RESULTS Fifty-three of the 56 studies reviewed had at least one American MD author who received industry funding in the year of, or one year before or after publication. For 47 articles this funding was not declared. Of 247 physician authors, 60% received > $100 while 13% received $100,000-$1,000,000 of which approximately 60% was undeclared. While 57% of the studies reviewed explicitly concluded that mesh was safe, only 39% of outcomes supported this. Neither the quality indicator of follow-up duration nor overall statements as to mesh safety varied with declaration status. CONCLUSIONS Journal editors' guidelines re declaring conflicts of interest are not being followed. Financial involvement of industry in mesh research is extensive, often undeclared, and may shape the quality of, and conclusions drawn, resulting in overstated benefit and overuse of pelvic mesh in clinical practice.
Collapse
Affiliation(s)
| | - Susan P Phillips
- Centre for Studies in Primary Care, Queen's University, Kingston, Canada.
- Family Medicine and Public Health Sciences, Queen's University, Kingston, Canada.
| |
Collapse
|
4
|
Peng Z, Xie C, Jin S, Hu J, Yao X, Ye J, Zhang X, Lim JX, Wu B, Wu H, Liang R, Wen Y, Huang J, Zou X, Ouyang H. Biomaterial based implants caused remote liver fatty deposition through activated blood-derived macrophages. Biomaterials 2023; 301:122234. [PMID: 37421671 DOI: 10.1016/j.biomaterials.2023.122234] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023]
Abstract
Understanding the biocompatibility of biomaterials is a prerequisite for the prediction of its clinical application, and the present assessments mainly rely on in vitro cell culture and in situ histopathology. However, remote organs responses after biomaterials implantation is unclear. Here, by leveraging body-wide-transcriptomics data, we performed in-depth systems analysis of biomaterials - remote organs crosstalk after abdominal implantation of polypropylene and silk fibroin using a rodent model, demonstrating local implantation caused remote organs responses dominated by acute-phase responses, immune system responses and lipid metabolism disorders. Of note, liver function was specially disturbed, defined as hepatic lipid deposition. Combining flow cytometry analyses and liver monocyte recruitment inhibition experiments, we proved that blood derived monocyte-derived macrophages in the liver underlying the mechanism of abnormal lipid deposition induced by local biomaterials implantation. Moreover, from the perspective of temporality, the remote organs responses and liver lipid deposition of silk fibroin group faded away with biomaterial degradation and restored to normal at end, which highlighted its superiority of degradability. These findings were further indirectly evidenced by human blood biochemical ALT and AST examination from 141 clinical cases of hernia repair using silk fibroin mesh and polypropylene mesh. In conclusion, this study provided new insights on the crosstalk between local biomaterial implants and remote organs, which is of help for future selecting and evaluating biomaterial implants with the consideration of whole-body response.
Collapse
Affiliation(s)
- Zhi Peng
- Central Laboratory, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chang Xie
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shucheng Jin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiajie Hu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xudong Yao
- The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Jinchun Ye
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xianzhu Zhang
- Central Laboratory, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jia Xuan Lim
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang, China
| | - Bingbing Wu
- The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Haoyu Wu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Renjie Liang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ya Wen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiahui Huang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaohui Zou
- Central Laboratory, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Zhao S, Fang M, Li Y, Wang F, Li H, Wang L. Fabrication and in vitro investigation of hyperbranched poly-lysine-grafted warp knitted polypropylene sling for potential treatment of stress urinary incontinence. Biomater Sci 2023; 11:6504-6523. [PMID: 37577866 DOI: 10.1039/d3bm00943b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Polypropylene (PP) sling implantation is the most commonly performed procedure for women with stress urinary incontinence (SUI). However, concerns have arisen regarding complications caused by slings, including the common issue of erosion, which can be attributed to various factors such as the body's response and bacterial contamination. To address these concerns, we have developed a rectangular mesh self-locking edge sling with a large pore size and lightweight design. Promising results have been obtained from preliminary in vivo mechanical reliability tests, including uniaxial tensile tests. In comparative in vitro fixed load tensile tests and simulated Tension-free Vaginal Tape (TVT) and Transobturator Vaginal Tape inside-out (TVT-O) technique tests using commercial slings, our sling demonstrated less transverse wrinkling. Both slings achieved an effective porosity of over 45% under the TVT technique. However, the commercial sling experienced a significant reduction in effective porosity during the TVT-O technique, whereas our sling maintained a stable effective porosity with minimal wrinkling. Furthermore, we successfully developed cationic hydration rejection-driven antibacterial-anti-fouling coatings on the surface of our sling by grafting hyperbranched poly-lysine (HBPL) mediated by polynorepinephrine. The HBPL coating imparts a positive charge and hydrophilicity to the sling, resulting in elevated bactericidal activity and reducing protein adhesion. An optimal grafting concentration of 20 mg mL-1 was selected, confirming the stability and biocompatibility of the sling coating. This coating is expected to reduce the likelihood of postoperative erosion. Overall, our research represents significant advancements in improving the safety and performance of PP slings for stress urinary incontinence, potentially leading to a reduction in complications following surgery.
Collapse
Affiliation(s)
- Shuying Zhao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China.
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, China
| | - Meiqi Fang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China.
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, China
| | - Yan Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China.
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, China
| | - Fujun Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China.
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, China
| | - Hao Li
- Shanghai Hongyu Medical Technology Co., Ltd, Shanghai, China
| | - Lu Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China.
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, China
| |
Collapse
|
6
|
Houshyar S, Saha T, Yin H, Zizhou R, Dekiwadia C, Pirogova E, Hill-Yardin EL, Yeung JM, Fox K, Cole I. Advanced flexible transvaginal mesh with high visibility under computerized tomography (CT) scan. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083162 DOI: 10.1109/embc40787.2023.10340322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Pelvic floor disorders, including pelvic organ prolapse (POP) and stress urinary incontinence (SUI), are serious and very common. Surgery is commonly undertaken to restore the strength of the vaginal wall using transvaginal surgical mesh (TVM). However, up to 15% of TVM implants result in long-term complications, including pain, recurrent symptoms, and infection.Clinical Relevance- In this study, a new bioengineered TVM has been developed to address these issues. The TVM is visible using noninvasive imaging techniques such as computed tomography (CT); it has a highly similar structural profile to human tissue and potential to reduce pain and inflammation. These combined technological advances have the potential to revolutionize women's health.
Collapse
|
7
|
Farr NTH, Klosterhalfen B, Noé GK. Characterization in respect to degradation of titanium-coated polypropylene surgical mesh explanted from humans. J Biomed Mater Res B Appl Biomater 2023; 111:1142-1152. [PMID: 36610021 PMCID: PMC10952695 DOI: 10.1002/jbm.b.35221] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/21/2022] [Accepted: 12/23/2022] [Indexed: 01/08/2023]
Abstract
Titanium-coated polypropylene (Ti-PP) mesh was introduced in 2002 as a surgical mesh for the treatment of hernias and shortly after for pelvic floor surgery, with the aim of improving biocompatibility when compared to non-titanised/regular PP mesh implants. The application of a titanium coating could also be beneficial to address concerns regarding the exposure of PP in an in vivo environment. Many studies have shown that PP, although it is widely accepted as a stable polymer, is subject to oxidation and degradation, such degradation affects the mechanical behavior, that is, the stiffness and tensile strength of PP mesh. Despite the wide clinical use of Ti-PP surgical meshes, no study has yet investigated the residual material properties post clinical deployment and subsequent explantation. In this study, two explanted Ti-PP mesh samples each having different incorporation durations from two patients were examined. Material analysis conducted within this study includes the following techniques: attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, low voltage - scanning electron microscopy (LV-SEM), backscattered electron (BSE) imaging, energy dispersive X-ray spectroscopy (EDS) and secondary election hyperspectral imaging (SEHI). The hypothesis of this study is that the Ti coating successfully shields the PP mesh from oxidative stress in vivo and thus protects it from degradation. The results of this analysis show for the first time evidence of bulk oxidation, surface degradation, and environmental stress cracking on explanted Ti-PP meshes.
Collapse
Affiliation(s)
- Nicholas T. H. Farr
- Department of Materials Science and EngineeringUniversity of SheffieldSheffieldUK
- Insigneo Institute for in silico MedicineSheffieldUK
| | | | - Günter K. Noé
- Department of Obstetrics and Gynecology Rheinlandclinics DormagenUniversity of Witten HerdeckeDormagenGermany
| |
Collapse
|
8
|
Lu X, Harman M, Todd Heniford B, Augenstein V, McIver B, Bridges W. Analyzing material changes consistent with degradation of explanted polymeric hernia mesh related to clinical characteristics. Surg Endosc 2022; 36:5121-5135. [PMID: 35257210 PMCID: PMC10851311 DOI: 10.1007/s00464-021-08882-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/16/2021] [Indexed: 10/18/2022]
Abstract
BACKGROUND Proposed mechanisms that potentially contribute to polypropylene mesh degradation after in vivo exposure include oxidizing species and mechanical strains induced by normal healing, tissue integration, muscle contraction, and the immediate and chronic inflammatory responses. METHODS This study explores these potential degradation mechanisms using 63 mesh implants retrieved from patients after a median implantation time of 24 months following hernia repair surgery (mesh explants) and analysis of multivariate associations between the material changes and clinical characteristics. Specifically, polypropylene mesh degradation was characterized in terms of material changes in surface oxidation, crystallinity and mechanical properties, and clinical characteristics included mesh placement location, medical history and mesh selection. RESULTS Compared to pristine control samples, subsets of mesh explants had evidence of surface oxidation, altered crystallinity, or changed mechanical properties. Using multivariate statistical approach to control for clinical characteristics, infection was a significant factor affecting changes in mesh stiffness and mesh class was a significant factor affecting polypropylene crystallinity changes. CONCLUSIONS Highly variable in vivo conditions expose mesh to mechanisms that alter clinical outcomes and potentially contribute to mesh degradation. These PP mesh explants after 0.5 to 13 years in vivo had measurable changes in surface chemistry, crystallinity and mechanical properties, with significant trends associated with factors of mesh placement, mesh class, and infection.
Collapse
Affiliation(s)
- Xinyue Lu
- Department of Bioengineering, Clemson University, Clemson, SC, 29634, USA
| | - Melinda Harman
- Department of Bioengineering, Clemson University, Clemson, SC, 29634, USA.
| | - B Todd Heniford
- Gastrointestinal and Minimally Invasive Surgery, Carolinas Medical Center, Charlotte, NC, 28204, USA
| | - Vedra Augenstein
- Gastrointestinal and Minimally Invasive Surgery, Carolinas Medical Center, Charlotte, NC, 28204, USA
| | - Brittney McIver
- Department of Bioengineering, Clemson University, Clemson, SC, 29634, USA
| | - William Bridges
- Department of Mathematical Sciences, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|
9
|
Xu D, Fang M, Wang Q, Qiao Y, Li Y, Wang L. Latest Trends on the Attenuation of Systemic Foreign Body Response and Infectious Complications of Synthetic Hernia Meshes. ACS APPLIED BIO MATERIALS 2022; 5:1-19. [PMID: 35014826 DOI: 10.1021/acsabm.1c00841] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Throughout the past few years, hernia incidence has remained at a high level worldwide, with more than 20 million people requiring hernia surgery each year. Synthetic hernia meshes play an important role, providing a microenvironment that attracts and harbors host cells and acting as a permanent roadmap for intact abdominal wall reconstruction. Nevertheless, it is still inevitable to cause not-so-trivial complications, especially chronic pain and adhesion. In long-term studies, it was found that the complications are mainly caused by excessive fibrosis from the foreign body reaction (FBR) and infection resulting from bacterial colonization. For a thorough understanding of their complex mechanism and providing a richer background for mesh development, herein, we discuss different clinical mesh products and explore the interactions between their structure and complications. We further explored progress in reducing mesh complications to provide varied strategies that are informative and instructive for mesh modification in different research directions. We hope that this work will spur hernia mesh designers to step up their efforts to develop more practical and accessible meshes by improving the physical structure and chemical properties of meshes to combat the increasing risk of adhesions, infections, and inflammatory reactions. We conclude that further work is needed to solve this pressing problem, especially in the analysis and functionalization of mesh materials, provided of course that the initial performance of the mesh is guaranteed.
Collapse
Affiliation(s)
- Danyao Xu
- Key Laboratory of Textile Science &Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.,Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Meiqi Fang
- Key Laboratory of Textile Science &Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.,Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Qian Wang
- Key Laboratory of Textile Science &Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.,Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Yansha Qiao
- Key Laboratory of Textile Science &Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.,Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Yan Li
- Key Laboratory of Textile Science &Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.,Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Lu Wang
- Key Laboratory of Textile Science &Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.,Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| |
Collapse
|
10
|
Mardina Z, Venezuela J, Maher C, Shi Z, Dargusch M, Atrens A. Design, mechanical and degradation requirements of biodegradable metal mesh for pelvic floor reconstruction. Biomater Sci 2022; 10:3371-3392. [DOI: 10.1039/d2bm00179a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pelvic organ prolapse (POP) is the herniation of surrounding tissue and organs into the vagina and or rectum, and is a result of weakening of pelvic floor muscles, connective tissue,...
Collapse
|
11
|
Narita M, Munekage F, Yamaoka R, Ikai I. Mesh shrinkage is the potential pathogenesis of chronic somatic pain following transabdominal preperitoneal repair: Report of two cases. Asian J Endosc Surg 2021; 14:798-802. [PMID: 33768647 DOI: 10.1111/ases.12935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/08/2021] [Accepted: 03/14/2021] [Indexed: 11/26/2022]
Abstract
Although mesh-related pain, termed "somatic pain," is a well-known pain syndrome following Lichtenstein repair, few reports are available on somatic pain following transabdominal preperitoneal repair (TAPP) and its pathogenesis remains unclear. We report on two patients with refractory somatic chronic pain following TAPP. In the present two cases, both mesh fixation with rigid permanent metal tackers and mesh shrinkage resulting in contractile forces on the groin musculature could be considered as potential mechanisms in the etiology of chronic somatic pain following TAPP. The lessons learned from these two cases are: (a) mesh shrinkage resulting in contractile forces on the groin musculature could be considered as potential mechanisms in the etiology of chronic somatic pain following TAPP; (b) partial mesh removal would be an effective alternative to total mesh removal in those patients for remedial surgery.
Collapse
Affiliation(s)
- Masato Narita
- Department of Surgery, Kyoto Medical Center, Kyoto, Japan
| | | | - Ryoya Yamaoka
- Department of Surgery, Kyoto Medical Center, Kyoto, Japan
| | - Iwao Ikai
- Department of Surgery, Kyoto Medical Center, Kyoto, Japan
| |
Collapse
|
12
|
Lai C, Zhang SJ, Chen XC, Sheng LY, Qi TW, Yan LP. Development of a cellulose-based prosthetic mesh for pelvic organ prolapse treatment: In vivo long-term evaluation in an ewe vagina model. Mater Today Bio 2021; 12:100172. [PMID: 34901822 PMCID: PMC8640518 DOI: 10.1016/j.mtbio.2021.100172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 11/29/2022] Open
Abstract
The use of vaginal surgical mesh to treat pelvic organ prolapse (POP) has been associated with high rates of mesh-related complications. In the present study, we prepared new kinds of meshes based on bacterial cellulose (BC) and collagen-coated BC (BCCOL) using a laser cutting method and perforation technique. The mechanical properties of pre-implanted BC meshes, including breaking strength, suture strength and rigidity, were equal to or exceeded those of available clinically used polypropylene meshes. An in vitro cellular assay revealed that BCCOL meshes exhibited enhanced biocompatibility by increasing collagen secretion and cell adhesion. Both BC and BCCOL meshes only caused weak inflammation and were surrounded by newly formed connective tissue composed of type I collagen after implantation in a rabbit subcutaneous model for one week, demonstrating that the novel mesh is fully biocompatible and can integrate into surrounding tissues. Furthermore, a long-term (ninety days) ewe vaginal implantation model was used to evaluate foreign body reactions and suitability of BC and BCCOL meshes as vaginal meshes. The results showed that the tissue surrounding the BC meshes returned to its original physiology as muscle tissue, indicating the excellent integration of BC meshes into the surrounding tissues without triggering severe local inflammatory response post-implantation. The collagen coating appeared to induce a chronic inflammatory response due to glutaraldehyde remnants. The present exploratory research demonstrated that the developed BC mesh might be a suitable candidate for treating POP.
Collapse
Affiliation(s)
- Chen Lai
- Shenzhen Key Laboratory of Human Tissue Regeneration and Repair, Shenzhen Institute Peking University, Shenzhen, 518057, PR China
| | - Shu-Jiang Zhang
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Xuan-Chen Chen
- Faculty of Engineering Science, Technical University of Dresden, Dresden, 01069, Germany
| | - Li-Yuan Sheng
- Shenzhen Key Laboratory of Human Tissue Regeneration and Repair, Shenzhen Institute Peking University, Shenzhen, 518057, PR China
| | - Tian-Wei Qi
- The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518001, PR China
| | - Le-Ping Yan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, PR China
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, PR China
| |
Collapse
|
13
|
Wang H, Klosterhalfen B, Müllen A, Otto T, Dievernich A, Jockenhövel S. Degradation resistance of PVDF mesh in vivo in comparison to PP mesh. J Mech Behav Biomed Mater 2021; 119:104490. [PMID: 33780848 DOI: 10.1016/j.jmbbm.2021.104490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 11/18/2022]
Abstract
Mesh implant has been applied in hernia repair and urogynecological reconstruction. Polypropylene (PP) is now the most widely used material for non-resorbable mesh implants. A degradation phenomenon of PP mesh, which is apparent on the mesh surface as cracking, flaking and peeling, was discovered in the 1990's. This phenomenon of mesh implant has drawn attention because of mesh-related litigations. Polyvinylidene fluoride (PVDF), due to its high biocompatible performance, has been used since 2003 as an alternative material for non-resorbable mesh implants. Till now, no such degradation phenomenon of PVDF mesh has been reported, although limited study on PVDF mesh is available. In this paper, we researched the degradation of PVDF meshes taking the degradation of PP mesh as a reference. The meshes analysed in this study were received from a previous animal experiment. To expose the surface of explanted meshes, a tissue removing method with protease was used and the result of this cleaning process was tested by X-ray Photoelectron Spectroscopy (XPS). The morphological condition of the mesh surface was compared using Scanning Electron Microscopy (SEM) and the chemical condition concerning degradation was analysed through Fourier Transform Infrared Spectroscopy (FTIR). The surface condition of PVDF mesh after 3-, 6-, 12- and 24-month implantation was illustrated and compared with two types of PP meshes. XPS revealed an absence of nitrogen, confirming the successful removal of tissue residues using protease. SEM results presented no notable morphological surface change of the PVDF mesh and progressive surface cracking processes over time of both types of PP meshes. FTIR spectra of the implanted PVDF meshes had no considerable difference from the spectrum of the pristine mesh, while FTIR spectra of both types of PP meshes had extra chemical functional groups (carbonyl (CO) and hydroxyl (-OH) groups) increasing with implantation time, indicating progressive degradation. This study highlights the morphological and chemical stability of the PVDF mesh and demonstrates that the PVDF mesh is more resistant to degradation in comparison to the other two types of PP meshes.
Collapse
Affiliation(s)
- Hongshi Wang
- Institute of Applied Medical Engineering, Dept. of Biohybrid & Medical Textiles (BioTex), RWTH Aachen University, Germany.
| | | | | | - Thomas Otto
- Department of Urology, Rheinland Clinic Lukas Hospital Neuss, Neuss, Germany
| | - Axel Dievernich
- Department of General, Visceral and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Stefan Jockenhövel
- Institute of Applied Medical Engineering, Dept. of Biohybrid & Medical Textiles (BioTex), RWTH Aachen University, Germany
| |
Collapse
|
14
|
Giuntoli G, Muzio G, Actis C, Ganora A, Calzone S, Bruno M, Ciardelli G, Carmagnola I, Tonda-Turo C. In-vitro Characterization of a Hernia Mesh Featuring a Nanostructured Coating. Front Bioeng Biotechnol 2021; 8:589223. [PMID: 33553112 PMCID: PMC7856147 DOI: 10.3389/fbioe.2020.589223] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/16/2020] [Indexed: 11/15/2022] Open
Abstract
Abdominal hernia repair is a frequently performed surgical procedure worldwide. Currently, the use of polypropylene (PP) surgical meshes for the repair of abdominal hernias constitutes the primary surgical approach, being widely accepted as superior to primary suture repair. Surgical meshes act as a reinforcement for the weakened or damaged tissues and support tissue restoration. However, implanted meshes could suffer from poor integration with the surrounding tissues. In this context, the present study describes the preliminary evaluation of a PCL-Gel-based nanofibrous coating as an element to develop a multicomponent hernia mesh device (meshPCL-Gel) that could overcome this limitation thanks to the presence of a nanostructured biomimetic substrate for enhanced cell attachment and new tissue formation. Through the electrospinning technique, a commercial PP hernia mesh was coated with a nanofibrous membrane from a polycaprolactone (PCL) and gelatin (Gel) blend (PCL-Gel). Resulting PCL-Gel nanofibers were homogeneous and defect-free, with an average diameter of 0.15 ± 0.04 μm. The presence of Gel decreased PCL hydrophobicity, so that membranes average water contact angle dropped from 138.9 ± 1.1° (PCL) to 99.9 ± 21.6°, while it slightly influenced mechanical properties, which remained comparable to those of PCL (E = 15.7 ± 2.7 MPa, σ R = 7.7 ± 0.6 ε R = 118.8 ± 13.2%). Hydrolytic and enzymatic degradation was conducted on PCL-Gel up to 28 days, with maximum weight losses around 20 and 40%, respectively. The meshPCL-Gel device was obtained with few simple steps, with no influences on the original mechanical properties of the bare mesh, and good stability under physiological conditions. The biocompatibility of meshPCL-Gel was assessed by culturing BJ human fibroblasts on the device, up to 7 days. After 24 h, cells adhered to the nanofibrous substrate, and after 72 h their metabolic activity was about 70% with respect to control cells. The absence of detectable lactate dehydrogenase in the culture medium indicated that no necrosis induction occurred. Hence, the developed nanostructured coating provided the meshPCL-Gel device with chemical and topographical cues similar to the native extracellular matrix ones, that could be exploited for enhancing the biological response and, consequently, mesh integration, in abdominal wall hernia repair.
Collapse
Affiliation(s)
- Giulia Giuntoli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- POLITO BIOMedLAB, Politecnico di Torino, Turin, Italy
| | - Giuliana Muzio
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Chiara Actis
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | | | | | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- POLITO BIOMedLAB, Politecnico di Torino, Turin, Italy
- Department for Materials and Devices of the National Research Council, Institute for the Chemical and Physical Processes (CNR-IPCF UOS), Pisa, Italy
| | - Irene Carmagnola
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- POLITO BIOMedLAB, Politecnico di Torino, Turin, Italy
| | - Chiara Tonda-Turo
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- POLITO BIOMedLAB, Politecnico di Torino, Turin, Italy
| |
Collapse
|
15
|
Grenadyorov AS, Solovyev АА, Malashchenko VV, Khlusov IA. Stability of
a‐C
:H:
SiO
x
coating on polypropylene to chemical sterilization. J Appl Polym Sci 2020. [DOI: 10.1002/app.49570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
| | - Аndrey А. Solovyev
- Laboratory of Applied Electronics The Institute of High Current Electronics SB RAS Tomsk Russia
| | - Vladimir V. Malashchenko
- Laboratory of Applied Electronics The Institute of High Current Electronics SB RAS Tomsk Russia
- Center of Immunology and Cell Biotechnology Immanuel Kant Baltic Federal University Kaliningrad Russia
| | - Igor A. Khlusov
- Center of Immunology and Cell Biotechnology Immanuel Kant Baltic Federal University Kaliningrad Russia
- Department of Morphology and General Pathology Siberian State Medical University Tomsk Russia
- Research School of Chemistry and Applied Biomedical Sciences National Research Tomsk Polytechnic University Tomsk Russia
| |
Collapse
|
16
|
Alemrajabi M, Darabi B, Banivaheb B, Hemmati N, Jahanian S, Moradi M. Polyvinylidene Fluoride Mesh Use in Laparoscopic Ventral Mesh Rectopexy in Patients with Obstructive Defecation Syndrome for the First Time. J INVEST SURG 2020; 34:1083-1088. [PMID: 32423243 DOI: 10.1080/08941939.2020.1767734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Obstructive defecation syndrome (ODS) affects quality of life of patients to a great extent by disturbing defecation. Laparoscopic ventral mesh rectopexy (LVMR) has gained much attention in the recent years. Common synthetic used meshes have a risk of erosion for adjacent pelvic organs leading to some complications. The aim of this study was to assess the outcomes of LVMR using polyvinylidene fluoride (PVDF) mesh in patients with ODS for the first time.Methods and Materials: In this experimental study, patients with a history of ODS and associated signs and symptoms such as descending perineum, rectocele, enterocele, intussusception, rectal prolapse or a combined disorder were recruited. The patients underwent LVMR using a PVDF mesh. They were followed using the Constipation Scoring System (CSS) score. Participants were followed up for 12 months after surgery. Complications and CSS for each patient and its changes were the main outcomes of this study. RESULTS Of 156 patients, 155 had a 12-month complete follow-up. Thirty-nine (25.2%) were male and 116 (74.8%) female. Mean ± SD age of participants was 45.61 ± 14.02 years. The overall complication rate was 3.87%. No major mesh-related complications were recorded. Four cases (2.58%) of trocar site hernia were reported. Also, two cases (1.29%) of postoperative bleeding occurred. CSS before the operation and 1, 3, and 12 months after it were 11.04 ± 5.93, 7.98 ± 4.85, 5.46 ± 3.70 and 4.09 ± 2.98, respectively (p < 0.001). CONCLUSION Synthetic meshes might cause severe erosion in pelvic organs. However, at least in short-term follow-up, PVDF mesh seems to be safe and effective in LVMR, with the advantage of being cheaper.
Collapse
Affiliation(s)
- Mahdi Alemrajabi
- Department of Surgery, Firoozgar Clinical Research Development Center (FCRDC), Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Behnam Darabi
- Firoozgar Clinical Research Development Center (FCRDC), Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Behrouz Banivaheb
- Department of Surgery, Firoozgar Clinical Research Development Center (FCRDC), Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Nima Hemmati
- Department of Surgery, Firoozgar Clinical Research Development Center (FCRDC), Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Sepideh Jahanian
- Department of Surgery, Firoozgar Clinical Research Development Center (FCRDC), Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mohammad Moradi
- Firoozgar Clinical Research Development Center (FCRDC), Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
17
|
Implantation Time Has No Effect on the Morphology and Extent of Previously Reported "Degradation" of Prolene Pelvic Mesh. Female Pelvic Med Reconstr Surg 2020; 26:128-136. [PMID: 31990801 DOI: 10.1097/spv.0000000000000837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Prolene polypropylene ("Prolene") meshes demonstrate no in vivo degradation, yet some claim degradation continues until no more Prolene polypropylene can be oxidized. We studied whether implantation time affects the morphology/extent of previously reported as cracking/degradation of completely cleaned Prolene explants. METHODS Urogynecological explants (248 patients) were collected. After excluding non-Prolene/unknown meshes and those without known implantation times, completely cleaned explants (n = 205; 0.2-14.4 years implantation) were analyzed with light microscopy, scanning electron microscopy, and Fourier transform infrared spectroscopy. Based on implant times and storage (fixative or dry), representative specimens were randomly selected for comparison. Controls were unused ("exemplar") TVT specimens with and without intentional oxidation via ultraviolet light exposure. RESULTS Prolene explants included 31 dry (18 TVT; 7 Prolift; 4 Gynemesh; 2 others) and 174 wet (87 TVT; 47 Prolift; 10 Gynemesh; 30 others) specimens. Specimens had similar morphologies before cleaning. Progressive cleaning removed tissue and cracked tissue-related material exposing smooth, unoxidized, and nondegraded fibers, with no visible gradient-type/ductile damage. Fourier transform infrared spectroscopy of the explants confirmed progressive loss of proteins. Cleaning intentionally oxidized exemplars did not remove oxidized carbonyl frequencies and showed deep cracks and gross fiber rupture/embrittlement, unlike the explants and nonoxidized exemplars. CONCLUSIONS If in vivo Prolene degradation exists, there should be wide-ranging crack morphology and nonuniform crack penetration, as well as more cracking, degradation, and physical breakage for implants of longer implantation times, but this was not the case. There is no morphologic or spectral/chemical evidence of Prolene mesh degradation after up to 14.4 years in vivo.
Collapse
|
18
|
Laparoscopic approach to pelvic organ prolapse - the way to go or a blind alley? Wideochir Inne Tech Maloinwazyjne 2020; 14:469-475. [PMID: 31908691 PMCID: PMC6939204 DOI: 10.5114/wiitm.2019.88749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/04/2019] [Indexed: 11/17/2022] Open
Abstract
Pelvic organ prolapse represents a relatively frequent diagnosis that requires attention due to its detrimental effect on quality of life. Not surprisingly, it is one of the commonest indications for surgery in premenopausal and postmenopausal women, often requiring a complex multidisciplinary approach. Traditional vaginal procedures are being gradually replaced by laparoscopic techniques, offering anticipated benefits in reduced recurrence and complication rates, while respecting the trend towards uterus sparing if desirable. Recently, questions about the safety of alloplastic materials used in pelvic organ prolapse surgery were raised, leading to official restrictions in their use, particularly for transvaginal application. As a result, laparoscopic procedures might appear slightly favored but caution must be taken to assure proper technique of mesh placement while maintaining high awareness of possible long-term mesh-related complications that require close surveillance. Therefore, adequate education and training becomes even more important to achieve optimal results and to avoid possible serious medico-legal charges.
Collapse
|
19
|
Taylor D, Barton E. In vitro characterisation of the erosion of soft tissues by surgical mesh. J Mech Behav Biomed Mater 2020; 101:103420. [DOI: 10.1016/j.jmbbm.2019.103420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 01/24/2023]
|