1
|
Phan T, Jones JE, Liao Y, Yu Q, Chen M. The Mechanical and Electrochemical Stability of Trimethysilane Plasma Nanocoatings Deposited onto Cobalt Chromium Cardiovascular Stents. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3699. [PMID: 39124362 PMCID: PMC11312952 DOI: 10.3390/ma17153699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
The objective of this study was to evaluate the coating integrity performance and corrosion protection property of trimethylsilane (TMS) plasma nanocoatings that were directly deposited onto cobalt chromium (CoCr) L605 cardiovascular stents. Hydrophilic surfaces were achieved for the TMS plasma nanocoatings that were deposited onto the coronary stents through NH3/O2 (2:1 molar ratio) plasma post-treatment. With a coating thickness of approximately 20-25 nm, the TMS plasma nanocoatings were highly durable and able to resist delamination and cracking from crimping and expansion by a Model CX with a J-Crimp Station. The stent surface that was evaluated by Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray Spectroscopy (EDS) showed no indications of pitting, corrosion, or adsorption products on either the luminal or abluminal surfaces of the stents, in contrast to the uncoated stent surface. The TMS plasma nanocoatings significantly enhanced the stent's corrosion resistance in immersion experiments that followed the ASTM F2129-15 corrosion protocol, evident in the increase of the open circuit potential (OCP) from 0.01 V for the uncoated L605 stent to 0.18 V for the plasma-nanocoated L605 stent, reducing potential cytotoxic metal ion release. Cyclic polarization (CP) curves show that the corrosion rate (density level) observed in plasma-nanocoated L605 stents was approximately half an order of magnitude lower than that of the uncoated stents, indicating improved corrosion protection of the stents. CP curves of the TMS plasma-nanocoated stents with different coating thicknesses show that, in the range of 20-65 nm, the coating thickness does not result in any difference in the corrosion resistance of the stents.
Collapse
Affiliation(s)
- ThiThuHa Phan
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA
| | - John E. Jones
- Nanova, Inc., 1601 S Providence Rd, Columbia, MO 65211, USA
| | - Yixuan Liao
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Qingsong Yu
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Meng Chen
- Nanova, Inc., 1601 S Providence Rd, Columbia, MO 65211, USA
| |
Collapse
|
2
|
Giakoumi M, Stephanou PS, Kokkinidou D, Papastefanou C, Anayiotos A, Kapnisis K. A Predictive Toxicokinetic Model for Nickel Leaching from Vascular Stents. ACS Biomater Sci Eng 2024; 10:2534-2551. [PMID: 38525821 PMCID: PMC11005016 DOI: 10.1021/acsbiomaterials.3c01436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024]
Abstract
In vitro testing methods offer valuable insights into the corrosion vulnerability of metal implants and enable prompt comparison between devices. However, they fall short in predicting the extent of leaching and the biodistribution of implant byproducts under in vivo conditions. Physiologically based toxicokinetic (PBTK) models are capable of quantitatively establishing such correlations and therefore provide a powerful tool in advancing nonclinical methods to test medical implants and assess patient exposure to implant debris. In this study, we present a multicompartment PBTK model and a simulation engine for toxicological risk assessment of vascular stents. The mathematical model consists of a detailed set of constitutive equations that describe the transfer of nickel ions from the device to peri-implant tissue and circulation and the nickel mass exchange between blood and the various tissues/organs and excreta. Model parameterization was performed using (1) in-house-produced data from immersion testing to compute the device-specific diffusion parameters and (2) full-scale animal in situ implantation studies to extract the mammalian-specific biokinetic functions that characterize the time-dependent biodistribution of the released ions. The PBTK model was put to the test using a simulation engine to estimate the concentration-time profiles, along with confidence intervals through probabilistic Monte Carlo, of nickel ions leaching from the implanted devices and determine if permissible exposure limits are exceeded. The model-derived output demonstrated prognostic conformity with reported experimental data, indicating that it may provide the basis for the broader use of modeling and simulation tools to guide the optimal design of implantable devices in compliance with exposure limits and other regulatory requirements.
Collapse
Affiliation(s)
- Matheos Giakoumi
- Department
of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Pavlos S. Stephanou
- Department
of Chemical Engineering, Cyprus University
of Technology, Limassol 3036, Cyprus
| | - Despoina Kokkinidou
- Department
of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol 3036, Cyprus
| | | | - Andreas Anayiotos
- Department
of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Konstantinos Kapnisis
- Department
of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol 3036, Cyprus
| |
Collapse
|
3
|
Istanbullu OB, Akdogan G. Blood-repellent and anti-corrosive surface by spin-coated SWCNT layer on intravascular stent materials. Phys Eng Sci Med 2023; 46:227-243. [PMID: 36592282 DOI: 10.1007/s13246-022-01212-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023]
Abstract
Despite intravascular bare metallic stents (BMS) being indispensable products in cardiovascular surgery, they face in-stent restenosis (ISR), resulting in stent failure or secondary surgical operation necessity. Accumulation or corrosion processes are key factors that promote ISR development in a vascular pathway, including an intravascular stent. The ISR can be inhibited by increasing the blood-repellency, and electrochemical corrosion resistance features using surface modification techniques on intravascular stent materials. In this study, Single-Walled Carbon Nanotube (SWCNT) structures were deposited using the spin-coating method on stent specimens made of 316L, 316LVM, CoCr-alloy, and Ti-alloy. Hydrophobicity and blood-repellency functions of coated and uncoated specimens were analysed by the Contact Angle (CA) values for distilled water (DIW), glycerol, blood plasma, and total-blood droplets using a computer-controlled goniometer system. Using a potentiostat, the electrochemical corrosion resistance features were analysed from obtained Electrochemical Impedance Spectroscopy (EIS) and Tafel curves in 37 °C Simulated Body Fluid (SBF) mimicking the human blood plasma. Due to the CA values below 90°, the repellency limit for hydrophobicity and blood-repellency, bare specimens performed hydrophilic and blood-philic features. However, SWCNT coating increased the repellency functions to 95° for DIW and 96° for total blood. The electrochemical corrosion resistance analysis showed that 1.433 kΩ cm2 polarization resistance and 1.07 kΩ cm2 electrochemical impedance of bare specimens increased to 142.8 kΩ cm2 and 141.3 kΩ cm2 by SWCNT coating. These corrosion resistance enhancements led to ratios of 78.13% inhibition in the corrosion rate and mass loss rate per year for SWCNT-coated 316LVM specimens. The maximum inhibition efficiency was observed for SWCNT-coated 316LVM specimens with a ratio of 87.92%. Obtained results indicate that SWCNT coating of the intravascular stents can inhibit the ISR risks of the BMS group.
Collapse
Affiliation(s)
- O Burak Istanbullu
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Gulsen Akdogan
- Department of Biomedical Engineering, Faculty of Engineering, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
4
|
Computer‐Aided Analysis of the Corrosion Inhibition by Carbon‐Based Thin‐Film Coating on Vascular Bare Metal Stent Models. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202100626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Influences of Stent Design on In-Stent Restenosis and Major Cardiac Outcomes: A Scoping Review and Meta-Analysis. Cardiovasc Eng Technol 2021; 13:147-169. [PMID: 34409580 DOI: 10.1007/s13239-021-00569-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
Thanks to the developments in implantable biomaterial technologies, invasive operating procedures, and widespread applications especially in vascular disease treatment, a milestone for interventional surgery was achieved with the introduction of vascular stents. Despite vascular stents providing a solution for embolisms, this technology includes various challenges, such as mechanical, electro-chemical complications, or in-stent restenosis (ISR) risks with long-term usage. Therefore, further development of biomaterial technologies is vital to overcome such risks and problems. For this purpose, recent research has focused mainly on the applications of surface modification techniques on biomaterials and vascular stents to increase their hemocompatibility. ISR risk has been reduced with the development and prevalent usage of the art technology stent designs of drug-eluting and biodegradable stents. Nevertheless, their problems have not been overcome completely. Furthermore, patients using drug-eluting stents are faced with further clinical challenges. Therefore, the bare metal stent, which is the first form of the vascular stent technology and includes the highest ISR risk, is still in common usage for vascular treatment applications. For this reason, further research is necessary to solve the remaining vital problems. In this scoping review, stent-based major cardiac events including ISR are analyzed depending on different designs and material selection in stent manufacturing. Recent and novel approaches to overcome such challenges are stated in detail.
Collapse
|
6
|
Štefančík M, Válková L, Veverková J, Balvan J, Vičar T, Babula P, Mašek J, Kulich P, Pávková Goldbergová M. Ni and TiO 2 nanoparticles cause adhesion and cytoskeletal changes in human osteoblasts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6018-6029. [PMID: 32981019 DOI: 10.1007/s11356-020-10908-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Titanium-based alloys have established a crucial role in implantology. As material deteriorates overtime, nanoparticles of TiO2 and Ni are released. This study is focused on the impact of TiO2 and Ni nanoparticles with size of 100 nm on cytoskeletal and adhesive changes in human physiological and osteoarthritic osteoblasts. The impact of nanoparticles with concentration of 1.5 ng/mL on actin and tubulin expression and gene expression of FAK and ICAM-1 was studied. The cell size and actin expression of physiological osteoblasts decreased in presence of Ni nanoparticles, while TiO2 nanoparticles caused increase in cell size and actin expression. Both cell lines expressed more FAK as a response to TiO2 nanoparticles. ICAM-1 gene was overexpressed in both cell lines as a reaction to both types of nanoparticles. The presented study shows a crucial role of Ni and TiO2 nanoparticles in human osteoblast cytoskeletal and adhesive changes, especially connected with the osteoarthritic cells. Graphical abstract.
Collapse
Affiliation(s)
- Michal Štefančík
- Institute of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Lucie Válková
- Institute of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Jana Veverková
- Institute of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Jan Balvan
- Institute of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Tomáš Vičar
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Josef Mašek
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Pavel Kulich
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Monika Pávková Goldbergová
- Institute of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
| |
Collapse
|
7
|
Daher MDEA, Lopez GE, Duarte PV. Stents in the femoropopliteal territory: prevalence of fractures and their consequences. Rev Col Bras Cir 2020; 47:e20202481. [PMID: 32965301 DOI: 10.1590/0100-6991e-20202481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/16/2020] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Endovascular treatment for femoropopliteal arterial disease has made revascularization procedures less invasive, but the self-expanding stents used can suffer great wear in arteries with extreme mobility. To evaluate the prevalence of fractures in stents implanted in the femoropopliteal segment, to identify predisposing factors and consequences on arterial patency. METHOD between March and June 2019, thirty patients previously operated for femoropopliteal obstruction underwent stent X-rays in anteroposterior and lateral views to detect fractures and Doppler to analyze arterial patency. RESULTS we observed 12 cases with fractures (33.3%): 1 type I (2.8%), 3 type II (8.3%), 5 type III (13.9%), 3 type IV (8.3%) and no type V. According to the TASC II we had 1 in group B (8.3%), 6 in group C (50%) and 5 in group D (41.6%) p <0.004. The number of stents per limb was 3.1 (± 1.3) in cases of fracture versus 2.3 (± 1.3) in cases without fracture (p = 0.08). The extension was 274.17mm (± 100.94) in cases of fracture and 230.83mm (± 135.44) in cases without fracture (p = 0.29). On Doppler we had: 17 patients (47.2%) without stenosis, 9 patients (25%) with stenosis> 50% and 10 patients (27.8%) with occlusion (p = 0.37). There was no correlation between fracture and arterial obstruction (p = 0.33). CONCLUSION stent fractures are a frequent finding in the femoropopliteal area (33.3%), being more prevalent in cases of more advanced disease (C and D). There was no association between the finding of fracture and arterial obstruction.
Collapse
Affiliation(s)
- Marcelo DE Azevedo Daher
- - Hospital Universitário Clementino Fraga Filho - UFRJ, Departamento de Cirurgia Vascular Periférica - Rio de Janeiro - RJ - Brasil
| | - Gaudencio Espinosa Lopez
- - Hospital Universitário Clementino Fraga Filho - UFRJ, Departamento de Cirurgia Vascular Periférica - Rio de Janeiro - RJ - Brasil
| | - Pedro Vaz Duarte
- - Hospital Universitário Clementino Fraga Filho - UFRJ, Departamento de Cirurgia Vascular Periférica - Rio de Janeiro - RJ - Brasil
| |
Collapse
|
8
|
Barros CDDR, Ponciano Gomes JADC. Strain induced localized corrosion of NiTi, NiTiCo and NiTiCr alloys in 0.9% NaCl. J Mech Behav Biomed Mater 2020; 112:104015. [PMID: 32861064 DOI: 10.1016/j.jmbbm.2020.104015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
Shape memory and super elastic alloys are commonly used in biomedical and engineering areas, due to their higher elastic deformation characteristics and low elastic module when in martensitic state. For biomaterial applications, the alloy must exhibit adequate corrosion resistance and biocompatibility, especially in chloride environments. The addition of ternary elements in NiTi alloys aim to improve the mechanical properties. Addition of Co increases the elastic limit and reduce the transformation temperature while Cr additions increase the yield strength. However, it was demonstrated that this modification can affect the corrosion resistance of the raw materials. This study aims to assess the corrosion and strain induced corrosion resistance of NiTi alloys modified by Co and Cr additions in the presence of 0.9% NaCl solution. Ternary alloys were compared to NiTi binary alloys, when unstrained and strained within the elastic regime where martensitic transformation is induced. Electrochemical impedance spectroscopy (EIS) and anodic polarization tests were performed on both conditions. Straining electrode corrosion tests were performed under constant electrochemical potential being the electrochemical response registered. Tests using wire samples as straining working electrodes permitted the assessment of the correlation between deformation and the anodic current of the alloys immersed in 0.9% NaCl solution. It was concluded that, despite the mechanical benefits provided by the addition of ternary elements, these additions increased the susceptibility to localized corrosion and the pitting corrosion susceptibility enhanced by stress and corresponding strain.
Collapse
Affiliation(s)
- Camila Dias Dos Reis Barros
- Postdoctoral Research, Dentistry, LabCorr (Corrosion Laboratory), Department of Materials and Metallurgy (COPPE/UFRJ), Federal University of Rio de Janeiro, Av. Horácio de Macedo 2030 Bloco I Cidade Universitária, Rio de Janeiro, 21941-972, Brazil
| | - José Antônio da Cunha Ponciano Gomes
- Professor, Metallurgical Engineering, LabCorr (Corrosion Laboratory), Department of Materials and Metallurgy (COPPE/UFRJ), Federal University of Rio de Janeiro, Av. Horácio de Macedo 2030 Bloco I Cidade Universitária, Rio de Janeiro, 21941-972, Brazil.
| |
Collapse
|
9
|
Racek J, Šittner P. Environmental fatigue of superelastic NiTi wire with two surface finishes. J Mech Behav Biomed Mater 2020; 111:104028. [PMID: 32818770 DOI: 10.1016/j.jmbbm.2020.104028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 06/23/2020] [Accepted: 08/01/2020] [Indexed: 01/20/2023]
Abstract
Surface finish of NiTi is widely perceived to affect its biocompatibility and corrosion fatigue performance. The aim of this work was to find out, whether a carefully engineered surface oxide shows any beneficial effect over electropolished surface on the fatigue performance of superelastic NiTi wire mechanically cycled in simulated biofluid. Series of corrosion and environmental fatigue tensile tests was performed on superelastic NiTi wire with two different surface finishes frequently used in medical device industry. Open Circuit Potential reflecting the activity of chemical reactions on the surface of the wire cycled in electrochemical cell was continuously monitored during the fatigue tests. Microcracks at the surface of the fatigued NiTi wires were characterized by SEM and TEM. It was found that the carefully engineered 70 nm thick TiO2 oxide provides the NiTi wire with similar level of protection against the static corrosion as the less than 10 nm thin natural oxide on the electropolished wire and that it does not have any positive effect on its performance in environmental fatigue tests, whatsoever. On the contrary, the wire covered by the carefully engineered 70 nm thick TiO2 oxide displayed systematically poorer fatigue performance upon tensile cycling under specific critical loading conditions (strain amplitude <0.5% at large mean strains 1-7%).
Collapse
Affiliation(s)
- Jan Racek
- Institute of Physics CAS, Na Slovance 2, Prague, 182 21, Czech Republic
| | - Petr Šittner
- Institute of Physics CAS, Na Slovance 2, Prague, 182 21, Czech Republic; Nuclear Physics Institure of the CAS, Husinec-Rez, Czech Republic.
| |
Collapse
|
10
|
Zhang C, He L, Chen Y, Dai D, Su Y, Shao L. Corrosion Behavior and In Vitro Cytotoxicity of Ni-Ti and Stainless Steel Arch Wires Exposed to Lysozyme, Ovalbumin, and Bovine Serum Albumin. ACS OMEGA 2020; 5:18995-19003. [PMID: 32775901 PMCID: PMC7408227 DOI: 10.1021/acsomega.0c02312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
In this study, the tendency and mechanisms by which protein and mechanical loads contribute to corrosion were determined by exposing Ni-Ti and stainless steel arch wires under varying mechanical loads to artificial saliva containing different types of protein (lysozyme, ovalbumin, and bovine serum albumin). The corrosion behavior and in vitro cytotoxicity results show that exposure to both protein and mechanical stress significantly decreased the corrosion resistance of stainless steel and increased the release of toxic corrosion products. Adding protein inhibited the corrosion of Ni-Ti, but the mechanical loads counteracted this effect. Even proteins containing the same types of amino acids had different effects on the corrosion resistance of the same alloy. The effect of protein or stress, or their combination, should be considered in the application of metal medical materials.
Collapse
Affiliation(s)
- Chao Zhang
- Stomatology
Center, Shunde Hospital, Southern Medical
University (The First People’s Hospital of Shunde), Foshan 528300, China
- Stomatological
Hospital, Southern Medical University, Guangzhou 510280, China
| | - Longwen He
- Stomatological
Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yuming Chen
- Stomatological
Hospital, Southern Medical University, Guangzhou 510280, China
| | - Danni Dai
- Stomatological
Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yuan Su
- Stomatology
Center, Shunde Hospital, Southern Medical
University (The First People’s Hospital of Shunde), Foshan 528300, China
- Stomatological
Hospital, Southern Medical University, Guangzhou 510280, China
| | - Longquan Shao
- Stomatological
Hospital, Southern Medical University, Guangzhou 510280, China
- Guangdong
Provincial Key Laboratory of Construction and Detection in Tissue
Engineering, Guangzhou 510515, China
| |
Collapse
|