1
|
Chen J, Cheng Z, Wang J, Ding H, Wang K, Deng P, Xu L, Huang J. Novel Foamed Magnesium Phosphate Antimicrobial Bone Cement for Bone Augmentation. J Biomed Mater Res B Appl Biomater 2025; 113:e35492. [PMID: 39804787 DOI: 10.1002/jbm.b.35492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/18/2024] [Accepted: 10/08/2024] [Indexed: 01/16/2025]
Abstract
In dental implant surgery, infection is identified as the primary factor contributing to the failure of bone grafts. There is an urgent need to develop bone graft materials possessing antibacterial characteristics to facilitate bone regeneration. Magnesium phosphate bone cement (MPC) is highly desirable for bone regeneration due to its favorable biocompatibility, plasticity, and osteogenic capabilities. However, the limited porosity of conventional MPC hinders the nutrient supply, gas diffusion, and cell infiltration, thereby compromising its osteogenic efficacy. This research focused on the fabrication of a highly porous MPC (CaCO3/CA-MPC) by incorporating citric acid (CA) and calcium carbonate (CaCO3) as foaming agents. The resulting material demonstrated enhanced physicochemical properties, bioactivity, and antimicrobial effects. When compared with conventional MPC, human periodontal ligament stem cells (hPDLSCs) showed improved osteogenic differentiation when cultured with CaCO3/CA-MPC. The inclusion of foaming agents significantly enhanced the antimicrobial efficacy of MPC against both Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli). The results of in vivo anti-infection experiments in rats revealed that 3%CaCO3/CA-MPC displayed superior bactericidal activity compared with Bio-Oss and control groups (p < 0.05), thereby enhancing the anti-infective outcomes post-bone grafting and stimulating osteogenesis in the infected bone defect region. The study demonstrated that MPC containing 3%CaCO3/CA exhibited excellent antimicrobial and osteogenic properties both in vitro and in vivo, suggesting its potential as a promising candidate as bone graft material for dental implant surgeries.
Collapse
Affiliation(s)
- Jie Chen
- College of Stomatology, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Ziqing Cheng
- College of Stomatology, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Jiawen Wang
- College of Stomatology, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Huifen Ding
- College of Stomatology, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Kai Wang
- College of Stomatology, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Ping Deng
- College of Stomatology, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Ling Xu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Jiao Huang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| |
Collapse
|
2
|
Straumal BB, Kurkin EN, Balihin IL, Klyatskina E, Straumal PB, Anisimova NY, Kiselevskiy MV. Antibacterial Properties and Biocompatibility of Multicomponent Titanium Oxides: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5847. [PMID: 39685284 DOI: 10.3390/ma17235847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/04/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024]
Abstract
The simple oxides like titania, zirconia, and ZnO are famous with their antibacterial (or even antimicrobial) properties as well as their biocompatibility. They are broadly used for air and water filtering, in food packaging, in medicine (for implants, prostheses, and scaffolds), etc. However, these application fields can be broadened by switching to the composite multicomponent compounds (for example, titanates) containing in their unit cell, together with oxygen, several different metallic ions. This review begins with a description of the synthesis methods, starting from wet chemical conversion through the manufacturing of oxide (nano)powders toward mechanosynthesis methods. The morphology of these multicomponent oxides can also be very different (like thin films, complicated multilayers, or porous scaffolds). Further, we discuss in vitro tests. The antimicrobial properties are investigated with Gram-positive or Gram-negative bacteria (like Escherichia coli or Staphylococcus aureus) or fungi. The cytotoxicity can be studied, for example, using mouse mesenchymal stem cells, MSCs (C3H10T1/2), or human osteoblast-like cells (MG63). Other human osteoblast-like cells (SaOS-2) can be used to characterize the cell adhesion, proliferation, and differentiation in vitro. The in vitro tests with individual microbial or cell cultures are rather far away from the real conditions in the human or animal body. Therefore, they have to be followed by in vivo tests, which permit the estimation of the real applicability of novel materials. Further, we discuss the physical, chemical, and biological mechanisms determining the antimicrobial properties and biocompatibility. The possible directions of future developments and novel application areas are described in the concluding section of the review.
Collapse
Affiliation(s)
- Boris B Straumal
- Osipyan Institute of Solid State Physics of the Russian Academy of Sciences, Ac. Osipyan Str. 2, 142432 Chernogolovka, Russia
| | - Evgenii N Kurkin
- Osipyan Institute of Solid State Physics of the Russian Academy of Sciences, Ac. Osipyan Str. 2, 142432 Chernogolovka, Russia
| | - Igor L Balihin
- Osipyan Institute of Solid State Physics of the Russian Academy of Sciences, Ac. Osipyan Str. 2, 142432 Chernogolovka, Russia
| | - Elisaveta Klyatskina
- Osipyan Institute of Solid State Physics of the Russian Academy of Sciences, Ac. Osipyan Str. 2, 142432 Chernogolovka, Russia
| | - Peter B Straumal
- Osipyan Institute of Solid State Physics of the Russian Academy of Sciences, Ac. Osipyan Str. 2, 142432 Chernogolovka, Russia
| | - Natalia Yu Anisimova
- Osipyan Institute of Solid State Physics of the Russian Academy of Sciences, Ac. Osipyan Str. 2, 142432 Chernogolovka, Russia
| | - Mikhail V Kiselevskiy
- Osipyan Institute of Solid State Physics of the Russian Academy of Sciences, Ac. Osipyan Str. 2, 142432 Chernogolovka, Russia
| |
Collapse
|
3
|
Farazin A, Mahjoubi S. Dual-functional Hydroxyapatite scaffolds for bone regeneration and precision drug delivery. J Mech Behav Biomed Mater 2024; 157:106661. [PMID: 39018918 DOI: 10.1016/j.jmbbm.2024.106661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Addressing infected bone defects remains a significant challenge in orthopedics, requiring effective infection control and bone defect repair. A promising therapeutic approach involves the development of dual-functional engineered biomaterials with drug delivery systems that combine antibacterial properties with osteogenesis promotion. The Hydroxyapatite composite scaffolds offer a one-stage treatment, eliminating the need for multiple surgeries and thereby streamlining the process and reducing treatment time. This review delves into the impaired bone repair mechanisms within pathogen-infected and inflamed microenvironments, providing a theoretical foundation for treating infectious bone defects. Additionally, it explores composite scaffolds made of antibacterial and osteogenic materials, along with advanced drug delivery systems that possess both antibacterial and bone-regenerative properties. By offering a comprehensive understanding of the microenvironment of infectious bone defects and innovative design strategies for dual-function scaffolds, this review presents significant advancements in treatment methods for infectious bone defects. Continued research and clinical validation are essential to refine these innovations, ensuring biocompatibility and safety, achieving controlled release and stability, and developing scalable manufacturing processes for widespread clinical application.
Collapse
Affiliation(s)
- Ashkan Farazin
- Department of Mechanical Engineering, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ, 07030, United States
| | - Soroush Mahjoubi
- Department of Civil and Environmental Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, United States; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States.
| |
Collapse
|
4
|
Tian Y, Sun R, Li Y, Liu P, Fan B, Xue Y. Research progress on the application of magnesium phosphate bone cement in bone defect repair: A review. Biomed Mater Eng 2024; 35:265-278. [PMID: 38728179 DOI: 10.3233/bme-230164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
BACKGROUND Bone defects arising from diverse causes, such as traffic accidents, contemporary weapon usage, and bone-related disorders, present significant challenges in clinical treatment. Prolonged treatment cycles for bone defects can result in complications, impacting patients' overall quality of life. Efficient and timely repair of bone defects is thus a critical concern in clinical practice. OBJECTIVE This study aims to assess the scientific progress and achievements of magnesium phosphate bone cement (MPC) as an artificial bone substitute material. Additionally, the research seeks to explore the future development path and clinical potential of MPC bone cement in addressing challenges associated with bone defects. METHODS The study comprehensively reviews MPC's performance, encompassing e.g. mechanical properties, biocompatibility, porosity, adhesion and injectability. Various modifiers are also considered to broaden MPC's applications in bone tissue engineering, emphasizing drug-loading performance and antibacterial capabilities, which meet clinical diversification requirements. RESULTS In comparison to alternatives such as autogenous bone transplantation, allograft, polymethyl methacrylate (PMMA), and calcium phosphate cement (CPC), MPC emerges as a promising solution for bone defects. It addresses limitations associated with these alternatives, such as immunological rejection and long-term harm to patients. MPC can control heat release during the curing process, exhibits superior mechanical strength, and has the capacity to stimulate new bone growth. CONCLUSION MPC stands out as an artificial bone substitute with appropriate mechanical strength, rapid degradation, non-toxicity, and good biocompatibility, facilitating bone repair and regeneration. Modification agents can enhance its clinical versatility. Future research should delve into its mechanical properties and formulations, expanding clinical applications to create higher-performing and more medically valuable alternatives in bone defect repair.
Collapse
Affiliation(s)
- Yongzheng Tian
- 940 Hospital of People's Liberation Army Joint Service Support Force, Lanzhou, China
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Ruilong Sun
- 940 Hospital of People's Liberation Army Joint Service Support Force, Lanzhou, China
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yunfei Li
- 940 Hospital of People's Liberation Army Joint Service Support Force, Lanzhou, China
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Peng Liu
- 940 Hospital of People's Liberation Army Joint Service Support Force, Lanzhou, China
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Bo Fan
- 940 Hospital of People's Liberation Army Joint Service Support Force, Lanzhou, China
| | - Yun Xue
- 940 Hospital of People's Liberation Army Joint Service Support Force, Lanzhou, China
| |
Collapse
|
5
|
Deyneko DV, Lebedev VN, Barbaro K, Titkov VV, Lazoryak BI, Fadeeva IV, Gosteva AN, Udyanskaya IL, Aksenov SM, Rau JV. Antimicrobial and Cell-Friendly Properties of Cobalt and Nickel-Doped Tricalcium Phosphate Ceramics. Biomimetics (Basel) 2023; 9:14. [PMID: 38248588 PMCID: PMC10813436 DOI: 10.3390/biomimetics9010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
β-Tricalcium phosphate (β-TCP) is widely used as bone implant material. It has been observed that doping the β-TCP structure with certain cations can help in combating bacteria and pathogenic microorganisms. Previous literature investigations have focused on tricalcium phosphate structures with silver, copper, zinc, and iron cations. However, there are limited studies available on the biological properties of β-TCP containing nickel and cobalt ions. In this work, Ca10.5-xNix(PO4)7 and Ca10.5-xCox(PO4)7 solid solutions with the β-Ca3(PO4)2 structure were synthesized by a high-temperature solid-state reaction. Structural studies revealed the β-TCP structure becomes saturated at 9.5 mol/% for Co2+ or Ni2+ ions. Beyond this saturation point, Ni2+ and Co2+ ions form impurity phases after complete occupying of the octahedral M5 site. The incorporation of these ions into the β-TCP crystal structure delays the phase transition to the α-TCP phase and stabilizes the structure as the temperature increases. Biocompatibility tests conducted on adipose tissue-derived mesenchymal stem cells (aMSC) using the (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) (MTT) assay showed that all prepared samples did not exhibit cytotoxic effects. Furthermore, there was no inhibition of cell differentiation into the osteogenic lineage. Antibacterial properties were studied on the C. albicans fungus and on E. coli, E. faecalis, S. aureus, and P. aeruginosa bacteria strains. The Ni- and Co-doped β-TCP series exhibited varying degrees of bacterial growth inhibition depending on the doping ion concentration and the specific bacteria strain or fungus. The combination of antibacterial activity and cell-friendly properties makes these phosphates promising candidates for anti-infection bone substitute materials.
Collapse
Affiliation(s)
- Dina V. Deyneko
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (V.N.L.); (V.V.T.); (B.I.L.)
- Laboratory of Arctic Mineralogy and Material Sciences, Kola Science Centre RAS, 14 Fersman Str., 184209 Apatity, Russia;
| | - Vladimir N. Lebedev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (V.N.L.); (V.V.T.); (B.I.L.)
| | - Katia Barbaro
- Istituto Zooprofilattico Sperimentale Lazio e Toscana “M. Aleandri”, Via Appia Nuova 1411, 00178 Rome, Italy;
| | - Vladimir V. Titkov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (V.N.L.); (V.V.T.); (B.I.L.)
| | - Bogdan I. Lazoryak
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (V.N.L.); (V.V.T.); (B.I.L.)
| | - Inna V. Fadeeva
- A.A. Baikov Institute of Metallurgy and Material Science, Russian Academy of Sciences, Leninsky Prospect 49, 119334 Moscow, Russia;
| | - Alevtina N. Gosteva
- Tananaev Institute of Chemistry, Kola Science Centre RAS, Akademgorodok 26A, 184209 Apatity, Russia;
| | - Irina L. Udyanskaya
- Department of Analytical, Physical and Colloid Chemistry, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Trubetskaya 8, Build. 2, 119048 Moscow, Russia;
| | - Sergey M. Aksenov
- Laboratory of Arctic Mineralogy and Material Sciences, Kola Science Centre RAS, 14 Fersman Str., 184209 Apatity, Russia;
- Geological Institute, Kola Science Centre, Russian Academy of Sciences, 14 Fersman Street, 184209 Apatity, Russia
| | - Julietta V. Rau
- Department of Analytical, Physical and Colloid Chemistry, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Trubetskaya 8, Build. 2, 119048 Moscow, Russia;
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy
| |
Collapse
|
6
|
Jacquart S, Girod-Fullana S, Brouillet F, Pigasse C, Siadous R, Fatnassi M, Grimoud J, Rey C, Roques C, Combes C. Injectable bone cement containing carboxymethyl cellulose microparticles as a silver delivery system able to reduce implant-associated infection risk. Acta Biomater 2022; 145:342-357. [PMID: 35429671 DOI: 10.1016/j.actbio.2022.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/16/2022]
Abstract
In the challenging quest for a solution to reduce the risk of implant-associated infections in bone substitution surgery, the use of silver ions is promising regarding its broad spectrum on planktonic, sessile as well as multiresistant bacteria. In view of controlling its delivery in situ at the desired dose, we investigated its encapsulation in carboxymethyl cellulose (CMC) microparticles by spray-drying and included the latter in the formulation of a self-setting calcium phosphate bone cement. We implemented an original step-by-step methodology starting from the in vitro study of the antibacterial properties and cytotoxicity of two silver salts of different solubility in aqueous medium and then in the cement to determine the range of silver loading able to confer anti-biofilm and non-cytotoxic properties to the biomaterial. A dose-dependent efficiency of silver was demonstrated on the main species involved in bone-implant infection (S. aureus and S. epidermidis). Loading silver in microspheres instead of loading it directly inside the cement permitted to avoid undesired silver-cement interactions during setting and led to a faster release of silver, i.e. to a higher dose released within the first days combining anti-biofilm activity and preserved cytocompatibility. In addition, a combined interest of the introduction of about 10% (w/w) silver-loaded CMC microspheres in the cement formulation was demonstrated leading to a fully injectable and highly porous (77%) cement, showing a compressive strength analogous to cancellous bone. This injectable silver-loaded biomimetic composite cement formulation constitutes a versatile bone substitute material with tunable drug delivery properties, able to fight against bone implant associated infection. STATEMENT OF SIGNIFICANCE: This study is based on two innovative scientific aspects regarding the literature: i) Choice of silver ions as antibacterial agent combined with their way of incorporation: Carboxymethylcellulose has never been tested into bone cement to control its drug loading and release properties. ii) Methodology to formulate an antibacterial and injectable bone cement: original and multidisciplinary step-by-step methodology to first define, through (micro)biological tests on two silver salts with different solubilities, the targeted range of silver dose to include in carboxymethylcellulose microspheres and, then optimization of silver-loaded microparticles processing to fulfill requirements (encapsulation efficiency and size). The obtained fully injectable composite controls the early delivery of active dose of silver (from 3 h and over 2 weeks) able to fight against bone implant-associated infections.
Collapse
Affiliation(s)
- Sylvaine Jacquart
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP - ENSIACET, Toulouse, France
| | - Sophie Girod-Fullana
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, Toulouse, France
| | - Fabien Brouillet
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, Toulouse, France
| | - Christel Pigasse
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, Université Toulouse 3 - Paul Sabatier, Toulouse, France
| | - Robin Siadous
- Université de Bordeaux, Inserm U1026 Bioingénierie Tissulaire (BioTis), Bordeaux, France
| | - Mohamed Fatnassi
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP - ENSIACET, Toulouse, France
| | - Julien Grimoud
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, Université Toulouse 3 - Paul Sabatier, Toulouse, France
| | - Christian Rey
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP - ENSIACET, Toulouse, France
| | - Christine Roques
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, Université Toulouse 3 - Paul Sabatier, Toulouse, France; CHU Toulouse, Hôpital Purpan, Service de Bactériologie-Hygiène, Toulouse, France
| | - Christèle Combes
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP - ENSIACET, Toulouse, France.
| |
Collapse
|
7
|
Hayashi K, Shimabukuro M, Ishikawa K. Antibacterial Honeycomb Scaffolds for Achieving Infection Prevention and Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3762-3772. [PMID: 35020349 DOI: 10.1021/acsami.1c20204] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surgical site infection (SSI) is a severe complication associated with orthopedic bone reconstruction. For both infection prevention and bone regeneration, the framework surface of osteoconductive and bioresorbable scaffolds must be locally modified by minimum antibacterial substances, without sacrificing the osteoconductivity of the scaffold framework. In this study, we fabricated antibacterial honeycomb scaffolds by replacing carbonate apatite, which is the main component of the scaffold, with silver phosphate locally on the scaffold surface via dissolution-precipitation reactions. When the silver content was 9.9 × 10-4 wt %, the honeycomb scaffolds showed antibacterial activity without cytotoxicity and allowed cell proliferation, differentiation, and mineralization. Furthermore, the antibacterial honeycomb scaffolds perfectly prevented bacterial infection in vivo in the presence of methicillin-resistant Staphylococcus aureus, formed new bone at 2 weeks after surgery, and were gradually replaced with a new bone. Thus, the antibacterial honeycomb scaffolds achieved both infection prevention and bone regeneration. In contrast, severe infection symptoms, including abscess formation, osteolytic lesions, and inflammation, occurred 2 weeks after surgery when honeycomb scaffolds without silver phosphate modification were implanted. Nevertheless, the unmodified honeycomb scaffolds eliminated bacteria and necrotic bone through their scaffold channels, resulting in symptom improvement and bone formation. These results suggest that the honeycomb structure is inherently effective in hindering bacterial growth. This novel insight may contribute to the development of antibacterial scaffolds. Moreover, our modification method is useful for providing antibacterial activity to various biomaterials.
Collapse
Affiliation(s)
- Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masaya Shimabukuro
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
8
|
Gu X, Li Y, Qi C, Cai K. Biodegradable magnesium phosphates in biomedical applications. J Mater Chem B 2022; 10:2097-2112. [DOI: 10.1039/d1tb02836g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As an essential element, magnesium is involved in a variety of physiological processes. Magnesium is the second most abundant cation in cells and the fourth most abundant cation in living...
Collapse
|
9
|
Cao X, Ge W, Wang Y, Ma M, Wang Y, Zhang B, Wang J, Guo Y. Rapid Fabrication of MgNH 4PO 4·H 2O/SrHPO 4 Porous Composite Scaffolds with Improved Radiopacity via 3D Printing Process. Biomedicines 2021; 9:biomedicines9091138. [PMID: 34572326 PMCID: PMC8468055 DOI: 10.3390/biomedicines9091138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 11/25/2022] Open
Abstract
Although bone repair scaffolds are required to possess high radiopacity to be distinguished from natural bone tissues in clinical applications, the intrinsic radiopacity of them is usually insufficient. For improving the radiopacity, combining X-ray contrast agents with bone repair scaffolds is an effective method. In the present research, MgNH4PO4·H2O/SrHPO4 3D porous composite scaffolds with improved radiopacity were fabricated via the 3D printing technique. Here, SrHPO4 was firstly used as a radiopaque agent to improve the radiopacity of magnesium phosphate scaffolds. X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS) were used to characterize the phases, morphologies, and element compositions of the 3D porous composite scaffolds. The radiography image showed that greater SrHPO4 contents corresponded to higher radiopacity. When the SrHPO4 content reached 9.34%, the radiopacity of the composite scaffolds was equal to that of a 6.8 mm Al ladder. The porosity and in vitro degradation of the porous composite scaffolds were studied in detail. The results show that magnesium phosphate scaffolds with various Sr contents could sustainably degrade and release the Mg, Sr, and P elements during the experiment period of 28 days. In addition, the cytotoxicity on MC3T3-E1 osteoblast precursor cells was evaluated, and the results show that the porous composite scaffolds with a SrHPO4 content of 9.34% possessed superior cytocompatibility compared to that of the pure MgNH4PO4·H2O scaffolds when the extract concentration was 0.1 g/mL. Cell adhesion experiments showed that all of the scaffolds could support MC3T3-E1 cellular attachment well. This research indicates that MgNH4PO4·H2O/SrHPO4 porous composite scaffolds have potential applications in the bone repair fields.
Collapse
Affiliation(s)
- Xiaofeng Cao
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.C.); (Y.W.); (M.M.); (Y.W.); (B.Z.); (J.W.)
| | - Wufei Ge
- Department of Orthopedics, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China;
| | - Yihu Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.C.); (Y.W.); (M.M.); (Y.W.); (B.Z.); (J.W.)
| | - Ming Ma
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.C.); (Y.W.); (M.M.); (Y.W.); (B.Z.); (J.W.)
| | - Ying Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.C.); (Y.W.); (M.M.); (Y.W.); (B.Z.); (J.W.)
| | - Bing Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.C.); (Y.W.); (M.M.); (Y.W.); (B.Z.); (J.W.)
| | - Jianing Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.C.); (Y.W.); (M.M.); (Y.W.); (B.Z.); (J.W.)
| | - Yanchuan Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.C.); (Y.W.); (M.M.); (Y.W.); (B.Z.); (J.W.)
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|
10
|
Zhou H, Yang L, Gbureck U, Bhaduri SB, Sikder P. Monetite, an important calcium phosphate compound-Its synthesis, properties and applications in orthopedics. Acta Biomater 2021; 127:41-55. [PMID: 33812072 DOI: 10.1016/j.actbio.2021.03.050] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022]
Abstract
This review recognizes a unique calcium phosphate (CaP) phase known as monetite or dicalcium phosphate anhydrous (DCPA, CaHPO4), and presents an overview of its properties, processing, and applications in orthopedics. The motivation for the present effort is to highlight the state-of-the-art research and development of monetite and propel the research community to explore more of its potentials in orthopedics. After a brief introduction of monetite, we provide a summary of its various synthesis routes like dehydration, solvent-based, energy-assisted processes and also discuss the formation of different crystal structures with respect to the synthesis conditions. Subsequently, we discuss the material's noteworthy physico-chemical properties including the crystal structure, vibrational spectra, solubility, thermal decomposition, and conversion to other phases. Of note, we focus on the biological (in vitro and in vivo) properties of monetite, given its ever-increasing popularity as a biomaterial for medical implants. Appropriately, we discuss various orthopedic applications of monetite as bone cement, implant coatings, granules for defect fillers, and scaffolds. Many in vitro and in vivo studies confirmed the favorable osteointegration and osteoconduction properties of monetite products, along with a better balance between implant resorption and new bone formation as compared to other CaP phases. The review ends with translational aspects of monetite and presents thoughts about its possible future research directions. Further research may explore but not limited to improvements in mechanical strength of monetite-based scaffolds, using monetite particles as a therapeutic agent delivery, and tissue engineering strategies where monetite serves as the biomaterial. STATEMENT OF SIGNIFICANCE: This is the first review that focusses on the favorable potential of monetite for hard tissue repair and regeneration. The article accurately covers the "Synthesis-Structure-Property-Applications" correlations elaborating on monetite's diverse material properties. Special focus is put on the in vitro and in vivo properties of the material highlighting monetite as an orthopedic material-of-choice. The synthesis techniques are discussed which provide important information about the different fabrication routes for monetite. Most importantly, the review provides comprehensive knowledge about the diverse biomedical applications of monetite as granules, defect--specific scaffolds, bone cements and implant coatings. This review will help to highlight monetite's potential as an effective regenerative medicine and catalyze the continuing translation of this bioceramic from the laboratory to clinics.
Collapse
Affiliation(s)
- H Zhou
- Center for Health Science and Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China; International Research Center for Translational Orthopaedics (IRCTO), Jiangsu, China
| | - L Yang
- Center for Health Science and Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China; International Research Center for Translational Orthopaedics (IRCTO), Jiangsu, China
| | - U Gbureck
- Department for Functional Materials in Medicine and Dentistry, University Hospital of Würzburg, Würzburg, Germany
| | - S B Bhaduri
- Department of Mechanical, Industrial & Manufacturing Engineering, The University of Toledo, Toledo, OH, USA; ENG-EEC Division, The National Science Foundation (NSF), Alexandria, VA, USA
| | - P Sikder
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, USA.
| |
Collapse
|
11
|
Ruskin EI, Coomar PP, Sikder P, Bhaduri SB. Magnetic Calcium Phosphate Cement for Hyperthermia Treatment of Bone Tumors. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3501. [PMID: 32784386 PMCID: PMC7475887 DOI: 10.3390/ma13163501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 11/17/2022]
Abstract
This article reports, for the first time, the 'proof-of-concept' results on magnetic monetite (CaHPO4)-based calcium phosphate cements (CPCs) compositions developed for the hyperthermia treatment of bone tumors. Hyperthermia involves the heating of a tumor within a temperature range of 40-45 °C, inducing apoptosis in the tumor cells. This process holds promising potential in the field of cancer treatment and has been proven to be more effective than conventional therapeutics. Hence, we aimed to develop cement compositions that are capable of the hyperthermia treatment of bone tumors. To achieve that central goal, we incorporated iron oxide (Fe3O4), a ferromagnetic material, into monetite and hypothesized that, upon the application of a magnetic field, magnetite will generate heat and ablate the tumor cells near the implantation site. The results confirmed that an optimized content of magnetite incorporation in monetite can generate heat in the range of 40-45 °C upon the application of a magnetic field. Furthermore, the compositions were bioactive and cytocompatible with an osteoblastic cell line.
Collapse
Affiliation(s)
- Ethel Ibinabo Ruskin
- Department of Mechanical Industrial & Manufacturing Engineering, The University of Toledo, Toledo, OH 43606, USA; (E.I.R.); (S.B.B.)
| | - Paritosh Perry Coomar
- College of Literature, Sciences & Arts, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Prabaha Sikder
- Department of Mechanical Industrial & Manufacturing Engineering, The University of Toledo, Toledo, OH 43606, USA; (E.I.R.); (S.B.B.)
| | - Sarit B. Bhaduri
- Department of Mechanical Industrial & Manufacturing Engineering, The University of Toledo, Toledo, OH 43606, USA; (E.I.R.); (S.B.B.)
- ENG-EEC Division, The National Science Foundation (NSF), Alexandria, VA 22314, USA
| |
Collapse
|