1
|
Maas EJ, Donkers KM, de Hoop H, Nievergeld AHM, Thirugnanasambandam M, van Sambeek MRHM, Lopata RGP. In vivo Multi-perspective 3D + t Ultrasound Imaging and Motion Estimation of Abdominal Aortic Aneurysms. ULTRASONIC IMAGING 2025; 47:3-13. [PMID: 39377418 DOI: 10.1177/01617346241285168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Time-resolved three-dimensional ultrasound (3D + t US) is a promising imaging modality for monitoring abdominal aortic aneurysms (AAAs), providing their 3D geometry and motion. The lateral contrast of US is poor, a well-documented drawback which multi-perspective (MP) imaging could resolve. This study aims to show the feasibility of in vivo multi-perspective 3D + t ultrasound imaging of AAAs for improving the image contrast and displacement accuracy. To achieve this, single-perspective (SP) aortic ultrasound images from three different angles were spatiotemporally registered and fused, and the displacements were compounded. The fused MP had a significantly higher wall-lumen contrast than the SP images, for both patients and volunteers (P < .001). MP radial displacements patterns are smoother than SP patterns in 67% of volunteers and 92% of patients. The MP images from three angles have a decreased tracking error (P < .001 for all participants), and an improved SNRe compared to two out of three SP images (P < .05). This study has shown the added value of MP 3D + t US, improving both image contrast and displacement accuracy in AAA imaging. This is a step toward using multiple or large transducers in the clinic to capture the 3D geometry and strain more accurately, for patient-specific characterization of AAAs.
Collapse
Affiliation(s)
- Esther J Maas
- PULS/e group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Kim M Donkers
- PULS/e group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Hein de Hoop
- PULS/e group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Arjet H M Nievergeld
- PULS/e group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Mirunalini Thirugnanasambandam
- PULS/e group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Marc R H M van Sambeek
- PULS/e group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Richard G P Lopata
- PULS/e group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
2
|
Fasen F, Aarle DACV, Horst AVD, Sambeek MRHMV, Lopata RGP. Geometry and local wall thickness of abdominal aortic aneurysms using intravascular ultrasound. Comput Biol Med 2024; 185:109514. [PMID: 39667054 DOI: 10.1016/j.compbiomed.2024.109514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/12/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024]
Abstract
Currently, abdominal aortic aneurysms (AAAs) are treated based on the diameter of the aorta, however, a more robust patient-specific marker is needed. The mean thickness of the wall is a potential indicator for AAA rupture risk, which varies significantly within and between patients. So far, regional thickness has not been used in previous rupture risk analysis studies, since it is challenging to measure in CT, MRI, and non-invasive ultrasound (US). This study shows how to map locally varying wall thickness of AAAs using intravascular ultrasound (IVUS). Since no ground truth of AAA wall thickness can be obtained in vivo, a novel ex vivo dataset was created of porcine, phantom and simulated aortas, of which ground truth data are available. A U-net model was trained on the ex vivo data and results show that the predicted wall segmentation is in good agreement with the ground truth (DSC = 0.86, HD = 0.97 mm). Wall thickness and geometry plots show that the variation in wall thickness can be recognized. The in vivo demonstration in patients shows that the diseased wall can be segmented, a regionally varying wall thickness can be measured, and detailed maps of AAA geometries can be created. The measured local wall thickness could be used for better general understanding of AAA wall properties resulting in more advanced rupture risk assessment of AAAs.
Collapse
Affiliation(s)
- Floor Fasen
- Photoacoustics and Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5600, The Netherlands; The Department of Vascular Surgery, Catharina Hospital, Eindhoven, 5602, The Netherlands; Image Guided Therapy Devices, Royal Philips, Best, 5684, The Netherlands.
| | - Daniek A C van Aarle
- Photoacoustics and Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5600, The Netherlands; The Department of Vascular Surgery, Catharina Hospital, Eindhoven, 5602, The Netherlands; Image Guided Therapy Devices, Royal Philips, Best, 5684, The Netherlands
| | | | - Marc R H M van Sambeek
- The Department of Vascular Surgery, Catharina Hospital, Eindhoven, 5602, The Netherlands
| | - Richard G P Lopata
- Photoacoustics and Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5600, The Netherlands
| |
Collapse
|
3
|
Valente R, Mourato A, Xavier J, Sousa P, Domingues T, Tavares P, Avril S, Tomás A, Fragata J. Experimental Protocols to Test Aortic Soft Tissues: A Systematic Review. Bioengineering (Basel) 2024; 11:745. [PMID: 39199703 PMCID: PMC11351783 DOI: 10.3390/bioengineering11080745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Experimental protocols are fundamental for quantifying the mechanical behaviour of soft tissue. These data are crucial for advancing the understanding of soft tissue mechanics, developing and calibrating constitutive models, and informing the development of more accurate and predictive computational simulations and artificial intelligence tools. This paper offers a comprehensive review of experimental tests conducted on soft aortic tissues, employing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology, based on the Scopus, Web of Science, IEEE, Google Scholar and PubMed databases. This study includes a detailed overview of the test method protocols, providing insights into practical methodologies, specimen preparation and full-field measurements. The review also briefly discusses the post-processing methods applied to extract material parameters from experimental data. In particular, the results are analysed and discussed providing representative domains of stress-strain curves for both uniaxial and biaxial tests on human aortic tissue.
Collapse
Affiliation(s)
- Rodrigo Valente
- UNIDEMI, Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (R.V.); (A.M.)
| | - André Mourato
- UNIDEMI, Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (R.V.); (A.M.)
| | - José Xavier
- UNIDEMI, Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (R.V.); (A.M.)
- Intelligent Systems Associate Laboratory, LASI, 4800-058 Guimarães, Portugal
| | - Pedro Sousa
- INEGI, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (P.S.); (P.T.)
| | - Tiago Domingues
- INEGI, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (P.S.); (P.T.)
| | - Paulo Tavares
- INEGI, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (P.S.); (P.T.)
| | - Stéphane Avril
- Mines Saint-Etienne, University of Lyon, Inserm, Sainbiose U1059, Campus Santé Innovation, 10, rue de la Marandière, 42270 Saint-Priest-en-Jarez, France;
| | - António Tomás
- Department of Cardiothoracic Surgery, Santa Marta Hospital, Rua de Santa Marta, 1169-024 Lisboa, Portugal; (A.T.); (J.F.)
| | - José Fragata
- Department of Cardiothoracic Surgery, Santa Marta Hospital, Rua de Santa Marta, 1169-024 Lisboa, Portugal; (A.T.); (J.F.)
- Department of Surgery and Human Morphology, NOVA Medical School, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 1169-056 Lisboa, Portugal
| |
Collapse
|
4
|
Jansen LC, Fekkes S, Schwab HM, Lopata RGP. Increasing abdominal aortic aneurysm curvature visibility using 3D dual probe bistatic ultrasound imaging combined with probe translation. ULTRASONICS 2024; 139:107284. [PMID: 38458061 DOI: 10.1016/j.ultras.2024.107284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
High frame rate ultrasound (US) imaging techniques in 3D are promising tools for capturing abdominal aortic aneurysms (AAAs) over time, however, with the limited number of channel-to-element connections current footprints are small, which limits the field of view. Moreover, the maximal steering angle of the ultrasound beams in transmit and the maximal receptance angle in receive are insufficient for capturing the curvy shape of the AAA. Therefore, an approach is needed towards large arrays. In this study, high frame rate bistatic 3D US data (17 Hz) were acquired with two synchronized matrix arrays positioned at different locations (multi-aperture imaging) using a translation stage to simulate what a larger array with limited channel-to-element connections can potentially achieve. Acquisitions were performed along an AAA shaped phantom with different probe tilting angles (0 up to ± 30°). The performance of different multi-aperture configurations was quantified using the generalized contrast-to-noise ratio of the wall and lumen (gCNR). Furthermore, a parametric model of the multi-aperture system was used to estimate in which AAA wall regions the contrast is expected to be high. This was evaluated for AAAs with increasing diameters and curvature. With an eight-aperture 0° probe angle configuration a 69 % increase in field of view was measured in the longitudinal direction compared to the field of view of a single aperture configuration. When increasing the number of apertures from two to eight, the gCNR improved for the upper wall and lower wall by 35 % and 13 % (monostatic) and by 36 % and 13 % (bistatic). Contrast improvements up to 22 % (upper wall) and 12 % (lower wall) are achieved with tilted probe configurations compared to non-tilted configurations. Moreover, with bistatic imaging with tilted probe configurations gCNR improvements up to 4 % (upper wall) and 7 % (lower wall) are achieved compared to monostatic imaging. Furthermore, imaging with a larger inter-probe distance improved the gCNR for a ± 15° probe angle configuration. The gCNR has an expected pattern over time, where the contrast is lower when there is more wall motion (systole) and higher when motion is reduced (diastole). Furthermore, a higher frame rate (45 Hz) yields a lower gCNR, because fewer compound angles are used. The results of the parametric model suggest that a flat array is suitable for imaging AAA shapes with limited curvature, but that it is not suitable for imaging larger AAA shapes with more curvature. According to the model, tilted multi-aperture configurations combined with bistatic imaging can achieve a larger region with high contrast compared to non-tilted configurations. The findings of the model are in agreement with experimental findings. To conclude, this study demonstrates the vast improvements in field of view and AAA wall visibility that a large, sparsely populated 3D array can potentially achieve when imaging AAAs compared to single or dual aperture imaging. In the future, larger arrays, less thermal noise, more steering, and more channel-to-element connections combined with carefully chosen orientations of (sub-) apertures will likely advance 3D imaging of AAAs.
Collapse
Affiliation(s)
- Larissa C Jansen
- Photoacoustics and Ultrasound Laboratory Eindhoven, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Stein Fekkes
- Medical Ultrasound Imaging Center (MUSIC), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hans-Martin Schwab
- Photoacoustics and Ultrasound Laboratory Eindhoven, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Richard G P Lopata
- Photoacoustics and Ultrasound Laboratory Eindhoven, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
5
|
Derwich W, Schönborn M, Blase C, Wittek A, Oikonomou K, Böckler D, Erhart P. Correlation of four-dimensional ultrasound strain analysis with computed tomography angiography wall stress simulations in abdominal aortic aneurysms. JVS Vasc Sci 2024; 5:100199. [PMID: 38633883 PMCID: PMC11022090 DOI: 10.1016/j.jvssci.2024.100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/09/2024] [Indexed: 04/19/2024] Open
Abstract
Objective Biomechanical modeling of infrarenal aortic aneurysms seeks to predict ruptures in advance, thereby reducing aneurysm-related deaths. As individual methods focusing on strain and stress analysis lack adequate discretization power, this study aims to explore multifactorial characterization for progressive aneurysmal degeneration. The study's objective is to compare stress- and strain-related parameters in infrarenal aortic aneurysms. Methods Twenty-two patients with abdominal aortic aneurysms (AAAs) (mean maximum diameter, 53.2 ± 7.2 mm) were included in the exploratory study, examined by computed tomography angiography (CTA) and three-dimensional real-time speckle tracking ultrasound (4D-US). The conformity of aneurysm anatomy in 4D-US and CTA was determined with the mean point-to-point distance (MPPD). CTA was employed for each AAA to characterize stress-related indices using the semi-automated A4-clinics RE software. Five segmentations from one 4D-US examination were fused into one averaged model for strain analysis using MATLAB and the Abaqus solver. Results The mean MPPD between the adjacent points of the 4D-US and CTA-derived geometry was 1.8 ± 0.4 mm. The interclass correlation coefficients for all raters and all measurements for the maximum AAA diameter in 2D, 4D ultrasound, and CTA indicate moderate to good reliability (interclass correlation coefficient1 0.69 with 95% confidence interval [CI], 0.49-0.84; P < .001). The peak wall stress (PWS) correlates fairly with the maximum AAA diameter in 2D-US (r = 0.54; P < .01) and 4D-US (r = 0.53; P < .05) and moderately strongly with the maximum exterior AAA diameter (r = 0.63; P < .01). The peak wall rupture risk index shows a strong correlation with the PWS (ρ > 0.9; P < .001) and is influenced by anatomical parameters with equal strength. Isolated observation of the intraluminal thrombus does not provide significant information in the determination of PWS. The maximum AAA diameter in 2D-US shows a fair negative correlation with the mean circumferential, longitudinal and in-plane shear strain (ρ = -0.46; r = -0.45; ρ = -0.47; P < .05 for all). The circumferential strain ratio as an indicator of wall motion heterogeneity increases with the aneurysm diameter (r = 0.47; P < .05). The direct comparison of wall strain and wall stress indices shows no quantitative correlation. Conclusions The strain and stress analyses provide independent biomechanical information of AAAs. At the current stage of development, the two methods are considered complementary and may optimize a more patient-specific rupture risk prediction in the future.
Collapse
Affiliation(s)
- Wojciech Derwich
- Vascular and Endovascular Surgery, Department of Cardiac and Vascular Surgery, University Hospital Frankfurt Goethe University, Frankfurt/Main, Germany
| | - Manuel Schönborn
- Personalized Biomedical Engineering Lab, Frankfurt University of Applied Sciences, Frankfurt/Main, Germany
| | - Christopher Blase
- Personalized Biomedical Engineering Lab, Frankfurt University of Applied Sciences, Frankfurt/Main, Germany
| | - Andreas Wittek
- Personalized Biomedical Engineering Lab, Frankfurt University of Applied Sciences, Frankfurt/Main, Germany
| | - Kyriakos Oikonomou
- Vascular and Endovascular Surgery, Department of Cardiac and Vascular Surgery, University Hospital Frankfurt Goethe University, Frankfurt/Main, Germany
| | - Dittmar Böckler
- Department of Vascular and Endovascular Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Philipp Erhart
- Department of Vascular and Endovascular Surgery, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
6
|
De Hoop H, Vermeulen M, Schwab HM, Lopata RGP. Coherent Bistatic 3-D Ultrasound Imaging Using Two Sparse Matrix Arrays. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:182-196. [PMID: 37027570 DOI: 10.1109/tuffc.2022.3233158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In the last decade, many advances have been made in high frame rate 3-D ultrasound imaging, including more flexible acquisition systems, transmit (TX) sequences, and transducer arrays. Compounding multiangle transmits of diverging waves has shown to be fast and effective for 2-D matrix arrays, where heterogeneity between transmits is key in optimizing the image quality. However, the anisotropy in contrast and resolution remains a drawback that cannot be overcome with a single transducer. In this study, a bistatic imaging aperture is demonstrated that consists of two synchronized matrix ( 32×32 ) arrays, allowing for fast interleaved transmits with a simultaneous receive (RX). First, for a single array, the aperture efficiency for high volume rate imaging was evaluated between sparse random arrays and fully multiplexed arrays. Second, the performance of the bistatic acquisition scheme was analyzed for various positions on a wire phantom and was showcased in a dynamic setup mimicking the human abdomen and aorta. Sparse array volume images were equal in resolution and lower in contrast compared to fully multiplexed arrays but can efficiently minimize decorrelation during motion for multiaperture imaging. The dual-array imaging aperture improved the spatial resolution in the direction of the second transducer, reducing the average volumetric speckle size with 72% and the axial-lateral eccentricity with 8%. In the aorta phantom, the angular coverage increased by a factor of 3 in the axial-lateral plane, raising the wall-lumen contrast with 16% compared to single-array images, despite accumulation of thermal noise in the lumen.
Collapse
|
7
|
Sjoerdsma M, Verstraeten SCFPM, Maas EJ, van de Vosse FN, van Sambeek MRHM, Lopata RGP. Spatiotemporal Registration of 3-D Multi-perspective Ultrasound Images of Abdominal Aortic Aneurysms. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:318-332. [PMID: 36441033 DOI: 10.1016/j.ultrasmedbio.2022.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/02/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Methods for patient-specific abdominal aortic aneurysm (AAA) progression monitoring and rupture risk assessment are widely investigated. Three-dimensional ultrasound can visualize the AAA's complex geometry and displacement fields. However, ultrasound has a limited field of view and low frame rate (i.e., 3-8 Hz). This article describes an approach to enhance the temporal resolution and the field of view. First, the frame rate was increased for each data set by sequencing multiple blood pulse cycles into one cycle. The sequencing method uses the original frame rate and the estimated pulse wave rate obtained from AAA distension curves. Second, the temporal registration was applied to multi-perspective acquisitions of the same AAA. Third, the field of view was increased through spatial registration and fusion using an image feature-based phase-only correlation method and a wavelet transform, respectively. Temporal sequencing was fully correct in aortic phantoms and was successful in 51 of 62 AAA patients, yielding a factor 5 frame rate increase. Spatial registration of proximal and distal ultrasound acquisitions was successful in 32 of 37 different AAA patients, based on the comparison between the fused ultrasound and computed tomography segmentation (95th percentile Haussdorf distances and similarity indices of 4.2 ± 1.7 mm and 0.92 ± 0.02 mm, respectively). Furthermore, the field of view was enlarged by 9%-49%.
Collapse
Affiliation(s)
- Marloes Sjoerdsma
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands.
| | - Sabine C F P M Verstraeten
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Cardiovascular Biomechanics Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Esther J Maas
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Frans N van de Vosse
- Cardiovascular Biomechanics Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marc R H M van Sambeek
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Richard G P Lopata
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
8
|
van Hal VHJ, De Hoop H, Muller JW, van Sambeek MRHM, Schwab HM, Lopata RGP. Multiperspective Bistatic Ultrasound Imaging and Elastography of the Ex Vivo Abdominal Aorta. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:604-616. [PMID: 34780324 DOI: 10.1109/tuffc.2021.3128227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Knowledge of aneurysm geometry and local mechanical wall parameters using ultrasound (US) can contribute to a better prediction of rupture risk in abdominal aortic aneurysms (AAAs). However, aortic strain imaging using conventional US is limited by the lateral lumen-wall contrast and resolution. In this study, ultrafast multiperspective bistatic (MP BS) imaging is used to improve aortic US, in which two curved array transducers receive simultaneously on each transmit event. The advantage of such bistatic US imaging on both image quality and strain estimations was investigated by comparing it to single-perspective monostatic (SP MS) and MP monostatic (MP MS) imaging, i.e., alternately transmitting and receiving with either transducer. Experimental strain imaging was performed in US simulations and in an experimental study on porcine aortas. Different compounding strategies were tested to retrieve the most useful information from each received US signal. Finally, apart from the conventional sector grid in curved array US imaging, a polar grid with respect to the vessel's local coordinate system is introduced. This new reconstruction method demonstrated improved displacement estimations in aortic US. The US simulations showed increased strain estimation accuracy using MP BS imaging bistatic imaging compared to MP MS imaging, with a decrease in the average relative error between 41% and 84% in vessel wall regions between transducers. In the experimental results, the mean image contrast-to-noise ratio was improved by up to 8 dB in the vessel wall regions between transducers. This resulted in an increased mean elastographic signal-to-noise ratio by about 15 dB in radial strain and 6 dB in circumferential strain.
Collapse
|
9
|
Petterson N, Sjoerdsma M, van Sambeek M, van de Vosse F, Lopata R. Mechanical characterization of abdominal aortas using multi-perspective ultrasound imaging. J Mech Behav Biomed Mater 2021; 119:104509. [PMID: 33865067 DOI: 10.1016/j.jmbbm.2021.104509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/13/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022]
Abstract
Mechanical characterization of abdominal aortic aneurysms using personalized biomechanical models is being widely investigated as an alternative criterion to assess risk of rupture. These methods rely on accurate wall motion detection and appropriate model boundary conditions. In this study, multi-perspective ultrasound is combined with finite element models to perform mechanical characterization of abdominal aortas in volunteers. Multi-perspective biplane radio frequency ultrasound recordings were made under seven angles (-45° to 45°) in one phantom set-up and eight volunteers, which were merged using automatic image registration. 2-D displacement fields were estimated in the seven longitudinal ultrasound views, creating a sparse, high resolution 3-D map of the wall motion at relatively high frame rates (20-27 Hz). The displacements were used to personalize the subject-specific finite element model of which the geometry of the aorta, spine, and surrounding tissue were determined from a single 3-D ultrasound acquisition. Automatic registration of the multi-perspective images was successful in six out of eight cases with an average error of 5.4° compared to the ground truth. Displacements of the aortic wall were measured and cyclic strain of the aortic diameter was found ranging from 4.2% to 8.6%. The subject-specific mesh and inverse FE analysis was performed yielding shear moduli estimates for the wall between 104 and 215 kPa. Comparative results from a single-perspective workflow revealed very low aortic wall motion signal, which resulted in relatively high modulus estimates, between 230 and 754 kPa. Multi-perspective biplane ultrasound imaging was used to personalize finite element models of the abdominal aorta and its surroundings, and performing mechanical characterization of the aortic shear modulus. The method was found to be a more robust method compared to a single-perspective 3-D ultrasound approach. Future research will focus on investigating the use of multiple 3-D ultrasound acquisitions, the feasibility of free-hand scanning, the creation of a full 3-D automatic registration process, and with that, enable a clinical continuation of this study.
Collapse
Affiliation(s)
- Niels Petterson
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Marloes Sjoerdsma
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands.
| | - Marc van Sambeek
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands; Department of Vascular Surgery, Catharina Hospital Eindhoven, Michelangelolaan 2, 5623 EJ, Eindhoven, the Netherlands
| | - Frans van de Vosse
- Cardiovascular Biomechanics Group, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Richard Lopata
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| |
Collapse
|
10
|
Petterson NJ, van Sambeek MRHM, van de Vosse FN, Lopata RGP. Enhancing Lateral Contrast Using Multi-perspective Ultrasound Imaging of Abdominal Aortas. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:535-545. [PMID: 33349515 DOI: 10.1016/j.ultrasmedbio.2020.09.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 09/14/2020] [Accepted: 09/26/2020] [Indexed: 06/12/2023]
Abstract
Vascular ultrasound imaging is inherently hampered by low lateral resolution and contrast. Steering of the ultrasound beams can be used to overcome these limitations in superficial artery imaging because the aperture-to-depth ratio is relatively high. However, in arteries located at larger depths, the steered beams do not overlap for larger steering angles. In this study, the ultrasound probe is physically translated over the abdomen to create large angles between acquisitions, while maintaining overlap on the abdominal aorta. In one phantom setup and 11 volunteers, 2-D cross-sectional multi-perspective ultrasound images of the abdominal aorta were acquired using seven angles between -45° and +45°. Automatic registration of the recorded images was performed by automatic feature detection of the aorta and spine. This automatic detection was successful in 62 out of 77 image sets. Compounded multi-perspective images showed an increase of contrast-to-noise ratios from 0.6 ± 0.1 to 1.2 ± 0.2 over the entire heart cycle in volunteers.
Collapse
Affiliation(s)
- Niels J Petterson
- Photoacoustics & Ultrasound Lab Eindhoven, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Marc R H M van Sambeek
- Photoacoustics & Ultrasound Lab Eindhoven, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Frans N van de Vosse
- Photoacoustics & Ultrasound Lab Eindhoven, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Richard G P Lopata
- Photoacoustics & Ultrasound Lab Eindhoven, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
11
|
de Hoop H, Petterson NJ, van de Vosse FN, van Sambeek MRHM, Schwab HM, Lopata RGP. Multiperspective Ultrasound Strain Imaging of the Abdominal Aorta. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3714-3724. [PMID: 32746118 DOI: 10.1109/tmi.2020.3003430] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Current decision-making for clinical intervention of abdominal aortic aneurysms (AAAs) is based on the maximum diameter of the aortic wall, but this does not provide patient-specific information on rupture risk. Ultrasound (US) imaging can assess both geometry and deformation of the aortic wall. However, low lateral contrast and resolution are currently limiting the precision of both geometry and local strain estimates. To tackle these drawbacks, a multiperspective scanning mode was developed on a dual transducer US system to perform strain imaging at high frame rates. Experimental imaging was performed on porcine aortas embedded in a phantom of the abdomen, pressurized in a mock circulation loop. US images were acquired with three acquisition schemes: Multiperspective ultrafast imaging, single perspective ultrafast imaging, and conventional line-by-line scanning. Image registration was performed by automatic detection of the transducer surfaces. Multiperspective images and axial displacements were compounded for improved segmentation and tracking of the aortic wall, respectively. Performance was compared in terms of image quality, motion tracking, and strain estimation. Multiperspective compound displacement estimation reduced the mean motion tracking error over one cardiac cycle by a factor 10 compared to conventional scanning. Resolution increased in radial and circumferential strain images, and circumferential signal-to-noise ratio (SNRe) increased by 10 dB. Radial SNRe is high in wall regions moving towards the transducer. In other regions, radial strain estimates remain cumbersome for the frequency used. In conclusion, multiperspective US imaging was demonstrated to improve motion tracking and circumferential strain estimation of porcine aortas in an experimental set-up.
Collapse
|