1
|
Licari G, Strakova K, Matile S, Tajkhorshid E. Twisting and tilting of a mechanosensitive molecular probe detects order in membranes. Chem Sci 2020; 11:5637-5649. [PMID: 32864081 PMCID: PMC7433777 DOI: 10.1039/d0sc02175j] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 04/29/2020] [Indexed: 12/29/2022] Open
Abstract
Lateral forces in biological membranes affect a variety of dynamic cellular processes. Recent synthetic efforts have introduced fluorescent "flippers" as environment-sensitive planarizable push-pull probes that can detect lipid packing and membrane tension, and respond to lipid-induced mechanical forces by a shift in their spectroscopic properties. Herein, we investigate the molecular origin of the mechanosensitivity of the best known flipper, Flipper-TR, by an extended set of molecular dynamics (MD) simulations in membranes of increasing complexity and under different physicochemical conditions, revealing unprecedented details of the sensing process. Simulations enabled by accurate refinement of Flipper-TR force field using quantum mechanical calculations allowed us to unambiguously correlate the planarization of the two fluorescent flippers to spectroscopic response. In particular, Flipper-TR conformation exhibits bimodal distribution in disordered membranes and a unimodal distribution in highly ordered membranes. Such dramatic change was associated with a shift in Flipper-TR excitation spectra, as supported both by our simulated and experimentally-measured spectra. Flipper-TR sensitivity to phase-transition is confirmed by a temperature-jump protocol that alters the lipid phase of an ordered membrane, triggering an instantaneous mechanical twisting of the probe. Simulations show that the probe is also sensitive to surface tension, since even in a naturally disordered membrane, the unimodal distribution of coplanar flippers can be achieved if a sufficiently negative surface tension is applied to the membrane. MD simulations in ternary mixtures containing raft-like nanodomains show that the probe can discriminate lipid domains in phase-separated complex bilayers. A histogram-based approach, called DOB-phase classification, is introduced that can differentiate regions of disordered and ordered lipid phases by comparing dihedral distributions of Flipper-TR. Moreover, a new sensing mechanism involving the orientation of Flipper-TR is elucidated, corroborating experimental evidence that the probe tilt angle is strongly dependent on lipid ordering. The obtained atomic-resolution description of Flipper-TR mechanosensitivity is key to the interpretation of experimental data and to the design of novel mechanosensors with improved spectroscopic properties.
Collapse
Affiliation(s)
- Giuseppe Licari
- NIH Center for Macromolecular Modeling and Bioinformatics , Beckman Institute for Advanced Science and Technology , Department of Biochemistry , Center for Biophysics and Quantitative Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois , USA . ; Tel: +1-217-244-6914
| | - Karolina Strakova
- School of Chemistry and Biochemistry , National Centre of Competence in Research (NCCR) Chemical Biology , University of Geneva , Geneva , Switzerland
| | - Stefan Matile
- School of Chemistry and Biochemistry , National Centre of Competence in Research (NCCR) Chemical Biology , University of Geneva , Geneva , Switzerland
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics , Beckman Institute for Advanced Science and Technology , Department of Biochemistry , Center for Biophysics and Quantitative Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois , USA . ; Tel: +1-217-244-6914
| |
Collapse
|
2
|
Zhu L, Zhao W, Yan Y, Liao X, Bourtsalas A, Dan Y, Xiao H, Chen X. Interaction between mechanosensitive channels embedded in lipid membrane. J Mech Behav Biomed Mater 2019; 103:103543. [PMID: 31783284 DOI: 10.1016/j.jmbbm.2019.103543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/07/2019] [Accepted: 11/15/2019] [Indexed: 11/27/2022]
Abstract
The study of the gating mechanism of mechanosensitive channels opens a window to the exploration of how different mechanical stimuli induce adaptive cellular behaviors of both the protein and the lipid, across different time and length scales. In this work, through a molecular dynamics-decorated finite element method (MDeFEM), the gating behavior of mechanosensitive channels of small conductance (MscS) in Escherichia coli (E. coli) is studied upon membrane stretch or global bending. The local membrane curvature around MscS is incorporated, as well as multiple MscL (mechanosensitive channels of large conductance) molecules in proximity to MscS. The local membrane curvature is found to delay MscS opening and diminishes moderately upon membrane stretching. Mimicking the insertion of lysophosphatidylcholine (LPC) molecules into the lipid, both downward and upward bending can active MscS, as long as the global membrane curvature radius reaches 34 nm. Based on the different MscS pore evolutions observed with the presence of one or more MscLs nearby, we propose that when coreconstituted, multiple MscL molecules tend to be located at the local membrane curvature zone around MscS. In another word, as MscL "swims around" in the lipid bilayer, it can be trapped by the membrane's local curvature. Collectively, the current study provides valuable insights into the interplay between mechanosensitive channels and lipid membrane at structural and physical levels, and specific predictions are proposed for further experimental investigations.
Collapse
Affiliation(s)
- Liangliang Zhu
- Shaanxi Institute of Energy and Chemical Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wei Zhao
- Shaanxi Institute of Energy and Chemical Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Yuan Yan
- Shaanxi Institute of Energy and Chemical Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Xiangbiao Liao
- Earth Engineering Center, Center for Advanced Materials for Energy and Environment, Department of Earth and Environmental Engineering, Columbia University, New York, NY10027, USA
| | - Athanasios Bourtsalas
- Earth Engineering Center, Center for Advanced Materials for Energy and Environment, Department of Earth and Environmental Engineering, Columbia University, New York, NY10027, USA
| | - Yong Dan
- Shaanxi Institute of Energy and Chemical Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.
| | - Hang Xiao
- Shaanxi Institute of Energy and Chemical Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.
| | - Xi Chen
- Shaanxi Institute of Energy and Chemical Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Earth Engineering Center, Center for Advanced Materials for Energy and Environment, Department of Earth and Environmental Engineering, Columbia University, New York, NY10027, USA
| |
Collapse
|