1
|
Durcan C, Hossain M, Chagnon G, Perić D, Girard E. Characterization of the layer, direction and time-dependent mechanical behaviour of the human oesophagus and the effects of formalin preservation. J R Soc Interface 2024; 21:20230592. [PMID: 38593841 PMCID: PMC11003784 DOI: 10.1098/rsif.2023.0592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/05/2024] [Indexed: 04/11/2024] Open
Abstract
The mechanical characterization of the oesophagus is essential for applications such as medical device design, surgical simulations and tissue engineering, as well as for investigating the organ's pathophysiology. However, the material response of the oesophagus has not been established ex vivo in regard to the more complex aspects of its mechanical behaviour using fresh, human tissue: as of yet, in the literature, only the hyperelastic response of the intact wall has been studied. Therefore, in this study, the layer-dependent, anisotropic, visco-hyperelastic behaviour of the human oesophagus was investigated through various mechanical tests. For this, cyclic tests, with increasing stretch levels, were conducted on the layers of the human oesophagus in the longitudinal and circumferential directions and at two different strain rates. Additionally, stress-relaxation tests on the oesophageal layers were carried out in both directions. Overall, the results show discrete properties in each layer and direction, highlighting the importance of treating the oesophagus as a multi-layered composite material with direction-dependent behaviour. Previously, the authors conducted layer-dependent cyclic experimentation on formalin-embalmed human oesophagi. A comparison between the fresh and embalmed tissue response was carried out and revealed surprising similarities in terms of anisotropy, strain-rate dependency, stress-softening and hysteresis, with the main difference between the two preservation states being the magnitude of these properties. As formalin fixation is known to notably affect the formation of cross-links between the collagen of biological materials, the differences may reveal the influence of cross-links on the mechanical behaviour of soft tissues.
Collapse
Affiliation(s)
- Ciara Durcan
- Zienkiewicz Institute for Modelling, Data and Artificial Intelligence, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK
- CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble Alpes University, Grenoble 38000, France
| | - Mokarram Hossain
- Zienkiewicz Institute for Modelling, Data and Artificial Intelligence, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK
| | - Grégory Chagnon
- CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble Alpes University, Grenoble 38000, France
| | - Djordje Perić
- Zienkiewicz Institute for Modelling, Data and Artificial Intelligence, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK
| | - Edouard Girard
- CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble Alpes University, Grenoble 38000, France
- Laboratoire d’Anatomie des Alpes Françaises, Grenoble Alpes University, Grenoble, France
| |
Collapse
|
2
|
Durcan C, Hossain M, Chagnon G, Perić D, Girard E. Mechanical experimentation of the gastrointestinal tract: a systematic review. Biomech Model Mechanobiol 2024; 23:23-59. [PMID: 37935880 PMCID: PMC10901955 DOI: 10.1007/s10237-023-01773-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/10/2023] [Indexed: 11/09/2023]
Abstract
The gastrointestinal (GI) organs of the human body are responsible for transporting and extracting nutrients from food and drink, as well as excreting solid waste. Biomechanical experimentation of the GI organs provides insight into the mechanisms involved in their normal physiological functions, as well as understanding of how diseases can cause disruption to these. Additionally, experimental findings form the basis of all finite element (FE) modelling of these organs, which have a wide array of applications within medicine and engineering. This systematic review summarises the experimental studies that are currently in the literature (n = 247) and outlines the areas in which experimentation is lacking, highlighting what is still required in order to more fully understand the mechanical behaviour of the GI organs. These include (i) more human data, allowing for more accurate modelling for applications within medicine, (ii) an increase in time-dependent studies, and (iii) more sophisticated in vivo testing methods which allow for both the layer- and direction-dependent characterisation of the GI organs. The findings of this review can also be used to identify experimental data for the readers' own constitutive or FE modelling as the experimental studies have been grouped in terms of organ (oesophagus, stomach, small intestine, large intestine or rectum), test condition (ex vivo or in vivo), number of directions studied (isotropic or anisotropic), species family (human, porcine, feline etc.), tissue condition (intact wall or layer-dependent) and the type of test performed (biaxial tension, inflation-extension, distension (pressure-diameter), etc.). Furthermore, the studies that investigated the time-dependent (viscoelastic) behaviour of the tissues have been presented.
Collapse
Affiliation(s)
- Ciara Durcan
- Zienkiewicz Centre for Modelling, Data and AI, Faculty of Science and Engineering, Swansea University, Swansea, SA1 8EN, UK
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Mokarram Hossain
- Zienkiewicz Centre for Modelling, Data and AI, Faculty of Science and Engineering, Swansea University, Swansea, SA1 8EN, UK.
| | - Grégory Chagnon
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Djordje Perić
- Zienkiewicz Centre for Modelling, Data and AI, Faculty of Science and Engineering, Swansea University, Swansea, SA1 8EN, UK
| | - Edouard Girard
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
- Laboratoire d'Anatomie des Alpes Françaises, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
3
|
Peng T, Zhou C, Zhang Z, Liu Y, Lin X, Ye Y, Zhong Y, Wang P, Jia Y. Review on bile dynamics and microfluidic-based component detection: Advancing the understanding of bilestone pathogenesis in the biliary tract. BIOMICROFLUIDICS 2024; 18:014105. [PMID: 38370511 PMCID: PMC10869170 DOI: 10.1063/5.0186602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/19/2024] [Indexed: 02/20/2024]
Abstract
Bilestones are solid masses found in the gallbladder or biliary tract, which block the normal bile flow and eventually result in severe life-threatening complications. Studies have shown that bilestone formation may be related to bile flow dynamics and the concentration level of bile components. The bile flow dynamics in the biliary tract play a critical role in disclosing the mechanism of bile stasis and transportation. The concentration of bile composition is closely associated with processes such as nucleation and crystallization. Recently, microfluidic-based biosensors have been favored for multiple advantages over traditional benchtop detection assays for their less sample consumption, portability, low cost, and high sensitivity for real-time detection. Here, we reviewed the developments in bile dynamics study and microfluidics-based bile component detection methods. These studies may provide valuable insights into the bilestone formation mechanisms and better treatment, alongside our opinions on the future development of in vitro lithotriptic drug screening of bilestones and bile characterization tests.
Collapse
Affiliation(s)
- Tao Peng
- Zhuhai UM Science & Technology Research Institute, Zhuhai, China
| | - Chenxiao Zhou
- Li Po Chun United World College of Hong Kong, Hong Kong, China
| | | | | | - Xiaodong Lin
- Zhuhai UM Science & Technology Research Institute, Zhuhai, China
| | - Yongqing Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yunlong Zhong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ping Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanwei Jia
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
4
|
Kriener K, Whiting H, Storr N, Homes R, Lala R, Gabrielyan R, Kuang J, Rubin B, Frails E, Sandstrom H, Futter C, Midwinter M. Applied use of biomechanical measurements from human tissues for the development of medical skills trainers: a scoping review. JBI Evid Synth 2023; 21:2309-2405. [PMID: 37732940 DOI: 10.11124/jbies-22-00363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
OBJECTIVE The objective of this review was to identify quantitative biomechanical measurements of human tissues, the methods for obtaining these measurements, and the primary motivations for conducting biomechanical research. INTRODUCTION Medical skills trainers are a safe and useful tool for clinicians to use when learning or practicing medical procedures. The haptic fidelity of these devices is often poor, which may be because the synthetic materials chosen for these devices do not have the same mechanical properties as human tissues. This review investigates a heterogeneous body of literature to identify which biomechanical properties are available for human tissues, the methods for obtaining these values, and the primary motivations behind conducting biomechanical tests. INCLUSION CRITERIA Studies containing quantitative measurements of the biomechanical properties of human tissues were included. Studies that primarily focused on dynamic and fluid mechanical properties were excluded. Additionally, studies only containing animal, in silico , or synthetic materials were excluded from this review. METHODS This scoping review followed the JBI methodology for scoping reviews and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR). Sources of evidence were extracted from CINAHL (EBSCO), IEEE Xplore, MEDLINE (PubMed), Scopus, and engineering conference proceedings. The search was limited to the English language. Two independent reviewers screened titles and abstracts as well as full-text reviews. Any conflicts that arose during screening and full-text review were mediated by a third reviewer. Data extraction was conducted by 2 independent reviewers and discrepancies were mediated through discussion. The results are presented in tabular, figure, and narrative formats. RESULTS Data were extracted from a total of 186 full-text publications. All of the studies, except for 1, were experimental. Included studies came from 33 countries, with the majority coming from the United States. Ex vivo methods were the predominant approach for extracting human tissue samples, and the most commonly studied tissue type was musculoskeletal. In this study, nearly 200 unique biomechanical values were reported, and the most commonly reported value was Young's (elastic) modulus. The most common type of mechanical test performed was tensile testing, and the most common reason for testing human tissues was to characterize biomechanical properties. Although the number of published studies on biomechanical properties of human tissues has increased over the past 20 years, there are many gaps in the literature. Of the 186 included studies, only 7 used human tissues for the design or validation of medical skills training devices. Furthermore, in studies where biomechanical values for human tissues have been obtained, a lack of standardization in engineering assumptions, methodologies, and tissue preparation may implicate the usefulness of these values. CONCLUSIONS This review is the first of its kind to give a broad overview of the biomechanics of human tissues in the published literature. With respect to high-fidelity haptics, there is a large gap in the published literature. Even in instances where biomechanical values are available, comparing or using these values is difficult. This is likely due to the lack of standardization in engineering assumptions, testing methodology, and reporting of the results. It is recommended that journals and experts in engineering fields conduct further research to investigate the feasibility of implementing reporting standards. REVIEW REGISTRATION Open Science Framework https://osf.io/fgb34.
Collapse
Affiliation(s)
- Kyleigh Kriener
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Harrison Whiting
- Department of Anaesthesia and Perioperative Medicine, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- School of Clinical Medicine, Royal Brisbane Clinical Unit, The University of Queensland, Brisbane, QLD, Australia
| | - Nicholas Storr
- Gold Coast University Hospital, Southport, QLD Australia
| | - Ryan Homes
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Raushan Lala
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Robert Gabrielyan
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- Ochsner Clinical School, Jefferson, LA, United States
| | - Jasmine Kuang
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- Ochsner Clinical School, Jefferson, LA, United States
| | - Bryn Rubin
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- Ochsner Clinical School, Jefferson, LA, United States
| | - Edward Frails
- Department of Chemical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Hannah Sandstrom
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, United States
| | - Christopher Futter
- Department of Anaesthesia and Perioperative Medicine, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Anaesthesia and Intensive Care Program, Herston Biofabrication institute, Brisbane, QLD, Australia
| | - Mark Midwinter
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Klabukov I, Tenchurin T, Shepelev A, Baranovskii D, Mamagulashvili V, Dyuzheva T, Krasilnikova O, Balyasin M, Lyundup A, Krasheninnikov M, Sulina Y, Gomzyak V, Krasheninnikov S, Buzin A, Zayratyants G, Yakimova A, Demchenko A, Ivanov S, Shegay P, Kaprin A, Chvalun S. Biomechanical Behaviors and Degradation Properties of Multilayered Polymer Scaffolds: The Phase Space Method for Bile Duct Design and Bioengineering. Biomedicines 2023; 11:biomedicines11030745. [PMID: 36979723 PMCID: PMC10044742 DOI: 10.3390/biomedicines11030745] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
This article reports the electrospinning technique for the manufacturing of multilayered scaffolds for bile duct tissue engineering based on an inner layer of polycaprolactone (PCL) and an outer layer either of a copolymer of D,L-lactide and glycolide (PLGA) or a copolymer of L-lactide and ε-caprolactone (PLCL). A study of the degradation properties of separate polymers showed that flat PCL samples exhibited the highest resistance to hydrolysis in comparison with PLGA and PLCL. Irrespective of the liquid-phase nature, no significant mass loss of PCL samples was found in 140 days of incubation. The PLCL- and PLGA-based flat samples were more prone to hydrolysis within the same period of time, which was confirmed by the increased loss of mass and a significant reduction of weight-average molecular mass. The study of the mechanical properties of developed multi-layered tubular scaffolds revealed that their strength in the longitudinal and transverse directions was comparable with the values measured for a decellularized bile duct. The strength of three-layered scaffolds declined significantly because of the active degradation of the outer layer made of PLGA. The strength of scaffolds with the PLCL outer layer deteriorated much less with time, both in the axial (p-value = 0.0016) and radial (p-value = 0.0022) directions. A novel method for assessment of the physiological relevance of synthetic scaffolds was developed and named the phase space approach for assessment of physiological relevance. Two-dimensional phase space (elongation modulus and tensile strength) was used for the assessment and visualization of the physiological relevance of scaffolds for bile duct bioengineering. In conclusion, the design of scaffolds for the creation of physiologically relevant tissue-engineered bile ducts should be based not only on biodegradation properties but also on the biomechanical time-related behavior of various compositions of polymers and copolymers.
Collapse
Affiliation(s)
- Ilya Klabukov
- Department of Regenerative Medicine, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 249031 Obninsk, Russia
- Department of Urology and Operative Nephrology, Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- Obninsk Institute for Nuclear Power Engineering, National Research Nuclear University MEPhI, 115409 Obninsk, Russia
- Correspondence:
| | - Timur Tenchurin
- National Research Centre “Kurchatov Institute”, 1, Akademika Kurchatova pl., 123182 Moscow, Russia
| | - Alexey Shepelev
- National Research Centre “Kurchatov Institute”, 1, Akademika Kurchatova pl., 123182 Moscow, Russia
| | - Denis Baranovskii
- Department of Regenerative Medicine, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 249031 Obninsk, Russia
- Department of Urology and Operative Nephrology, Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Vissarion Mamagulashvili
- National Research Centre “Kurchatov Institute”, 1, Akademika Kurchatova pl., 123182 Moscow, Russia
| | - Tatiana Dyuzheva
- Department of Hospital Surgery, Sklifosovsky Institute of Clinical Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Olga Krasilnikova
- Department of Regenerative Medicine, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 249031 Obninsk, Russia
| | - Maksim Balyasin
- Research and Educational Resource Center for Cellular Technologies, Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Alexey Lyundup
- Research and Educational Resource Center for Cellular Technologies, Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- N.P. Bochkov Research Centre for Medical Genetics, 115478 Moscow, Russia
| | - Mikhail Krasheninnikov
- Research and Educational Resource Center for Cellular Technologies, Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- Lomonosov Institute of Fine Chemical Technologies, Russian Technological University MIREA, 119454 Moscow, Russia
| | - Yana Sulina
- Department of Obstetrics and Gynecology, Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Vitaly Gomzyak
- National Research Centre “Kurchatov Institute”, 1, Akademika Kurchatova pl., 123182 Moscow, Russia
| | - Sergey Krasheninnikov
- National Research Centre “Kurchatov Institute”, 1, Akademika Kurchatova pl., 123182 Moscow, Russia
| | - Alexander Buzin
- National Research Centre “Kurchatov Institute”, 1, Akademika Kurchatova pl., 123182 Moscow, Russia
- Laboratory of the Structure of Polymer Materials, Enikolopov Institute of Synthetic Polymer Materials RAS, 117393 Moscow, Russia
| | - Georgiy Zayratyants
- Department of Pathology, Moscow State University of Medicine and Dentistry, Delegatskaya st., 20, p. 1, 127473 Moscow, Russia
| | - Anna Yakimova
- Department of Regenerative Medicine, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 249031 Obninsk, Russia
| | - Anna Demchenko
- N.P. Bochkov Research Centre for Medical Genetics, 115478 Moscow, Russia
| | - Sergey Ivanov
- Department of Regenerative Medicine, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 249031 Obninsk, Russia
| | - Peter Shegay
- Department of Regenerative Medicine, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 249031 Obninsk, Russia
- Department of Urology and Operative Nephrology, Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Andrey Kaprin
- Department of Regenerative Medicine, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 249031 Obninsk, Russia
- Department of Urology and Operative Nephrology, Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Sergei Chvalun
- National Research Centre “Kurchatov Institute”, 1, Akademika Kurchatova pl., 123182 Moscow, Russia
- Laboratory of the Structure of Polymer Materials, Enikolopov Institute of Synthetic Polymer Materials RAS, 117393 Moscow, Russia
| |
Collapse
|
6
|
Bottauscio O, Rubia-Rodríguez I, Arduino A, Zilberti L, Chiampi M, Ortega D. Heating of metallic biliary stents during magnetic hyperthermia of patients with pancreatic ductal adenocarcinoma: an in silico study. Int J Hyperthermia 2022; 39:1222-1232. [DOI: 10.1080/02656736.2022.2121863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
| | | | | | - Luca Zilberti
- Istituto Nazionale di Ricerca Metrologica (INRIM), Turin, Italy
| | - Mario Chiampi
- Istituto Nazionale di Ricerca Metrologica (INRIM), Turin, Italy
| | - Daniel Ortega
- IMDEA Nanoscience, Madrid, Spain
- Condensed Matter Physics Department, University of Cádiz, Cádiz, Spain
- Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA), University of Cádiz, Cádiz, Spain
| |
Collapse
|
7
|
Durcan C, Hossain M, Chagnon G, Perić D, Karam G, Bsiesy L, Girard E. Experimental investigations of the human oesophagus: anisotropic properties of the embalmed mucosa-submucosa layer under large deformation. Biomech Model Mechanobiol 2022; 21:1685-1702. [PMID: 36030514 PMCID: PMC9420190 DOI: 10.1007/s10237-022-01613-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/24/2022] [Indexed: 11/23/2022]
Abstract
Mechanical characterisation of the layer-specific, viscoelastic properties of the human oesophagus is crucial in furthering the development of devices emerging in the field, such as robotic endoscopic biopsy devices, as well as in enhancing the realism, and therefore effectiveness, of surgical simulations. In this study, the viscoelastic and stress-softening behaviour of the passive human oesophagus was investigated through ex vivo cyclic mechanical tests. Due to restrictions placed on the laboratory as a result of COVID-19, only oesophagi from cadavers fixed in formalin were allowed for testing. Three oesophagi in total were separated into their two main layers and the mucosa-submucosa layer was investigated. A series of uniaxial tensile tests were conducted in the form of increasing stretch level cyclic tests at two different strain rates: 1% s[Formula: see text] and 10% s[Formula: see text]. Rectangular samples in both the longitudinal and circumferential directions were tested to observe any anisotropy. Histological analysis was also performed through a variety of staining methods. Overall, the longitudinal direction was found to be much stiffer than the circumferential direction. Stress-softening was observed in both directions, as well as permanent set and hysteresis. Strain rate-dependent behaviour was also apparent in the two directions, with an increase in strain rate resulting in an increase in stiffness. This strain rate dependency was more pronounced in the longitudinal direction than the circumferential direction. Finally, the results were discussed in regard to the histological content of the layer, and the behaviour was modelled and validated using a visco-hyperelastic matrix-fibre model.
Collapse
Affiliation(s)
- Ciara Durcan
- Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Swansea, SA1 8EN UK
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Mokarram Hossain
- Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Swansea, SA1 8EN UK
| | - Grégory Chagnon
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Djordje Perić
- Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Swansea, SA1 8EN UK
| | - Georges Karam
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Lara Bsiesy
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Edouard Girard
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
- Laboratoire d’Anatomie des Alpes Françaises, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
8
|
Briot N, Chagnon G, Connesson N, Payan Y. In vivo measurement of breast tissues stiffness using a light aspiration device. Clin Biomech (Bristol, Avon) 2022; 99:105743. [PMID: 36099706 DOI: 10.1016/j.clinbiomech.2022.105743] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/12/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND This paper addresses the question of the in vivo measurement of breast tissue stiffness, which has been poorly adressed until now, except for elastography imaging which has shown promising results but which is still difficult for clinicians to use on a day-to-day basis. Estimating subject-specific tissue stiffness is indeed a critical area of research due to the development of a large number of Finite Element (FE) breast models for various medical applications. METHODS This paper proposes to use an original aspiration device, put into contact with breast surface, and to estimate tissue stiffness using an inverse analysis of the aspiration experiment. The method assumes that breast tissue is composed of a bilayered structure made of fatty and fribroglandular tissues (lower layer) superimposed with the skin (upper layer). Young moduli of both layers are therefore estimated based on repeating low intensity suction tests (<40 mbar) of breast tissues using cups of 7 different diameters. FINDINGS Seven volunteers were involved in this pilot study with average Young moduli of 56.3 kPa ± 16.4 and 3.04 kPa ± 1.17 respectively for the skin and the fatty and fibroglandular tissue. The measurements were carried out in a reasonable time scale (<60 min in total) without any discomfort perceived by the participants. These encouraging results should be confirmed in a clinical study that will include a much larger number of volunteers and patients.
Collapse
Affiliation(s)
- N Briot
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France.
| | - G Chagnon
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - N Connesson
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Y Payan
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| |
Collapse
|
9
|
Durcan C, Hossain M, Chagnon G, Perić D, Bsiesy L, Karam G, Girard E. Experimental investigations of the human oesophagus: anisotropic properties of the embalmed muscular layer under large deformation. Biomech Model Mechanobiol 2022; 21:1169-1186. [PMID: 35477829 PMCID: PMC9045687 DOI: 10.1007/s10237-022-01583-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/31/2022] [Indexed: 11/24/2022]
Abstract
The oesophagus is a primarily mechanical organ whose material characterisation would aid in the investigation of its pathophysiology, help in the field of tissue engineering, and improve surgical simulations and the design of medical devices. However, the layer-dependent, anisotropic properties of the organ have not been investigated using human tissue, particularly in regard to its viscoelastic and stress-softening behaviour. Restrictions caused by the COVID-19 pandemic meant that fresh human tissue was not available for dissection. Therefore, in this study, the layer-specific material properties of the human oesophagus were investigated through ex vivo experimentation of the embalmed muscularis propria layer. For this, a series of uniaxial tension cyclic tests with increasing stretch levels were conducted at two different strain rates. The muscular layers from three different cadaveric specimens were tested in both the longitudinal and circumferential directions. The results displayed highly nonlinear and anisotropic behaviour, with both time- and history-dependent stress-softening. The longitudinal direction was found to be stiffer than the circumferential direction at both strain rates. Strain rate-dependent behaviour was apparent, with an increase in strain rate resulting in an increase in stiffness in both directions. Histological analysis was carried out via various staining methods; the results of which were discussed with regard to the experimentally observed stress-stretch response. Finally, the behaviour of the muscularis propria was simulated using a matrix-fibre model able to capture the various mechanical phenomena exhibited, the fibre orientation of which was driven by the histological findings of the study.
Collapse
Affiliation(s)
- Ciara Durcan
- Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Swansea, SA1 8EN, UK.,Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Mokarram Hossain
- Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Swansea, SA1 8EN, UK.
| | - Grégory Chagnon
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Djordje Perić
- Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Swansea, SA1 8EN, UK
| | - Lara Bsiesy
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Georges Karam
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Edouard Girard
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France.,Laboratoire d'Anatomie des Alpes Françaises, Univ. Grenoble Alpes, Grenoble, France
| |
Collapse
|
10
|
Girard E, Chagnon G, Broisat A, Dejean S, Soubies A, Gil H, Sharkawi T, Boucher F, Roth GS, Trilling B, Nottelet B. From in vitro evaluation to human postmortem pre-validation of a radiopaque and resorbable internal biliary stent for liver transplantation applications. Acta Biomater 2020; 106:70-81. [PMID: 32014582 DOI: 10.1016/j.actbio.2020.01.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 12/17/2022]
Abstract
The implantation of an internal biliary stent (IBS) during liver transplantation has recently been shown to reduce biliary complications. To avoid a potentially morbid ablation procedure, we developed a resorbable and radiopaque internal biliary stent (RIBS). We studied the mechanical and radiological properties of RIBS upon in vivo implantation in rats and we evaluated RIBS implantability in human anatomical specimens. For this purpose, a blend of PLA50-PEG-PLA50 triblock copolymer, used as a polymer matrix, and of X-ray-visible triiodobenzoate-poly(ε-caprolactone) copolymer (PCL-TIB), as a radiopaque additive, was used to design X-ray-visible RIBS. Samples were implanted in the peritoneal cavity of rats. The radiological, chemical, and biomechanical properties were evaluated during degradation. Further histological studies were carried out to evaluate the degradation and compatibility of the RIBS. A human cadaver implantability study was also performed. The in vivo results revealed a decline in the RIBS mechanical properties within 3 months, whereas clear and stable X-ray visualization of the RIBS was possible for up to 6 months. Histological analyses confirmed compatibility and resorption of the RIBS, with a limited inflammatory response. The RIBS could be successfully implanted in human anatomic specimens. The results reported in this study will allow the development of trackable and degradable IBS to reduce biliary complications after liver transplantation. STATEMENT OF SIGNIFICANCE: Biliary reconstruction during liver transplantation is an important source of postoperative morbidity and mortality although it is generally considered as an easy step of a difficult surgery. In this frame, internal biliary stent (IBS) implantation is beneficial to reduce biliary anastomosis complications (leakage, stricture). However, current IBS are made of non-degradable silicone elastomeric materials, which leads to an additional ablation procedure involving potential complications and additional costs. The present study provides in vitro and human postmortem implantation data related to the development and evaluation of a resorbable and radiopaque internal biliary stent (RIBS) that could tackle these drawbacks.
Collapse
Affiliation(s)
- Edouard Girard
- Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, F-38000 Grenoble, France; Département de chirurgie digestive et de l'urgence, Centre Hospitalier Grenoble-Alpes, 38000 Grenoble, France; Laboratoire d'anatomie des Alpes françaises (LADAF), UFR de médecine de Grenoble, Université de Grenoble-Alpes, F-38700 Grenoble, France.
| | - Grégory Chagnon
- Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, F-38000 Grenoble, France
| | - Alexis Broisat
- INSERM, Unité 1039, F-38000 Grenoble, France; Radiopharmaceutiques Biocliniques, Université Grenoble-Alpes, F-38000 Grenoble, France
| | - Stéphane Dejean
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Audrey Soubies
- INSERM, Unité 1039, F-38000 Grenoble, France; Radiopharmaceutiques Biocliniques, Université Grenoble-Alpes, F-38000 Grenoble, France
| | - Hugo Gil
- Département d'anatomopathologie et cytologie, Centre Hospitalier Grenoble-Alpes, 38000 Grenoble, France
| | - Tahmer Sharkawi
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - François Boucher
- Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, F-38000 Grenoble, France; Radiopharmaceutiques Biocliniques, Université Grenoble-Alpes, F-38000 Grenoble, France
| | - Gaël S Roth
- Institute for Advanced Biosciences, INSERM U1209/CNRS UMR 5309, Université Grenoble-Alpes, F-38700 Grenoble, France; Clinique universitaire d'Hépato-gastroentérologie et Oncologie digestive, CHU Grenoble-Alpes, Grenoble 38043, France
| | - Bertrand Trilling
- Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, F-38000 Grenoble, France; Département de chirurgie digestive et de l'urgence, Centre Hospitalier Grenoble-Alpes, 38000 Grenoble, France; Laboratoire d'anatomie des Alpes françaises (LADAF), UFR de médecine de Grenoble, Université de Grenoble-Alpes, F-38700 Grenoble, France
| | | |
Collapse
|