• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4635870)   Today's Articles (10)   Subscriber (50052)
For: Zhang B, Guo L, Chen H, Ventikos Y, Narayan RJ, Huang J. Finite element evaluations of the mechanical properties of polycaprolactone/hydroxyapatite scaffolds by direct ink writing: Effects of pore geometry. J Mech Behav Biomed Mater 2020;104:103665. [DOI: 10.1016/j.jmbbm.2020.103665] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/20/2020] [Accepted: 01/27/2020] [Indexed: 12/13/2022]
Number Cited by Other Article(s)
1
Komatsu D, Cabrera ARE, Quevedo BV, Asami J, Cristina Motta A, de Moraes SC, Duarte MAT, Hausen MDA, Aparecida de Rezende Duek E. Meniscal repair with additive manufacture of bioresorbable polymer: From physicochemical characterization to implantation of 3D printed poly (L-co-D, L lactide-co-trimethylene carbonate) with autologous stem cells in rabbits. J Biomater Appl 2024;39:66-79. [PMID: 38646887 DOI: 10.1177/08853282241248517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
2
Liu G, Wei X, Zhai Y, Zhang J, Li J, Zhao Z, Guan T, Zhao D. 3D printed osteochondral scaffolds: design strategies, present applications and future perspectives. Front Bioeng Biotechnol 2024;12:1339916. [PMID: 38425994 PMCID: PMC10902174 DOI: 10.3389/fbioe.2024.1339916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024]  Open
3
Lazarus E, Meyer AS, Ikuma K, Rivero IV. Three dimensional printed biofilms: Fabrication, design and future biomedical and environmental applications. Microb Biotechnol 2024;17:e14360. [PMID: 38041693 PMCID: PMC10832517 DOI: 10.1111/1751-7915.14360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 12/03/2023]  Open
4
Pei B, Hu M, Wu X, Lu D, Zhang S, Zhang L, Wu S. Investigations into the effects of scaffold microstructure on slow-release system with bioactive factors for bone repair. Front Bioeng Biotechnol 2023;11:1230682. [PMID: 37781533 PMCID: PMC10537235 DOI: 10.3389/fbioe.2023.1230682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023]  Open
5
Peng Y, Zhuang Y, Liu Y, Le H, Li D, Zhang M, Liu K, Zhang Y, Zuo J, Ding J. Bioinspired gradient scaffolds for osteochondral tissue engineering. EXPLORATION (BEIJING, CHINA) 2023;3:20210043. [PMID: 37933242 PMCID: PMC10624381 DOI: 10.1002/exp.20210043] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/05/2023] [Indexed: 11/08/2023]
6
Ege D, Hasirci V. Is 3D Printing Promising for Osteochondral Tissue Regeneration? ACS APPLIED BIO MATERIALS 2023;6:1431-1444. [PMID: 36943415 PMCID: PMC10114088 DOI: 10.1021/acsabm.3c00093] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/14/2023] [Indexed: 03/23/2023]
7
Mayfield CK, Ayad M, Lechtholz-Zey E, Chen Y, Lieberman JR. 3D-Printing for Critical Sized Bone Defects: Current Concepts and Future Directions. Bioengineering (Basel) 2022;9:680. [PMID: 36421080 PMCID: PMC9687148 DOI: 10.3390/bioengineering9110680] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2023]  Open
8
Use of biodegradable polycaprolactone matrix for filling bone defects (experimental study). ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.4.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
9
Cai J, Wang J, Sun C, Dai J, Zhang C. Biomaterials with Stiffness Gradient for Interface Tissue Engineering. Biomed Mater 2022;17. [PMID: 35985317 DOI: 10.1088/1748-605x/ac8b4a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 08/19/2022] [Indexed: 11/11/2022]
10
Fallah A, Altunbek M, Bartolo P, Cooper G, Weightman A, Blunn G, Koc B. 3D printed scaffold design for bone defects with improved mechanical and biological properties. J Mech Behav Biomed Mater 2022;134:105418. [PMID: 36007489 DOI: 10.1016/j.jmbbm.2022.105418] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/28/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
11
Optimizing Design Parameters of PLA 3D-Printed Scaffolds for Bone Defect Repair. SURGERIES 2022. [DOI: 10.3390/surgeries3030018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]  Open
12
Karaman D, Ghahramanzadeh Asl H. Biomechanical behavior of diamond lattice scaffolds obtained by two different design approaches with similar porosity; a numerical investigation with FEM and CFD analysis. Proc Inst Mech Eng H 2022;236:794-810. [DOI: 10.1177/09544119221091346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
13
Ansari MAA, Golebiowska AA, Dash M, Kumar P, Jain PK, Nukavarapu SP, Ramakrishna S, Nanda HS. Engineering biomaterials to 3D-print scaffolds for bone regeneration: practical and theoretical consideration. Biomater Sci 2022;10:2789-2816. [PMID: 35510605 DOI: 10.1039/d2bm00035k] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
14
Xu J, Ji J, Jiao J, Zheng L, Hong Q, Tang H, Zhang S, Qu X, Yue B. 3D Printing for Bone-Cartilage Interface Regeneration. Front Bioeng Biotechnol 2022;10:828921. [PMID: 35237582 PMCID: PMC8882993 DOI: 10.3389/fbioe.2022.828921] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/25/2022] [Indexed: 12/12/2022]  Open
15
Wang H, Wang Z, Liu H, Liu J, Li R, Zhu X, Ren M, Wang M, Liu Y, Li Y, Jia Y, Wang C, Wang J. Three-Dimensional Printing Strategies for Irregularly Shaped Cartilage Tissue Engineering: Current State and Challenges. Front Bioeng Biotechnol 2022;9:777039. [PMID: 35071199 PMCID: PMC8766513 DOI: 10.3389/fbioe.2021.777039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/07/2021] [Indexed: 12/05/2022]  Open
16
Ravoor J, Thangavel M, Elsen S R. Comprehensive Review on Design and Manufacturing of Bio-scaffolds for Bone Reconstruction. ACS APPLIED BIO MATERIALS 2021;4:8129-8158. [PMID: 35005929 DOI: 10.1021/acsabm.1c00949] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
17
Moghaddaszadeh A, Seddiqi H, Najmoddin N, Abbasi Ravasjani S, Klein-Nulend J. Biomimetic 3D-printed PCL scaffold containing a high concentration carbonated-nanohydroxyapatite with immobilized-collagen for bone tissue engineering: enhanced bioactivity and physicomechanical characteristics. Biomed Mater 2021;16. [PMID: 34670200 DOI: 10.1088/1748-605x/ac3147] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/20/2021] [Indexed: 11/12/2022]
18
Effects of porosity on drug release kinetics of swellable and erodible porous pharmaceutical solid dosage forms fabricated by hot melt droplet deposition 3D printing. Int J Pharm 2021;604:120626. [PMID: 33957266 DOI: 10.1016/j.ijpharm.2021.120626] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/24/2022]
19
Zhang B, Huang J, Narayan RJ. Gradient scaffolds for osteochondral tissue engineering and regeneration. J Mater Chem B 2021;8:8149-8170. [PMID: 32776030 DOI: 10.1039/d0tb00688b] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
20
Vallejos Baier R, Contreras Raggio JI, Toro Arancibia C, Bustamante M, Pérez L, Burda I, Aiyangar A, Vivanco JF. Structure-function assessment of 3D-printed porous scaffolds by a low-cost/open source fused filament fabrication printer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021;123:111945. [PMID: 33812577 DOI: 10.1016/j.msec.2021.111945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 10/22/2022]
21
Porosity and pore design influence on fatigue behavior of 3D printed scaffolds for trabecular bone replacement. J Mech Behav Biomed Mater 2021;117:104378. [PMID: 33610021 DOI: 10.1016/j.jmbbm.2021.104378] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/29/2020] [Accepted: 02/01/2021] [Indexed: 12/22/2022]
22
Wang Y, Guo Y, Wei Q, Li X, Ji K, Zhang K. Current researches on design and manufacture of biopolymer-based osteochondral biomimetic scaffolds. Biodes Manuf 2021. [DOI: 10.1007/s42242-020-00119-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
23
Baptista R, Guedes M. Morphological and mechanical characterization of 3D printed PLA scaffolds with controlled porosity for trabecular bone tissue replacement. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020;118:111528. [PMID: 33255081 DOI: 10.1016/j.msec.2020.111528] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/17/2020] [Accepted: 09/13/2020] [Indexed: 12/13/2022]
24
Wang L, Kang Y, Chen S, Mo X, Jiang J, Yan X, Zhu T, Zhao J. Macroporous 3D Scaffold with Self-Fitting Capability for Effectively Repairing Massive Rotator Cuff Tear. ACS Biomater Sci Eng 2020;7:904-915. [PMID: 33715366 DOI: 10.1021/acsbiomaterials.0c00193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA