1
|
Deng F, Han X, Ji Y, Jin Y, Shao Y, Zhang J, Ning C. Distinct mechanisms of iron and zinc metal ions on osteo-immunomodulation of silicocarnotite bioceramics. Mater Today Bio 2024; 26:101086. [PMID: 38765245 PMCID: PMC11098954 DOI: 10.1016/j.mtbio.2024.101086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/14/2024] [Accepted: 05/04/2024] [Indexed: 05/21/2024] Open
Abstract
The immunomodulatory of implants have drawn more and more attention these years. However, the immunomodulatory of different elements on the same biomaterials have been rarely investigated. In this work, two widely used biosafety elements, iron and zinc added silicocarnotite (Ca5(PO4)2SiO4, CPS) were applied to explore the routine of elements on immune response. The immune reactions over time of Fe-CPS and Zn-CPS were explored at genetic level and protein level, and the effects of their immune microenvironment with different time points on osteogenesis were also investigated in depth. The results confirmed that both Fe-CPS and Zn-CPS had favorable ability to secret anti-inflammatory cytokines. The immune microenvironment of Fe-CPS and Zn-CPS also could accelerate osteogenesis and osteogenic differentiation in vitro and in vivo. In terms of mechanism, RNA-seq analysis and Western-blot experiment revealed that PI3K-Akt signaling pathway and JAK-STAT signaling pathways were activated of Fe-CPS to promote macrophage polarization from M1 to M2, and its immune microenvironment induced osteogenic differentiation through the activation of Hippo signaling pathway. In comparison, Zn-CPS inhibited polarization of M1 macrophage via the up-regulation of Rap1 signaling pathway and complement and coagulation cascade pathway, while its osteogenic differentiation related pathway of immune environment was NF-κB signaling pathway.
Collapse
Affiliation(s)
- Fanyan Deng
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Frontiers Science Center of Biomimetic Catalysis and Shanghai Engineering Research Center of Green Energy Chemical Engineering, Shanghai Normal University, Shanghai, China
| | - Xianzhuo Han
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai 200080, PR China
| | - Yingqi Ji
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Ying Jin
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Frontiers Science Center of Biomimetic Catalysis and Shanghai Engineering Research Center of Green Energy Chemical Engineering, Shanghai Normal University, Shanghai, China
| | - Yiran Shao
- SHNU-YAPENG Joint Lab of Tissue Repair Materials, Shanghai Yapeng Biological Technology Co., Ltd, Shanghai, China
| | - Jingju Zhang
- Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Department of Orthodontics, School & Hospital of Stomatology, Shanghai, China
| | - Congqin Ning
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Frontiers Science Center of Biomimetic Catalysis and Shanghai Engineering Research Center of Green Energy Chemical Engineering, Shanghai Normal University, Shanghai, China
| |
Collapse
|
2
|
Realizing Both Antibacterial Activity and Cytocompatibility in Silicocarnotite Bioceramic via Germanium Incorporation. J Funct Biomater 2023; 14:jfb14030154. [PMID: 36976078 PMCID: PMC10054726 DOI: 10.3390/jfb14030154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
The treatment of infective or potentially infectious bone defects is a critical problem in the orthopedic clinic. Since bacterial activity and cytocompatibility are always contrary factors, it is hard to have them both in one material. The development of bioactive materials with a good bacterial character and without sacrificing biocompatibility and osteogenic activity, is an interesting and valuable research topic. In the present work, the antimicrobial characteristic of germanium, GeO2 was used to enhance the antibacterial properties of silicocarnotite (Ca5(PO4)2SiO4, CPS). In addition, its cytocompatibility was also investigated. The results demonstrated that Ge–CPS can effectively inhibit the proliferation of both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), and it showed no cytotoxicity to rat bone marrow-derived mesenchymal stem cells (rBMSCs). In addition, as the bioceramic degraded, a sustainable release of germanium could be achieved, ensuring long-term antibacterial activity. The results indicated that Ge–CPS has excellent antibacterial activity compared with pure CPS, while no obvious cytotoxicity was observed, which could make it a promising candidate for the bone repair of infected bone defects.
Collapse
|
3
|
Xu S, Wu Q, He B, Rao J, Chow DHK, Xu J, Wang X, Sun Y, Ning C, Dai K. Interactive effects of cerium and copper to tune the microstructure of silicocarnotite bioceramics towards enhanced bioactivity and good biosafety. Biomaterials 2022; 288:121751. [PMID: 36031456 DOI: 10.1016/j.biomaterials.2022.121751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/09/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022]
Abstract
Endowing biomaterials with functional elements enhances their biological properties effectively. However, improving bioactivity and biosafety simultaneously is still highly desirable. Herein, cerium (Ce) and copper (Cu) are incorporated into silicocarnotite (CPS) to modulate the constitution and microstructure for degradability, bioactivity and biosafety regulation. Our results demonstrated that introducing Ce suppressed scaffold degradation, while, co-incorporation of both Ce and Cu accelerated degradability. Osteogenic effect of CPS in vitro was promoted by Ce and optimized by Cu, and Ce-induced angiogenic inhibition could be mitigated by cell coculture method and reversed by Ce-Cu co-incorporation. Ce enhanced osteogenic and angiogenic properties of CPS in a dose-dependent manner in vivo, and Cu-Ce coexistence exhibited optimal bioactivity and satisfactory biosafety. This work demonstrated that coculture in vitro was more appropriately reflecting the behavior of implanted biomaterials in vivo. Interactive effects of multi-metal elements were promising to enhance bioactivity and biosafety concurrently. The present work provided a promising biomaterial for bone repair and regeneration, and offered a comprehensive strategy to design new biomaterials which aimed at adjustable degradation behavior, and enhanced bioactivity and biosafety.
Collapse
Affiliation(s)
- Shunxiang Xu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, No. 100, Guilin Road, Xuhui District, Shanghai, 200234, PR China; Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology Faculty of Medicine, The Chinese University of Hong Kong, No. 437, Ma Liu Shui, Shatin, New Territories, Hong Kong SAR, 999077, PR China
| | - Qiang Wu
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Huangpu District, Shanghai, 200011, PR China
| | - Bo He
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, No. 100, Guilin Road, Xuhui District, Shanghai, 200234, PR China
| | - Jiancun Rao
- AIM Lab, Maryland NanoCenter, University of Maryland, MD, 20742, USA
| | - Dick Ho Kiu Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology Faculty of Medicine, The Chinese University of Hong Kong, No. 437, Ma Liu Shui, Shatin, New Territories, Hong Kong SAR, 999077, PR China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology Faculty of Medicine, The Chinese University of Hong Kong, No. 437, Ma Liu Shui, Shatin, New Territories, Hong Kong SAR, 999077, PR China
| | - Xin Wang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuchang District, Wuhan, 430071, PR China
| | - Ye Sun
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Gulou District, Nanjing, 210029, PR China
| | - Congqin Ning
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, No. 100, Guilin Road, Xuhui District, Shanghai, 200234, PR China.
| | - Kerong Dai
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Huangpu District, Shanghai, 200011, PR China.
| |
Collapse
|
4
|
Zhang J, Deng F, Liu X, Ge Y, Zeng Y, Zhai Z, Ning C, Li H. Favorable osteogenic activity of iron doped in silicocarnotite bioceramic: In vitro and in vivo Studies. J Orthop Translat 2022; 32:103-111. [PMID: 35228992 PMCID: PMC8856950 DOI: 10.1016/j.jot.2021.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 01/22/2023] Open
Abstract
Background Methods Results Conclusion The translational potential of this article
Collapse
|
5
|
Wu Q, Xu S, Wang F, He B, Wang X, Sun Y, Ning C, Dai K. Double-edged effects caused by magnesium ions and alkaline environment regulate bioactivities of magnesium-incorporated silicocarnotite in vitro. Regen Biomater 2021; 8:rbab016. [PMID: 34484805 PMCID: PMC8411036 DOI: 10.1093/rb/rbab016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/18/2021] [Accepted: 04/01/2021] [Indexed: 12/17/2022] Open
Abstract
Magnesium (Mg) is an important element for its enhanced osteogenic and angiogenic properties in vitro and in vivo, however, the inherent alkalinity is the adverse factor that needs further attention. In order to study the role of alkalinity in regulating osteogenesis and angiogenesis in vitro, magnesium-silicocarnotite [Mg-Ca5(PO4)2SiO4, Mg-CPS] was designed and fabricated. In this study, Mg-CPS showed better osteogenic and angiogenic properties than CPS within 10 wt.% magnesium oxide (MgO), since the adversity of alkaline condition was covered by the benefits of improved Mg ion concentrations through activating Smad2/3-Runx2 signaling pathway in MC3T3-E1 cells and PI3K-AKT signaling pathway in human umbilical vein endothelial cells in vitro. Besides, provided that MgO was incorporated with 15 wt.% in CPS, the bioactivities had declined due to the environment consisting of higher-concentrated Mg ions, stronger alkalinity and lower Ca/P/Si ions caused. According to the results, it indicated that bioactivities of Mg-CPS in vitro were regulated by the double-edged effects, which were the consequence of Mg ions and alkaline environment combined. Therefore, if MgO is properly incorporated in CPS, the improved bioactivities could cover alkaline adversity, making Mg-CPS bioceramics promising in orthopedic clinical application for its enhancement of osteogenesis and angiogenesis in vitro.
Collapse
Affiliation(s)
- Qiang Wu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, Huangpu District 200011, China
| | - Shunxiang Xu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, No. 100, Guilin Road, Shanghai, Xuhui District 200234, China
| | - Fei Wang
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, No. 100, Guilin Road, Shanghai, Xuhui District 200234, China
| | - Bo He
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, No. 100, Guilin Road, Shanghai, Xuhui District 200234, China
| | - Xin Wang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, No.169, East Lake Road, Wuchang District, Wuhan 430071, China
| | - Ye Sun
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Drum-tower District, Nanjing, 210029, China
| | - Congqin Ning
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, No. 100, Guilin Road, Shanghai, Xuhui District 200234, China.,State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, No.1295, Dingxi Road, Changning District, Shanghai 200050, China
| | - Kerong Dai
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, Huangpu District 200011, China
| |
Collapse
|
6
|
Copper containing silicocarnotite bioceramic with improved mechanical strength and antibacterial activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111493. [PMID: 33255060 DOI: 10.1016/j.msec.2020.111493] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/31/2020] [Accepted: 09/06/2020] [Indexed: 12/17/2022]
Abstract
Copper is well known for its multifunctional biological effects including antibacterial and angiogenic activities, while silicon-containing bioceramic has proved to possess superior biological properties to hydroxyapatite (HA). In this work, CuO was introduced to silicocarnotite (Ca5(PO4)2SiO4, CPS) to simultaneously enhance its mechanical and antibacterial properties, and its cytocompatibility was also evaluated. Results showed that CuO could significantly facilitate the densification process of CPS bioceramic through liquid-phase sintering. The bending strength of CPS with the addition of 3.0 wt% CuO improved from 29.2 MPa to 63.4 MPa after sintered at 1200 °C. Moreover, Cu-CPS bioceramics demonstrated superior in vitro antibacterial property against both S. aureus and E. coli strains by destroying their membrane integrity, and the antibacterial activity augmented with CuO content. Meanwhile, the released Cu ions from Cu-CPS bioceramics could promote the proliferation of human umbilical vein endothelial cells (HUVECs), and the in vitro cytocompatibility exhibited concentration dependence on Cu ions. These suggest that Cu-CPS bioceramics might be promising candidates for bone tissue regeneration with an ability to prevent postoperative infections.
Collapse
|