1
|
Chen Y, Wu R, Shen L, Yang Y, Wang G, Yang B. The multi-scale meso-mechanics model of viscoelastic dentin. J Mech Behav Biomed Mater 2022; 136:105525. [PMID: 36302275 DOI: 10.1016/j.jmbbm.2022.105525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
Human dentin is a hierarchical material with multi-level micro-/nano-structures, consisting of tubule, perti-tubular dentin (PTD) and intertubular dentin (ITD) as the major constituents at microscale; and the PTD and ITD are further composed of collagen and hydroxyapatite (HAp) crystals with different volume fractions at nanoscale. In most cases, the HAp is considered as elastic while the collagen as viscoelastic material. It is of great significance to study the hierarchical structure and viscoelasticity of human dentin to understand the mechanical properties of dentin for further development of restorative materials. Based on this, this paper focuses on multiscale modeling of the elastic properties and dynamic viscoelastic response of dentin and establishes a bottom-up micromechanics model from nano-to macro-scale. In order to study the nanostructural effect on the viscoelastic behavior of hierarchical structures, the homogenization theories of random platelets composites (HTRPC) and the locally-exact homogenization theory (LEHT) are introduced for the homogenization of heterogeneous materials of microstructures at different levels. The HTRPC, based on Eshelby Inclusion theory, is used to predict the effective modulus of PTD and ITD. The LEHT is a method for homogenizing multiphase dentin characterized by repeated unit cells (RUCs). The resulting predictions are in very good agreement with several experimental data from the literature. In addition, the results of nanostructrual effect on dentin show that the viscoelasticity of dentin is majorly contributed by collagen and the HAp greatly provide the strength and hardness of dentin. Furthermore, the ageing effect on dentin's viscoelasticity is considered from the proposed multiscale micromechanics model. It is demonstrated that the ageing effect is much more influential in affecting the loss moduli of dentin than the storage.
Collapse
Affiliation(s)
- Yusen Chen
- Department of Civil Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Rui Wu
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; Center for Balance Architecture, Zhejiang University, Hangzhou, 310007, China
| | - Lulu Shen
- Department of Civil Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yabin Yang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Guannan Wang
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; Center for Balance Architecture, Zhejiang University, Hangzhou, 310007, China.
| | - Bo Yang
- Department of Civil Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
2
|
Zhu X, Wang S, Ye J, Guo H, Wang R. Investigation of fracture-resistance of human teeth at the dentin-enamel junction using the J-integral calculation of finite element analysis. J MECH MED BIOL 2022. [DOI: 10.1142/s0219519422500695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Geissler E, McGraw WS, Daegling DJ. Dentin hardness differences across various mammalian taxa. J Morphol 2021; 283:109-122. [PMID: 34787915 DOI: 10.1002/jmor.21430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 11/10/2021] [Accepted: 11/14/2021] [Indexed: 11/11/2022]
Abstract
Differences in dentin microstructure have been used as a tool for dietary reconstruction; however, the extent that diet is associated with this aspect of dental morphology has yet to be empirically tested. We conducted microhardness tests of mammalian dentin sections, hypothesizing that species with adaptations to particularly hard diets would have softer dentin, owing to a higher proportion of soft intertubular dentin. Species adapted to abrasive diets, in contrast, should have harder dentin, resulting from a higher proportion of hypermineralized peritubular dentin. We examined molar dentin hardness in ten mammalian taxa with durophagous diets, abrasive diets, and a comparative "control" group of mechanical generalists. Samples included six primate taxa and four non-primate species representing various dietary regimes. Our results reveal significant variation among taxa in overall hardness, but the data do not distinguish between hard and abrasive diets. Several taxa with generalized (i.e., mechanically diverse) diets resemble each other in exhibiting large variance in hardness measurements and comparably soft dentin. The high variation in these species appears to be either a functional signal supporting the niche variation hypothesis or indicate the absence of sustained unidirectional selective pressure. A possible phylogenetic signal of dentin hardness in the data also holds promise for future systematic investigations.
Collapse
Affiliation(s)
- Elise Geissler
- Department of Anthropology, University of Florida, Gainesville, Florida, USA
| | - W Scott McGraw
- Department of Anthropology, The Ohio State University, Columbus, Ohio, USA
| | - David J Daegling
- Department of Anthropology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
4
|
The role of lateral branches on effective stiffness and local overstresses in dentin. J Mech Behav Biomed Mater 2021; 116:104329. [PMID: 33550143 DOI: 10.1016/j.jmbbm.2021.104329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 11/21/2022]
Abstract
The 3D microstructure of dentinal tissue, the main tissue of the tooth, is the subject of an increasingly comprehensive body of knowledge. The relationship between this microstructure and the mechanical behaviour of dentinal tissue remains, nonetheless, under question. This article proposes an original SEM analysis of dentin microstructure, accounting for lateral branches, and a mechanical model based on these findings. An interesting observation is that lateral branches have a dense collar, as do tubules. The diameter of these branches as well as a percentage area are quantified all along the depth of a dentin sample. We use these unprecedented data to build an orthotropic homogenized model of dentin. The heterogeneities of microstructure are taken into account using level-set functions. The results reveal that the lateral branches slightly influence the global homogenized elastic behavior of the dentin tissue, albeit creating stress concentration areas that are highly influenced by the inclination of the traction with respect to the tubule and branches.
Collapse
|
5
|
Karali A, Kao AP, Zekonyte J, Blunn G, Tozzi G. Micromechanical evaluation of cortical bone using in situ XCT indentation and digital volume correlation. J Mech Behav Biomed Mater 2021; 115:104298. [PMID: 33445104 DOI: 10.1016/j.jmbbm.2020.104298] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 11/29/2022]
Abstract
The overall mechanical behaviour of cortical bone is strongly dependant on its microstructure. X-ray computed tomography (XCT) has been widely used to identify the microstructural morphology of cortical tissue (i.e. pore network, Haversian and Volkmann's canals). However, the connection between microstructure and mechanics of cortical bone during plastic deformation is unclear. Hence, the purpose of this study is to provide an in-depth evaluation of the interplay of plastic strain building up in relation to changes in the canal network for cortical bone tissue. In situ step-wise XCT indentation was used to introduce a localised load on the surface of the tissue and digital volume correlation (DVC) was employed to assess the three-dimensional (3D) full-field plastic strain distribution in proximity of the indent. It was observed that regions adjacent to the imprint were under tensile strain, whereas the volume underneath experienced compressive strain. Canal loss and disruption was detected in regions of higher compressive strains exceeding -20000 με and crack formation occurred in specimens where Haversian canals were running parallel to the indentation tip. The results of this study outline the relationship between the micromechanical and structural behaviour of cortical bone during plastic deformation, providing information on cortical tissue fracture pathways.
Collapse
Affiliation(s)
- Aikaterina Karali
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, UK.
| | | | - Jurgita Zekonyte
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, UK
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK.
| | - Gianluca Tozzi
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, UK.
| |
Collapse
|
6
|
Maghami E, Pejman R, Najafi AR. Fracture micromechanics of human dentin: A microscale numerical model. J Mech Behav Biomed Mater 2020; 114:104171. [PMID: 33218927 DOI: 10.1016/j.jmbbm.2020.104171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/17/2020] [Accepted: 10/23/2020] [Indexed: 11/25/2022]
Abstract
In the present study, we investigate the effects of microstructural morphology and heterogeneity on the initiation and propagation of microcracks in dentin. We create 2D pre-cracked models of human dentin at the microscale level and use a brittle fracture framework of the phase-field method to analyze the crack growth. We discuss the influence of the microstructural features on crack deflection, microcracking, and uncracked ligament bridging through various regions in dentin. The results demonstrate that the difference between the critical energy release rates of peritubular (PTD) and intertubular dentin (ITD) has considerable impacts on microcracking. Our simulations reveal that tubules surrounded by PTDs play an important role in the crack deflection. Our results also indicate that the toughness of dentin increases from the inner to outer dentin. In conclusion, the findings in our study provide valuable insights into the fracture behavior in various regions of dentin.
Collapse
Affiliation(s)
- Ebrahim Maghami
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA, 19104, USA
| | - Reza Pejman
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA, 19104, USA
| | - Ahmad R Najafi
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA, 19104, USA.
| |
Collapse
|
7
|
Abdel Raheem IA, Abdul Razek A, Elgendy AA, Labah DA, Saleh NM. Egyptian Propolis-Loaded Nanoparticles as a Root Canal Nanosealer: Sealing Ability and in vivo Biocompatibility. Int J Nanomedicine 2020; 15:5265-5277. [PMID: 32884255 PMCID: PMC7434463 DOI: 10.2147/ijn.s258888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022] Open
Abstract
Background Successful endodontic therapy is mainly governed by the satisfactory sealing ability of the applied root canal sealer. Also, tolerability of root canal structure to accommodate the presence of a sealer participates in the efficiency of the treatment. Hence, this study was aimed to extrapolate our previous one that was concerned with the preparation and evaluation of novel nature-based root canal sealers. Our current work is focused on the evaluation of sealing ability and in vivo biocompatibility. Materials and Methods Egyptian propolis was extracted (ProE) and encapsulated in polymeric nanoparticles (ProE-loaded NPs). Two root sealers, PE sealer and PE nanosealer, were fabricated by incorporating ProE and ProE-loaded NPs, respectively. The sealing ability of the developed sealers was tested by a dye extraction method. An in vivo biocompatibility study was conducted using a subcutaneous implantation method for two and four weeks. At the same time, a model sealer (AH Plus®) was subjected to the same procedures to enable accurate and equitable results. Results The teeth treated with PE sealer exhibited weak sealing ability which did not differ from that of unfilled teeth. PE nanosealer enhanced the sealing ability similarly to the model sealer with minimal apical microleakage. Studying in vivo biocompatibility indicated the capability of the three tested sealers to induce cell proliferation and tissue healing. However, PE nanosealer had superior biocompatibility, with higher potential for cell regeneration and tissue proliferation. Conclusion PE nanosealer can be presented as an innovative root canal sealer, with enhanced sealing ability as well as in vivo biocompatibility. It can be applied as a substitute for the currently available sealers that demonstrate hazardous effects.
Collapse
Affiliation(s)
| | - Amro Abdul Razek
- Endodontics Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | | | - Doaa Ahmed Labah
- Oral Biology and Dental Medicine Department, Faculty of Dentistry, Zagazig University, Zagazig, Egypt
| | - Noha Mohamed Saleh
- Pharmaceutics Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
8
|
Lainović T, Margueritat J, Martinet Q, Dagany X, Blažić L, Pantelić D, Rabasović MD, Krmpot AJ, Dehoux T. Micromechanical imaging of dentin with Brillouin microscopy. Acta Biomater 2020; 105:214-222. [PMID: 31988041 DOI: 10.1016/j.actbio.2020.01.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 01/10/2023]
Abstract
The structure of teeth can be altered by diet, age or diseases such as caries and sclerosis. It is very important to characterize their mechanical properties to predict and understand tooth decay, design restorative dental procedures, and investigate their tribological behavior. However, existing imaging techniques are not well suited to investigating the micromechanics of teeth, in particular at tissue interfaces. Here, we describe a microscope based on Brillouin light scattering (BLS) developed to probe the spectrum of the light scattered from tooth tissues, from which the mechanical properties (sound velocity, viscosity) can be inferred with a priori knowledge of the refractive index. BLS is an inelastic process that uses the scattering of light by acoustic waves in the GHz range. Our microscope thus reveals the mechanical properties at the micrometer scale without contact with the sample. BLS signals show significant differences between sound tissues and pathological lesions, and can be used to precisely delineate carious dentin. We also show maps of the sagittal and transversal planes of sound tubular dentin that reveal its anisotropic microstructure at 1 µm resolution. Our observations indicate that the collagen-based matrix of dentine is the main load-bearing structure, which can be considered as a fiber-reinforced composite. In the vicinity of polymeric tooth-filling materials, we observed the infiltration of the adhesive complex into the opened tubules of sound dentine. The ability to probe the quality of this interfacial layer could lead to innovative designs of biomaterials used for dental restorations in contemporary adhesive dentistry, with possible direct repercussions on decision-making during clinical work. STATEMENT OF SIGNIFICANCE: Mechanical properties of teeth can be altered by diet, age or diseases. Yet existing imaging modalities cannot reveal the micromechanics of the tooth. Here we developed a new type of microscope that uses the scattering of a laser light by naturally-occurring acoustic waves to probe mechanical changes in tooth tissues at a sub-micrometer scale without contact to the sample. We observe significant mechanical differences between healthy tissues and pathological lesions. The contrast in mechanical properties also reveals the microstructure of the polymer-dentin interfaces. We believe that this new development of laser spectroscopy is very important because it should lead to innovative designs of biomaterials used for dental restoration, and allow delineating precisely destructed dentin for minimally-invasive strategies.
Collapse
|
9
|
Hu J, Sui T. Insights into the reinforcement role of peritubular dentine subjected to acid dissolution. J Mech Behav Biomed Mater 2020; 103:103614. [PMID: 32090938 DOI: 10.1016/j.jmbbm.2019.103614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 10/25/2022]
Abstract
Human dentine is a mineralised dental tissue that consists of dentinal tubules surrounded by two distinct dentinal phases: peritubular dentine (PTD) and intertubular dentine (ITD). Dental caries, which manifests itself as a consequence of demineralisation, is one of the most common chronic diseases that affect the function of human teeth. Due to the difference in the packing density of crystallites, PTD and ITD exhibit different reaction rates to acid dissolution. The present study evaluates how the effective Young's modulus degrades and how the effective stress redistributes in demineralised human dentine as a result of incremental acid dissolution process. An analytical two-layer composite model is proposed and used for the effective Young's modulus calculation. 3D numerical representative volume elements (RVEs) with different variations in PTD fraction and dentinal tubule density are established to evaluate effective stress redistribution and examine the critical factors that can affect the mechanical performance. The models are then applied on an actual dentine bulk sample. The results reveal how PTD serves as a protection to ITD thus highlight the important role that PTD plays for the structural integrity of dentine. The obtained insights are crucial for advancing the understanding of a variety of natural and therapeutic effects from the mechanical perspective, e.g. the mechanical performance assessment of human dentine subject to complex dynamic processes of de- and re-mineralisation that can occur in human dental caries and dental treatments. It will ultimately inspire the biomimetic design towards strengthening the dentine and dentine-like materials.
Collapse
Affiliation(s)
- Jianan Hu
- Sente Software Ltd., 40 Occam Road, Surrey Technology Centre, Guildford, Surrey, GU2 7YG, UK
| | - Tan Sui
- Department of Mechanical Engineering Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK.
| |
Collapse
|